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Abstract:

 In computer science the Myhill–Nerode Theorem states that a set L of words in a finite alphabet is accepted by a finite automaton if and only if the equivalence relation [image: there is no content], defined as x[image: there is no content]y if and only if [image: there is no content] exactly when [image: there is no content], has finite index. The Myhill–Nerode Theorem can be generalized to an algebraic setting giving rise to a collection of bialgebras which we call Myhill–Nerode bialgebras. In this paper we investigate the quasitriangular structure of Myhill–Nerode bialgebras.
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1. Introduction

Let [image: there is no content] be a finite alphabet and let [image: there is no content] denote the set of words formed from the letters in [image: there is no content]. Let L⊆[image: there is no content] be a language, and let [image: there is no content] be the equivalence relation defined as x[image: there is no content]y if and only if [image: there is no content] exactly when yz∈L,∀z∈[image: there is no content]. The Myhill–Nerode Theorem of computer science states that L is accepted by a finite automaton if and only if [image: there is no content] has finite index (cf. [1, 1, Chapter III, §9, Proposition 9.2], [2, §3.4, Theorem 3.9]). In [3, Theorem 5.4] the authors generalize the Myhill–Nerode theorem to an algebraic setting in which a finiteness condition involving the action of a semigroup on a certain function plays the role of the finiteness of the index of [image: there is no content], while a bialgebra plays the role of the finite automaton which accepts the language. We call these bialgebras Myhill–Nerode bialgebras.

The purpose of this paper is to investigate the quasitriangular structure of Myhill–Nerode bialgebras.

By construction, a Myhill–Nerode bialgebra B is cocommutative and finite dimensional over its base field. Thus B admits (at least) the trivial quasitriangular structure [image: there is no content]. We ask: does B (or its linear dual [image: there is no content]) have any non-trivial quasitriangular structures?

Towards a solution to this problem, we construct a class of commutative Myhill–Nerode bialgebras and give a complete account of the quasitriangular structure of one of them. We begin with some background information regarding algebras, coalgebras, and bialgebras.



2. Algebras, Coalgebras and Bialgebras

Let K be an arbitrary field of characteristic 0 and let A be a vector space over K with scalar product [image: there is no content] for all [image: there is no content], [image: there is no content]. Scalar product defines two maps [image: there is no content] with [image: there is no content] and [image: there is no content] with [image: there is no content], for [image: there is no content], [image: there is no content]. Let [image: there is no content] denote the identity map. A K-algebra is a triple [image: there is no content] where [image: there is no content] is a K-linear map which satisfies



[image: there is no content]



(1)




and [image: there is no content] is a K-linear map for which


[image: there is no content]



(2)




for all [image: there is no content], [image: there is no content]. The map [image: there is no content] is the multiplication map of A and [image: there is no content] is the unit map of A. Condition (1) is the associative property and Condition (2) is the unit property.
We write [image: there is no content](a⊗b) as [image: there is no content]. The element 1A=[image: there is no content](1K) is the unique element of A for which [image: there is no content] for all [image: there is no content]. Let [image: there is no content] be algebras. An algebra homomorphism from A to B is a K-linear map [image: there is no content] such that ϕ([image: there is no content](a1⊗a2))=[image: there is no content](ϕ(a1)⊗ϕ(a2))foralla1,a2∈A,andϕ(1A)=1B. In particular, for A to be a subalgebra of B we require [image: there is no content].

For any two vector spaces V, W let [image: there is no content] denote the twist map defined as [image: there is no content], for [image: there is no content], [image: there is no content]. For K-algebras [image: there is no content], we have that [image: there is no content] is a K-algebra with multiplication



m[image: there is no content]:(A⊗B)⊗(A⊗B)→A⊗B








defined by


m[image: there is no content]((a⊗b)⊗(c⊗d))=([image: there is no content]⊗[image: there is no content])(IA⊗τ⊗IB)(a⊗(b⊗c)⊗d)=([image: there is no content]⊗[image: there is no content])((a⊗c)⊗(b⊗d))=ac⊗bd








for [image: there is no content], [image: there is no content]. The unit map η[image: there is no content]:K→A⊗B given as


η[image: there is no content](r)=[image: there is no content](r)⊗1B








for [image: there is no content].
Let C be a K-vector space. A K-coalgebra is a triple [image: there is no content] in which [image: there is no content] is K-linear and satisfies



[image: there is no content]



(3)




and [image: there is no content] is K-linear with


[image: there is no content]



(4)




for all [image: there is no content]. The maps [image: there is no content] and [image: there is no content] are the comultiplication and counit maps, respectively, of the coalgebra C. Condition (3) is the coassociative property and Condition (4) is the counit property.
We use the notation of M. Sweedler [4, §1.2] to write



[image: there is no content](c)=∑(c)c(1)⊗c(2)








Note that Condition (4) implies that


∑(c)[image: there is no content](c(1))c(2)=c=∑(c)[image: there is no content](c(2))c(1)



(5)




Let C be a K-coalgebra. A nonzero element c of C for which [image: there is no content](c)=c⊗c is a grouplike element of C. If c is grouplike, then



c=s1([image: there is no content]⊗IC)[image: there is no content](c)=s1([image: there is no content]⊗IC)(c⊗c)=[image: there is no content](c)c








and so, [image: there is no content](c)=1. The grouplike elements of C are linearly independent [4, Proposition 3.2.1].
Let [image: there is no content] be coalgebras. A K-linear map [image: there is no content] is a coalgebra homomorphism if (ϕ⊗ϕ)[image: there is no content](c)=ΔD(ϕ(c)) and [image: there is no content](c)=ϵD(ϕ(c)) for all [image: there is no content]. The tensor product [image: there is no content] of two coalgebras is again a coalgebra with comultiplication map



