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Abstract: Mesoproterozoic magnesite deposits are found associated with dolomitic marble
and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies
Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore
deposits exposed on the surface (at the Dobbie mine), and presents stable isotope and mineralogical
data for a marine evaporitic origin. The magnesite ore zone has δ18O(Mag) = 25.5 ± 0.4%�

(VSMOW) and δ13C(Mag) = 1.7 ± 0.2%� (VPDB; n = 7), while surrounding dolomitic marble has
δ18O(Dol) = 24.2 ± 0.6%� and δ13C(Dol) = −0.2 ± 0.7%� (n = 11). These values are at the high end
of the range for other Morin terrane marbles, and this and sharp transitions in stable isotope ratios
between lithologies argue for preservation of evaporitic enrichment inδ18O andδ13C. Boron isotope ratios
(δ11B = 15.5%� to 22.7%�) are also consistent with a marine evaporite origin. Identifying evaporitic
protoliths in metasedimentary rocks is important for determining pre-metamorphic depositional
environments, and in this case links the sedimentary setting of the Morin terrane to the Adirondack
Lowlands (New York, NY, USA). The identification of the Kilmar magnesite deposits as evaporitic also has
implications for the formation of sedimentary exhalative base metal deposits in the Grenville Supergroup.

Keywords: Grenville Province; Grenville Supergroup; Morin terrane; magnesite; oxygen isotopes;
carbon isotopes; boron isotopes

1. Introduction

Stratiform magnesite deposits in the Kilmar area north of the Ottawa river are hosted
in Mesoproterozoic dolomitic marbles of the Grenville Supergroup in the Morin terrane
(Grenville Province, QC, Canada). Magnesite was mined in the Kilmar district from five mines that
span ~6 km North–South. These deposits were initially extracted by open pit methods followed
by underground mining, and were active from 1913 until depletion of the ore in 1993 [1]. This study
focuses on the Dobbie mine (Gamble mine in some sources), the northernmost of the Kilmar deposits,
which operated as an open pit from 1918–1948 [2]. The Kilmar district has historically been interpreted
to have a hydrothermal replacement origin [3,4], but these deposits have not been evaluated in the context
of modern depositional models for magnesite [5]. In addition, the suggestion that the Kilmar deposits
are metamorphosed evaporites has implications for paleoenvironments of the Grenville Supergroup
and exploration for exhalative base metal deposits [6]. This is especially important in the context of recent
metal exploration in the Canadian Grenville Province, and the discovery of zinc showings in Grenville
Supergroup marbles at Kilmar and in the immediate area [7].
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2. Geologic Setting

The Morin terrane (Figure 1) is made up of a package of granulite facies metasedimentary rocks
and orthogneiss intruded by the 1.15 Ga Morin Anorthosite-Mangerite-Charnockite-Granite (AMCG)
suite [8,9]. Pre-1.15 Ga rocks include the Mont-Tremblant gneiss, a suite of ca. 1.3 Ga intermediate
to felsic arc rocks [10], and marble, quartzite, pelitic schist, and amphibolites of the Grenville Supergroup.
The Grenville Supergroup (originally Grenville series) was first described in the nineteenth century
by William Logan at its type locality near the Ottawa River, and was recognized to contain significant
magnesite deposits ~10 km to the north in 1900. Based on structural relationships the Mont-Tremblant gneiss
was inferred to be the basement for Grenville Supergroup rocks [11], which was confirmed by a detrital
zircon study that yields a maximum depositional age of 1245 Ma and documented a significant ~1.3 Ga
detrital component [12]. The extent to which rocks elsewhere assigned to the Grenville Supergroup are
truly correlative or coeval has been an open question [13], but the detrital zircon population of Morin
terrane quartzites and those from the Adirondack Mountains of New York and the New Jersey Highlands
(USA) point to contemporaneous sedimentation in similar back-arc environments that received input
from broadly similar source regions [12].
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Figure 1. (A) Location map of the Grenville Province and (B) geology of the Allochthonous
Monocyclic Belt, showing the Marcy and Morin anorthosite massifs after [12]. AL = Adirondack
Lowlands, FT = Frontenac terrane, BLSZ = Black Lake shear zone, CCSZ = Carthage-Colton shear
zone, LSZ = Labelle shear zone, MaSZ = Maberly shear zone, MSZ = Morin shear zone.

Grenville Supergroup metasedimentary rocks contain granulite facies mineral assemblages,
and regional calcite-graphite carbon isotope thermometry yields 755 ± 38 ◦C temperatures [14].
206Pb/207Pb ages of titanite from marbles are mostly ca. 1120–1110 [15], suggesting that high-grade
metamorphism of the Grenville Supergroup in the Morin terrane was first caused during the accretionary
1.19–1.14 Ga Shawinigan orogeny, and in places clearly is retrogressed by the contact effects of 1.15 Ga
AMCG-suite plutons [16].