Δ[image: there is no content]:C⊗D→(C⊗D)⊗(C⊗D)








defined by


Δ[image: there is no content](c⊗d)=(IC⊗τ⊗ID)([image: there is no content]⊗ΔD)(c⊗d)=(IC⊗τ⊗ID)([image: there is no content](c)⊗ΔD(d))=(IC⊗τ⊗ID)(∑(c),(d)c(1)⊗c(2)⊗d(1)⊗d(2))=∑(c),(d)c(1)⊗d(1)⊗c(2)⊗d(2)








for [image: there is no content], [image: there is no content]. The counit map ϵ[image: there is no content]:C⊗D→K is defined as


ϵ[image: there is no content](c⊗d)=[image: there is no content](c)ϵD(d)








for [image: there is no content], [image: there is no content].
A K-bialgebra is a K-vector space B together with maps [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] for which (B,[image: there is no content],[image: there is no content]) is a K-algebra and (B,[image: there is no content],[image: there is no content]) is a K-coalgebra and for which [image: there is no content] and [image: there is no content] are algebra homomorphisms. Let [image: there is no content] be bialgebras. A K-linear map [image: there is no content] is a bialgebra homomorphism if ϕ is both an algebra and coalgebra homomorphism.

A K-Hopf algebra is a bialgebra H together with an additional K-linear map [image: there is no content] that satisfies



[image: there is no content]



(6)




for all [image: there is no content]. The map [image: there is no content] is the coinverse (or antipode) map and property Condition (6) is the coinverse (or antipode) property. Though we will not consider Hopf algebras here, more details on the subject can be found in [5,6,7,8].
An important example of a K-bialgebra is given as follows. Let G be a semigroup with unity, 1. Let [image: there is no content] denote the semigroup algebra. Then [image: there is no content] is a bialgebra with comultiplication map



Δ[image: there is no content]:KG→KG⊗KG








defined by [image: there is no content], for all [image: there is no content], and counit map ϵ[image: there is no content]:KG→K given by [image: there is no content], for all [image: there is no content]. The bialgebra [image: there is no content] is the semigroup bialgebra on G.
Let B be a bialgebra, and let A be an algebra which is a left B-module with action denoted by “·”. Suppose that



[image: there is no content]








and


b·1A=[image: there is no content](b)1A








for all [image: there is no content], [image: there is no content]. Then A is a left B-module algebra. A K-linear map [image: there is no content] is a left B-module algebra homomorphism if ϕ is both an algebra and a left B-module homomorphism.
Let C be a coalgebra and a right B-module with action denoted by “·”. Suppose that for all [image: there is no content], [image: there is no content],



[image: there is no content](c·b)=∑(c),(b)c(1)·b(1)⊗c(2)·b(2)








and


[image: there is no content](c·b)=[image: there is no content](c)[image: there is no content](b)








Then C is a right B-module coalgebra. A K-linear map [image: there is no content] is a right B-module coalgebra homomorphism if ϕ is both a coalgebra and a right B-module homomorphism.
Let C be a coalgebra and let [image: there is no content] denote the linear dual of C. Then the coalgebra structure of C induces an algebra structure on [image: there is no content].

Proposition 2.1 If C is a coalgebra, then [image: there is no content] is an algebra.

Proof. Recall that C is a triple [image: there is no content] where [image: there is no content] is K-linear and satisfies the coassociativity property, and [image: there is no content] is K-linear and satisfies the counit property. The dual map of [image: there is no content] is a K-linear map



[image: there is no content]:(C⊗C)*→[image: there is no content]








Since [image: there is no content]⊗[image: there is no content]⊆(C⊗C)*, we define the multiplication map of [image: there is no content], denoted as m[image: there is no content], to be the restriction of [image: there is no content] to [image: there is no content]⊗[image: there is no content]. For f,g∈[image: there is no content], [image: there is no content],



(fg)(c)=m[image: there is no content](f⊗g)(c)=[image: there is no content](f⊗g)(c)=(f⊗g)([image: there is no content](c))=∑(c)f(c(1))g(c(2))








The coassociatively property of [image: there is no content] yields the associative property of m[image: there is no content]. Indeed, for f,g,h∈[image: there is no content], [image: there is no content],



m[image: there is no content](I[image: there is no content]⊗m[image: there is no content])(f⊗g⊗h)(c)=[image: there is no content](I[image: there is no content]⊗[image: there is no content])(f⊗g⊗h)(c)=[image: there is no content](f⊗[image: there is no content](g⊗h))(c)=(f⊗[image: there is no content](g⊗h))[image: there is no content](c)=∑(c)f(c(1))[image: there is no content](g⊗h)(c(2))=∑(c)f(c(1))(g⊗h)[image: there is no content](c(2))=(f⊗g⊗h)(∑(c)c(1)⊗[image: there is no content](c(2)))=(f⊗g⊗h)(∑(c)[image: there is no content](c(1))⊗c(2))byCondition(3)=∑(c)(f⊗g)[image: there is no content](c(1))⊗h(c(2))=∑(c)[image: there is no content](f⊗g)(c(1))⊗h(c(2))=([image: there is no content](f⊗g)⊗h)[image: there is no content](c)=[image: there is no content]([image: there is no content](f⊗g)⊗h)(c)=[image: there is no content]([image: there is no content]⊗I[image: there is no content])(f⊗g⊗h)(c)=m[image: there is no content](m[image: there is no content]⊗I[image: there is no content])(f⊗g⊗h)(c)








In addition, the counit map of C dualizes to yield


[image: there is no content]:K:=K*→[image: there is no content]








defined as [image: there is no content]. Thus we define the unit map η[image: there is no content] to be [image: there is no content]. One can show that the counit property of [image: there is no content] implies the unit property for η[image: there is no content]. To this end, for f∈[image: there is no content], [image: there is no content], [image: there is no content],


m[image: there is no content](I[image: there is no content]⊗η[image: there is no content])(f⊗r)(c)=[image: there is no content](I[image: there is no content]⊗[image: there is no content])(f⊗r)(c)=[image: there is no content](f⊗[image: there is no content](r))(c)=(f⊗[image: there is no content](r))([image: there is no content](c))=∑(c)f(c(1))[image: there is no content](r)(c(2))=∑(c)f(c(1))r([image: there is no content](c(2)))=r∑(c)f(c(1))[image: there is no content](c(2))=r∑(c)[image: there is no content](c(2))f(c(1))=r∑(c)f([image: there is no content](c(2))c(1))=rf(∑(c)[image: there is no content](c(2))c(1))=rf(c)byCondition(5)








In a similar manner, one obtains


m[image: there is no content](η[image: there is no content]⊗I[image: there is no content])(r⊗f)=rf








Thus ([image: there is no content],m[image: there is no content],η[image: there is no content]) is an algebra. Note that η[image: there is no content](1K)(c)=[image: there is no content](c),∀c, and so, [image: there is no content] is the unique element of [image: there is no content] for which [image: there is no content]f=f=f[image: there is no content] for all f∈[image: there is no content]. ⋄
Let [image: there is no content] be a K-algebra. Then one may wonder if [image: there is no content] is a K-coalgebra. The multiplication map [image: there is no content] dualizes to yield [image: there is no content]:[image: there is no content]→[image: there is no content]. Unfortunately, if A is infinite dimensional over K, then [image: there is no content]⊗[image: there is no content] is a proper subset of [image: there is no content], and hence [image: there is no content] may not induce the required comultiplication map [image: there is no content]→[image: there is no content]⊗[image: there is no content].

There is still however a K-coalgebra arising via duality from the algebra A. An ideal I of A is cofinite if [image: there is no content]. The finite dual [image: there is no content] of A is defined as



[image: there is no content]={f∈[image: there is no content]:f(I)=0forsomecofiniteidealIofA}








Note that [image: there is no content] is the largest subspace W of [image: there is no content] for which [image: there is no content](W)⊆W⊗W.
Proposition 2.2 If A is an algebra, then [image: there is no content] is a coalgebra.

Proof. The proof is similar to the method used in Proposition 2.1. We restrict the map [image: there is no content] to [image: there is no content] to yield the K-linear map [image: there is no content]:[image: there is no content]→[image: there is no content]. Now by [4, Proposition 6.0.3], [image: there is no content]([image: there is no content])⊆[image: there is no content]⊗[image: there is no content]. Let Δ[image: there is no content] denote the restriction of [image: there is no content] to [image: there is no content]. We show that Δ[image: there is no content] satisfies the coassociative condition. For f∈[image: there is no content], [image: there is no content], we have



(I⊗Δ[image: there is no content])Δ[image: there is no content](f)(a⊗b⊗c)=(I⊗[image: there is no content])[image: there is no content](f)(a⊗b⊗c)=[image: there is no content](f)((I⊗[image: there is no content])(a⊗b⊗c))=[image: there is no content](f)(a⊗bc)=f([image: there is no content](a⊗bc))=f(a(bc))=f((ab)c)=f([image: there is no content](ab⊗c))=[image: there is no content](f)(ab⊗c)=[image: there is no content](f)(([image: there is no content]⊗I)(a⊗b⊗c))=([image: there is no content]⊗I)[image: there is no content](f)(a⊗b⊗c)=(Δ[image: there is no content]⊗I)Δ[image: there is no content](f)(a⊗b⊗c)








For the counit map of [image: there is no content], we consider the dual map [image: there is no content]:[image: there is no content]→K*:=K. Now [image: there is no content] restricts to a map [image: there is no content]:[image: there is no content]→K. We let ϵ[image: there is no content] denote the restriction of [image: there is no content] to [image: there is no content]. For f∈[image: there is no content], [image: there is no content],



ϵ[image: there is no content](f)(r)=f([image: there is no content](r))=f(r1A)=rf(1A)=f(1A)(r)








and so, ϵ[image: there is no content](f)=f(1A). We show that ϵ[image: there is no content] satisfies the counit property. First let s1:K⊗[image: there is no content]→[image: there is no content] be defined by the scalar multiplication of [image: there is no content]. For f∈[image: there is no content], [image: there is no content], [image: there is no content],


s1((ϵ[image: there is no content]⊗I)Δ[image: there is no content](f))(a)=s1(([image: there is no content]⊗I)[image: there is no content](f))(a)=([image: there is no content]⊗I)[image: there is no content](f)(s1*(a))=([image: there is no content]⊗I)[image: there is no content](f)(1⊗a)=[image: there is no content](f)(([image: there is no content]⊗I)(1⊗a))=f([image: there is no content]([image: there is no content]⊗I)(1⊗a))=f(a)








In a similar manner, one obtains



s2((I⊗ϵ[image: there is no content])Δ[image: there is no content](f))(a)=f(a)








where s2:[image: there is no content]⊗K→[image: there is no content] is given by scalar multiplication. Thus [image: there is no content] is a coalgebra. ⋄
Proposition 2.3 If B is a bialgebra, then [image: there is no content] is a bialgebra.

Proof. As a coalgebra, B is a triple (B,[image: there is no content],[image: there is no content]). By Proposition 2.1, [image: there is no content] is an algebra with maps m[image: there is no content]=ΔB* and η[image: there is no content]=ϵB*. Let m[image: there is no content] denote the restriction of m[image: there is no content] to [image: there is no content]⊗[image: there is no content], and let η[image: there is no content] denote the restriction of η[image: there is no content] to [image: there is no content]. Then the triple ([image: there is no content],m[image: there is no content],η[image: there is no content]) is a K-algebra.

As an algebra, B is a triple (B,[image: there is no content],[image: there is no content]). By Proposition 2.2, [image: there is no content] is a coalgebra with maps Δ[image: there is no content] and ϵ[image: there is no content]. It remains to show that Δ[image: there is no content] and ϵ[image: there is no content] are algebra homomorphisms. First observe that for f,g∈[image: there is no content], [image: there is no content] one has



(fg)(a)=m[image: there is no content](f⊗g)(a)=ΔB*(f⊗g)(a)=(f⊗g)[image: there is no content](a)








and


Δ[image: there is no content](f)(a⊗b)=mB*(f)(a⊗b)=f([image: there is no content](a⊗b))=f(ab)








We have



Δ[image: there is no content](fg)(a⊗b)=(fg)(ab)=(f⊗g)([image: there is no content](ab))=(f⊗g)([image: there is no content](a)[image: there is no content](b))=(f⊗g)(m[image: there is no content]([image: there is no content](a)⊗[image: there is no content](b))=m[image: there is no content]*(f⊗g)([image: there is no content](a)⊗[image: there is no content](b))=(I⊗τ⊗I)(Δ[image: there is no content]⊗Δ[image: there is no content])(f⊗g)([image: there is no content](a)⊗[image: there is no content](b))=(Δ[image: there is no content](f)⊗Δ[image: there is no content](g))(I⊗τ⊗I)([image: there is no content]⊗[image: there is no content])(a⊗b)=(Δ[image: there is no content](f)⊗Δ[image: there is no content](g))(Δ[image: there is no content](a⊗b))=Δ[image: there is no content]*(Δ[image: there is no content](f)⊗Δ[image: there is no content](g))(a⊗b)=m[image: there is no content]⊗[image: there is no content](Δ[image: there is no content](f)⊗Δ[image: there is no content](g))(a⊗b)=(Δ[image: there is no content](f)Δ[image: there is no content](g))(a⊗b)








and so Δ[image: there is no content] is an algebra map. We next show that ϵ[image: there is no content] is an algebra map. For f,g∈[image: there is no content],


ϵ[image: there is no content](f)=ϵ[image: there is no content](f)(1)=f([image: there is no content](1))=f(1B)








Thus


ϵ[image: there is no content](fg)=(fg)(1B)=f(1B)g(1B)=ϵ[image: there is no content](f)ϵ[image: there is no content](g)








and so, ϵ[image: there is no content] is an algebra map. ⋄
Proposition 2.4 Suppose that B is a bialgebra that is finite dimensional over K. Then [image: there is no content] is a bialgebra.

Proof. If [image: there is no content], then [image: there is no content]=[image: there is no content]. The result then follows from Proposition 2.3. ⋄

Let [image: there is no content] be a finite semigroup with unity element 1[image: there is no content]=x1, and let [image: there is no content] denote the semigroup bialgebra. By Proposition 2.4 [image: there is no content] is a bialgebra of dimension n over K. Let [image: there is no content] be the dual basis for [image: there is no content] defined as [image: there is no content].

Proposition 2.5 The comultiplication map Δ[image: there is no content]:KG*→KG*⊗KG* is given as



Δ[image: there is no content](ei)=∑xi=xjxkej⊗ek








and the counit map ϵ[image: there is no content]:KG*→K is defined as ϵ[image: there is no content](ei)=ei(x1)=δi,1.
Proof, See [7, (1.3.7)]. ⋄

Let B be a K-bialgebra. Then B is cocommutative if



τ([image: there is no content](b))=[image: there is no content](b)








for all [image: there is no content].
Proposition 2.6 If B is cocommutative, then [image: there is no content] is a commutative algebra. If B is a commutative algebra, then [image: there is no content] is cocommutative.

Proof. See [7, Lemma 1.2.2, Proposition 1.2.4]. ⋄



3. Quasitriangular Bialgebras

Let B be a bialgebra and let [image: there is no content] be the tensor product algebra. Let [image: there is no content] denote the group of units in [image: there is no content] and let [image: there is no content]. The pair [image: there is no content] is almost cocommutative if the element R satisfies



τ([image: there is no content](b))=R[image: there is no content](b)R-1



(7)




for all [image: there is no content].
If the bialgebra B is cocommutative, then the pair [image: there is no content] is almost cocommutative since [image: there is no content] satisfies Condition (7). However, if B is commutative and non-cocommutative, then [image: there is no content] cannot be almost cocommutative for any [image: there is no content] since Condition (7) in this case reduces to the condition for cocommutativity.

Write [image: there is no content]. Let



[image: there is no content]










[image: there is no content]










[image: there is no content]








The pair [image: there is no content] is quasitriangular if [image: there is no content] is almost cocommutative and the following conditions hold


([image: there is no content]⊗I)R=R13R23



(8)






(I⊗[image: there is no content])R=R13R12



(9)




Clearly, if B is cocommutative then [image: there is no content] is quasitriangular.

Let B be a bialgebra. A quasitriangular structure is an element [image: there is no content] so that [image: there is no content] is quasitriangular. Let [image: there is no content] and [image: there is no content] be quasitriangular bialgebras. Then [image: there is no content], [image: there is no content] are isomorphic as quasitriangular bialgebras if there exists a bialgebra isomorphism [image: there is no content] for which [image: there is no content]. Two quasitriangular structures [image: there is no content] on a bialgebra B are equivalent quasitriangular structures if [image: there is no content]≅[image: there is no content] as quasitriangular bialgebras.

The following proposition shows that every bialgebra isomorphism [image: there is no content] with B quasitriangular extends to an isomorphism of quasitriangular bialgebras.

Proposition 3.1 Suppose [image: there is no content] is quasitriangular and suppose that [image: there is no content] is an isomorphism of K-bialgebras. Let [image: there is no content]. Then [image: there is no content] is quasitriangular.

Proof. Note that [image: there is no content]. Let [image: there is no content]. Then there exists [image: there is no content] for which [image: there is no content]. Now



τΔB′(b′)=τΔB′(ϕ(b))=τ(ϕ⊗ϕ)[image: there is no content](b)=(ϕ⊗ϕ)τ[image: there is no content](b)=(ϕ⊗ϕ)(R[image: there is no content](b)R-1)=(ϕ⊗ϕ)(R)(ϕ⊗ϕ)[image: there is no content](b)(ϕ⊗ϕ)(R-1)=(ϕ⊗ϕ)(R)ΔB′(ϕ(b))((ϕ⊗ϕ)(R))-1=(ϕ⊗ϕ)(R)ΔB′(b′)((ϕ⊗ϕ)(R))-1=[image: there is no content]ΔB′(b′)([image: there is no content])-1








and so, [image: there is no content] is almost cocommutative. Moreover,


(ΔB′⊗I)([image: there is no content])=(ΔB′⊗I)(ϕ⊗ϕ)(R)=(ΔB′⊗I)(∑i=1nϕ(ai)⊗ϕ(bi))=∑i=1nΔB′ϕ(ai)⊗ϕ(bi))=∑i=1n(ϕ⊗ϕ)[image: there is no content](ai)⊗ϕ(bi))=(ϕ⊗ϕ⊗ϕ)(∑i=1n[image: there is no content](ai)⊗bi)=(ϕ⊗ϕ⊗ϕ)([image: there is no content]⊗I)(R)=(ϕ⊗ϕ⊗ϕ)(R13R23)=(ϕ⊗ϕ⊗ϕ)((∑i=1nai⊗1⊗bi)(∑i=1n1⊗ai⊗bi))=(∑i=1nϕ(ai)⊗1⊗ϕ(bi))(∑i=1n1⊗ϕ(ai)⊗ϕ(bi))=((ϕ⊗ϕ)(R))13((ϕ⊗ϕ)(R))23=([image: there is no content])13([image: there is no content])23








In a similar manner one shows that



[image: there is no content]








Thus [image: there is no content] is quasitriangular. ⋄
Quasitriangular bialgebras are important since they give rise to solutions of the equation



[image: there is no content]



(10)




which is known as the quantum Yang–Baxter equation (QYBE). The QYBE was first introduced in statistical mechanics, see [9]. An element [image: there is no content] which satisfies (10) is a solution to the QYBE.
Certainly, the QYBE admits the trivial solution [image: there is no content], and of course, if B is commutative, then any [image: there is no content] is a solution to the QYBE. For B non-commutative, it is of great interest to find non-trivial solutions [image: there is no content] to the QYBE. We have the following result due to V. G. Drinfeld [10].

Proposition 3.2 (Drinfeld) Suppose [image: there is no content] is quasitriangular. Then R is a solution to the QYBE.

Proof. One has



R12R13R23=R12(Δ⊗I)(R)by(8)=(R⊗1)(∑i=1nΔ(ai)⊗bi)=∑i=1nRΔ(ai)⊗bi=∑i=1nτΔ(ai)R⊗biby(7)=(∑i=1nτΔ(ai)⊗bi)(R⊗1)=(τΔ⊗I)(R)R12=(τ⊗I)(Δ⊗I)(R)R12=(τ⊗I)(R13R23)R12by(8)=R23R13R12








⋄
The following proposition provides necessary conditions on [image: there is no content] in order for [image: there is no content] to be quasitriangular.

Proposition 3.3 Suppose [image: there is no content] is quasitriangular. Then

(i) [image: there is no content],

(ii) [image: there is no content].

Proof. For (i) one has



(s1⊗I)(ϵ⊗I⊗I)(Δ⊗I)(R)=(s1⊗I)(ϵ⊗I⊗I)(∑i=1nΔ(ai)⊗bi)=(s1⊗I)(∑i=1n(ϵ⊗I)Δ(ai)⊗bi)=∑i=1ns1(ϵ⊗I)Δ(ai)⊗bi=∑i=1ai⊗bi=R








In view of Condition (8)


R=(s1⊗I)(ϵ⊗I⊗I)(R13R23)=(s1⊗I)(ϵ⊗I⊗I)(R13)(s1⊗I)(ϵ⊗I⊗I)(R23)=(s1⊗I)(ϵ⊗I⊗I)(∑i=1nai⊗1⊗bi)(s1⊗I)(ϵ⊗I⊗I)(∑i=1n1⊗ai⊗bi)=(∑i=1nϵ(ai)1⊗bi)(∑i=1nai⊗bi)=(∑i=1n1⊗ϵ(ai)bi)R








Thus


[image: there is no content]








and consequently,


[image: there is no content]








A similar argument is used to prove (ii). ⋄



4. Myhill–Nerode Bialgebras

In this section we review the main result of [3] in which the authors give a bialgebra version of the Myhill–Nerode Therorem. Let G be a semigroup with unity, 1 and let [image: there is no content] be the semigroup bialgebra. There is a right H-module structure on [image: there is no content] defined as



[image: there is no content]








for all [image: there is no content], p∈[image: there is no content]. For [image: there is no content], p∈[image: there is no content], the element [image: there is no content] is the right translate of p by x.
Proposition 4.1 ([3, Proposition 5.4].) Let G be a semigroup with 1, let [image: there is no content] denote the semigroup bialgebra. Let p∈[image: there is no content]. Then the following are equivalent.

(i) The set {p↼x:x∈G} of right translates is finite.

(ii) There exists a finite dimensional bialgebra B, a bialgebra homomorphism [image: there is no content], and an element f∈[image: there is no content] so that [image: there is no content] for all [image: there is no content].

(Note: The bialgebras of (ii) are defined to be Myhill–Nerode bialgebras.)

Proof. [image: there is no content]. Let Q={p↼x:x∈G} be the finite set of right translates. For each [image: there is no content], we define a right operator [image: there is no content] by the rule



[image: there is no content]








Observe that the set {ru:u∈G} is finite with |{ru:u∈G}|≤|Q||Q|. The set {ru:u∈G} is a semigroup with unity, [image: there is no content] under composition of operators. Indeed,


[image: there is no content]








Thus [image: there is no content], for all [image: there is no content]. Let B denote the semigroup bialgebra on {ru:u∈G}. Let [image: there is no content] be the K-linear map defined by [image: there is no content]. Then


[image: there is no content]








and


[image: there is no content](Ψ(u))=[image: there is no content](ru)=ru⊗ru=Ψ(u)⊗Ψ(v)=(Ψ⊗Ψ)(u⊗u)=(Ψ⊗Ψ)ΔH(u)








and so, Ψ is a homomorphism of bialgebras.
Let f∈[image: there is no content] be defined by



f(ru)=((p↼1)ru)(1)=(p↼u)(1)=p(u)








Then [image: there is no content], for all [image: there is no content], as required.
[image: there is no content]. Suppose there exists a finite dimensional bialgebra B, a bialgebra homomorphism [image: there is no content], and an element f∈[image: there is no content] so that [image: there is no content] for all [image: there is no content]. Define a right H-module action · on B as



[image: there is no content]








for all [image: there is no content], [image: there is no content]. Then for [image: there is no content], [image: there is no content],


[image: there is no content](b·x)=[image: there is no content](bΨ(x))=[image: there is no content](b)[image: there is no content](Ψ(x))=(∑(b)b(1)⊗b(2))(Ψ⊗Ψ)ΔH(x)=(∑(b)b(1)⊗b(2))(Ψ(x)⊗Ψ(x))=∑(b)b(1)Ψ(x)⊗b(2)Ψ(x)=∑(b)b(1)·x⊗b(2)·x








and


[image: there is no content](b·x)=[image: there is no content](bΨ(x))=[image: there is no content](b)[image: there is no content](Ψ(x))=[image: there is no content](b)ϵH(x)








Thus B is a right H-module coalgebra.
Now, let Q be the collection of grouplike elements of B. Since Q is a linearly independent subset of B and B is finite dimensional, Q is finite. Since B is a right H-module coalgebra with action “·”,



[image: there is no content](q·x)=q·x⊗q·x








for [image: there is no content], [image: there is no content]. Thus · restricts to give an action (also denoted by “·”) of G on Q. Now for [image: there is no content],


(p↼x)(y)=p(xy)=f(Ψ(xy))=f(Ψ(x)Ψ(y))=f((1BΨ(x))Ψ(y))=f((1B·x)·y)



(11)




Let


S={q∈Q:q=1B·xforsome[image: there is no content]}








In view of Condition (11) there exists a function


ϱ:S→{p↼x:x∈G}








defined as


[image: there is no content]








Since ϱ is surjective and S is finite, {p↼x:x∈G} is finite. ⋄
We illustrate the connection between Proposition 4.1 and the usual Myhill–Nerode Theorem. Let [image: there is no content] denote the set of words in a finite alphabet [image: there is no content]. Let L⊆[image: there is no content] be a language. Suppose that the equivalence relation [image: there is no content] (as in the Introduction) has finite index. Then the usual Myhill–Nerode Theorem says that there exists a finite automaton which accepts L. We show how to construct this finite automaton using Proposition 4.1.

Consider G=[image: there is no content] as a semigroup with unity where the semigroup operation is concatenation and the unity element is the empty word. Let [image: there is no content] denote the semigroup bialgebra. Then the characteristic function of L extends to an element p∈[image: there is no content]. Since [image: there is no content] has finite index, the set of right translates {p↼x:x∈G} is finite [3, Proposition 2.3]. Now Proposition 4.1 (i)⟹ (ii) applies to show that there exists a finite dimensional bialgebra B, a bialgebra homomorphism [image: there is no content] and an element f∈[image: there is no content] so that [image: there is no content], for all [image: there is no content].

This bialgebra determines a finite automaton [image: there is no content], where Q is the finite set of states, Σ is the input alphabet, δ is the transition function, [image: there is no content] is the initial state, and F is the set of final states (see [2, Chapter 2] for details on finite automata.)

For the states of the automata, we let Q be the (finite) set of grouplike elements of B. For the input alphabet, we choose Σ=[image: there is no content]. As we have seen, the right H-module structure of B restricts to an action “·” of G on Q, and so we define the transition function δ:Q×[image: there is no content]→Q by the rule [image: there is no content], for [image: there is no content], x∈[image: there is no content]. The initial state is [image: there is no content]=1B, and the set of final states F is the subset of Q of the form [image: there is no content], [image: there is no content] for which



[image: there is no content]








By construction, the finite automaton ⟨Q,[image: there is no content],δ,1B,F⟩ accepts L.


5. Quasitriangular Structure of Myhill–Nerode Bialgebras

In this section we use Proposition 4.1 to construct a collection of Myhill–Nerode bialgebras. We then compute the quasitriangular structure of one of these bialgebras.

Let [image: there is no content]={a} be the alphabet on a single letter a. Let [image: there is no content]={1,a,aa,aaa,⋯} denote the collection of all words of finite length formed from [image: there is no content]. Here 1 denotes the empty word of length 0. For convenience, we shall write



ai=aaa⋯a︸itimes,








for [image: there is no content].
Fix an integer [image: there is no content] and let [image: there is no content]={ai}⊆[image: there is no content]. Then the language [image: there is no content] is accepted by the finite automaton given in Figure 1.

Figure 1. Finite automaton accepting [image: there is no content]={ai}, accepting state is i.



[image: Axioms 01 00155 g001 1024]







By the usual Myhill–Nerode Theorem, the equivalence relation ∼[image: there is no content], defined as x∼[image: there is no content]y if and only if xz∈[image: there is no content] exactly when yz∈[image: there is no content],∀z, has finite index. If [image: there is no content]:[image: there is no content]→{0,1}⊆K is the characteristic function of [image: there is no content], then ∼[image: there is no content] is equivalent to the relation [image: there is no content] defined as: x[image: there is no content]y if and only if [image: there is no content](xz)=[image: there is no content](yz),∀z∈[image: there is no content]. Let [image: there is no content] denote the equivalence class of x under [image: there is no content]. The Myhill–Nerode theorem now says that the set {[image: there is no content]:x∈[image: there is no content]} is finite.

Now we consider G=[image: there is no content] as a semigroup with unity 1 with concatenation as the binary operation. Let [image: there is no content] be the semigroup bialgebra. The characteristic function [image: there is no content] of [image: there is no content] extends to an element of [image: there is no content]. By [3, Proposition 2.3], the set of right translates {[image: there is no content]↼x:x∈G} is finite. Thus by Proposition 4.1, there exists a finite dimensional bialgebra [image: there is no content], a bialgebra homomorphism Ψ:H→[image: there is no content], and an element [image: there is no content] so that [image: there is no content](h)=fi(Ψ(h)) for all [image: there is no content].

In what follows, we give the bialgebra structure of the collection {[image: there is no content]:i≥0} and compute the quasitriangular structure of the bialgebra [image: there is no content].

For [image: there is no content], the finite set of right translates of [image: there is no content]∈[image: there is no content] is



[image: there is no content]={[image: there is no content]↼1,[image: there is no content]↼a,[image: there is no content]↼a2,⋯,[image: there is no content]↼ai,[image: there is no content]↼ai+1}








One finds that the set of right operators on [image: there is no content] is [image: there is no content]. Under composition, the set of right operators is a semigroup with unity [image: there is no content]. We have, for [image: there is no content],



[image: there is no content]








By construction, [image: there is no content] is the semigroup bialgebra on [image: there is no content].


5.1. Quasitriangular Structure of [image: there is no content]

In the case [image: there is no content], [image: there is no content] is the semigroup bialgebra on {[image: there is no content],ra} with algebra structure defined by [image: there is no content][image: there is no content]=[image: there is no content], [image: there is no content]ra=ra, ra[image: there is no content]=ra, [image: there is no content]. Let [image: there is no content] be the dual basis defined as e0([image: there is no content])=1, [image: there is no content], e1([image: there is no content])=0, [image: there is no content]. Then [image: there is no content] is the set of minimal idempotents for [image: there is no content]. Comultiplication on [image: there is no content] is given as



Δ[image: there is no content](e0)=e0⊗e0










Δ[image: there is no content](e1)=e0⊗e1+e1⊗e0+e1⊗e1








and the counit map is defined by


ϵ[image: there is no content](e0)=1,ϵ[image: there is no content](e1)=0








Proposition 5.1 Let [image: there is no content] be the K-bialgebra as above. Then there is exactly one quasitriangular structure on [image: there is no content], namely, R=1[image: there is no content]⊗1[image: there is no content].

Proof. Certainly, 1⊗1=1[image: there is no content]⊗1[image: there is no content] is a quasitriangular structure for [image: there is no content]. We claim that [image: there is no content] is the only quasitriangular structure. Observe that there is bialgebra isomorphism ϕ:[image: there is no content]→[image: there is no content] defined as ϕ([image: there is no content])=e0+e1, [image: there is no content]. Thus if ([image: there is no content],R) is quasitriangular, then ([image: there is no content],[image: there is no content]), [image: there is no content], is quasitriangular by Proposition 3.1. So, we first compute all of the quasitriangular structures of [image: there is no content]. To this end, suppose that ([image: there is no content],[image: there is no content]) is quasitriangular for some element [image: there is no content]∈[image: there is no content]⊗[image: there is no content]. Since



[image: there is no content]⊗[image: there is no content]=K(e0⊗e0)⊕K(e0⊗e1)⊕K(e1⊗e0)⊕K(e1⊗e1)










[image: there is no content]








for [image: there is no content]. By Proposition 3.3(i),


1[image: there is no content]=e0+e1=s1(ϵ⊗I)(w(e0⊗e0)+x(e0⊗e1)+y(e1⊗e0)+z(e1⊗e1))=we0+xe1








and so, [image: there is no content]. From Proposition 3.3(ii), one also has [image: there is no content]. Thus


[image: there is no content]








for [image: there is no content]. Now,


(Δ⊗I)([image: there is no content])=(Δ⊗I)(e0⊗e0+e0⊗e1+e1⊗e0+z(e1⊗e1))=(e0⊗e0)⊗e0+(e0⊗e0)⊗e1+(e0⊗e1+e1⊗e0+e1⊗e1)⊗e0+z((e0⊗e1+e1⊗e0+e1⊗e1)⊗e1)=e0⊗e0⊗e0+e0⊗e0⊗e1+e0⊗e1⊗e0+e1⊗e0⊗e0+e1⊗e1⊗e0+z(e0⊗e1⊗e1)+z(e1⊗e0⊗e1)+z(e1⊗e1⊗e1)



(12)




Moreover,


([image: there is no content])13([image: there is no content])23=(e0⊗(e0+e1)⊗e0+e0⊗(e0+e1)⊗e1+e1⊗(e0+e1)⊗e0+z(e1⊗(e0+e1)⊗e1))·((e0+e1)⊗e0⊗e0+(e0+e1)⊗e0⊗e1+(e0+e1)⊗e1⊗e0+z((e0+e1)⊗e1⊗e1))=(e0⊗e0⊗e0+e0⊗e1⊗e0+e0⊗e0⊗e1+e0⊗e1⊗e1+e1⊗e0⊗e0+e1⊗e1⊗e0+z(e1⊗e0⊗e1)+z(e1⊗⊗e1⊗e1))·(e0⊗e0⊗e0+e1⊗e0⊗e0+e0⊗e0⊗e1+e1⊗e1⊗e0+e0⊗e1⊗e0+e1⊗e1⊗e0+z(e0⊗e1⊗e1)+z(e1⊗⊗e1⊗e1))=e0⊗e0⊗e0+e0⊗e1⊗e0+e0⊗e0⊗e1+z(e0⊗e1⊗e1)+e1⊗e0⊗e0+e1⊗e1⊗e0+z(e1⊗e0⊗e1)+z2(e1⊗e1⊗e1)



(13)




Equations 12 and 13 yield the relation [image: there is no content]. Thus either [image: there is no content] or [image: there is no content]. If [image: there is no content], then [image: there is no content] is not a unit in [image: there is no content]⊗[image: there is no content]. Thus


[image: there is no content]=e0⊗e0+e0⊗e1+e1⊗e0+e1⊗e1=1⊗1








is the only quasitriangular structure for [image: there is no content].
Consequently, if ([image: there is no content],R) is quasitriangular, then (ϕ⊗ϕ)(R)=1[image: there is no content]⊗1[image: there is no content]. It follows that R=1[image: there is no content]⊗1[image: there is no content]. ⋄



5.2. Questions for Future Research

Though the Myhill–Nerode bialgebra [image: there is no content] has only the trivial quasitriangular structure, it remains to compute the quasitriangular structure of [image: there is no content] for [image: there is no content]. Moreover, the linear dual [image: there is no content] is a commutative, cocommutative K-bialgebra and it would be of interest to find its quasitriangular structure. Unlike the [image: there is no content] case, we may have [image: there is no content]≅[image: there is no content] (for instance, [image: there is no content]) and so this is indeed a separate problem.

Suppose that L is a language of words built from the alphabet [image: there is no content]={a,b}. If L is accepted by a finite automaton, then by Proposition 4.1, L gives rise to a Myhill–Nerode bialgebra B (see for example, [3, §6].) By construction, B is a cocommutative K-bialgebra and hence B has at least the trivial quasitriangular structure. Are there any other structures? Note that [image: there is no content] is a commutative K-algebra. For which R (if any) is ([image: there is no content],R) quasitriangular?
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