The geology of the Kilmar magnesite district is described by [3,4,17], who were able to base
their descriptions on several of the working mines. This description is summarized from these
sources. Rocks from the Kilmar magnesite ore zone are typically magnesite–dolomite–serpentine
rocks, sometimes having accessory diopside and phlogopite, brucite veins, and occasional quartz, talc,
titanite, pyrite, sphalerite, galena, apatite, magnetite, and graphite. Ductile deformation has produced
concordant lens-like ore zones, with a maximum thickness of ~45 m. The horizons where the ore zones
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are found generally strike North–South (Figure 2), and are intercalated with Grenville Supergroup
marbles, diopside–quartz calc silicate rock, and garnet–sillimanite schist and gneiss. The sequence
is bounded by the Mont-Tremblant gneiss and by the quartz monzonite of the Morin AMCG suite,
which intrudes Grenville Supergroup rocks and the ore zone, and is associated with hydrothermal
alteration. These relationships have historically been taken as indicating that the magnesite ore zone
was a replacement deposit caused by igneous fluids.
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Figure 2. Morin terrane geology in the area of the Kilmar magnesite deposits, after [7] and references
therein. Star is the location of the Dobbie mine.

3. Materials and Methods

Samples for this study were collected from a transect of the dolomite-hosted magnesite ore body
exposed in the south wall of the Dobbie mine open pit in 2005. Representative samples of the host
rock, ore, and veins were collected, and were supplemented by samples from dumps. Samples were
examined using polarized light and backscattered electron microscopy, and select samples were
analyzed for stable isotope ratios, X-ray diffraction (XRD), and bulk rock geochemistry.

For the oxygen and carbon isotope analysis each sample was crushed, washed, hand-picked
for purity, and ground and sieved to <70 µm, after [18]. Powdered ore and host dolomitic marble
samples were dissolved using 100% phosphoric acid in off-line reaction vessels [19]. Ca. 10 mg
of dolomitic marble host-rock were dissolved for five hours at 50 ◦C in an 80% ethylene glycol/20% water
bath. Upon removal from the constant-temperature bath, dissolution was quenched by submerging
the reaction vessel in ice water before evolved CO2 was extracted, cryogenically purified, and was
analyzed in dual-inlet mode using a Thermo Finnigan Delta Plus Advantage mass spectrometer
at Colgate University [14]. Magnesite and dolomite replicates had average precisions of ±0.04%�

and ±0.13%� for carbon and oxygen isotopes, respectively. NBS-19 analyzed in this lab during this
period averaged δ13C = 2.04 ± 0.02%� (VPDB) and δ18O = 28.58 ± 0.04%� (VSMOW).

Ore samples contain an intimate intergrowth of dolomite and magnesite, which is impractical
to separate mechanically for the isotope analysis. The dissolution method of [18] was used to sequentially
analyze CO2 evolved from 60 mg of powdered dolomite + magnesite in the same reaction vessel.
For the ore samples the procedure for the dolomite analysis above was used, and the aliquot of CO2
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evolved after five hours was extracted and analyzed. The reaction vessels were then returned to the
heating bath for 30 h of continued reaction at 50 ◦C. Based on the solubility of magnesite and dolomite
in phosphoric acid [18], the second aliquot of CO2 is a mixture of gas evolved from both minerals.
This second aliquot of CO2 was discarded, and the reaction vessels were returned to the heating bath
for an additional 30 h. The final aliquot of CO2 was extracted after quenching the reaction, and is
predominately gas produced from magnesite dissolution [18]. Dolomite and magnesite oxygen isotope
ratios were calculated using the phosphoric acid fractionation factors of [20].

Mineral identification was aided by using an energy dispersive X-ray spectrometer on an electron
microscope. X-ray diffraction was also employed for mineral identification using a Philips PW3040
X-ray Diffractometer. Random powder mounts (<4 µm) of whole-rock powders and treated oriented
clay mounts (<2 µm) were analyzed for the identification of phyllosilicates. Whole-rock geochemistry
of three dolomitic marble and three magnesite ore samples were determined by ICP-MS at XRAL
Laboratories/SGS Canada (Table 2). Three ore samples, one dolomitic marble, and one regional
calcite marble [14] were analyzed for the boron isotope ratio by acid digestion and MC-ICP-MS using
a Neptune Plus mass spectrometer at ALS Scandinavia AB (Luleå, Sweden), and are reported relative
to NIST SRM 951. Two samples were duplicated and averaged ±0.25%�.

4. Results and Discussion

4.1. Outcrop Description and Mineralogy

The south wall of the Dobbie open pit measured ~15 m across in 2005, exposing the remaining
orebody’s ~2 m thickness (Figure 3). This lens of magnesite ore is mostly dark blue-gray in color,
strikes north-south, and dips ~70◦ to the east. In addition to the main ore body, a thin layer of gray
magnesite rock is present roughly 2.75 m from the west edge of the wall. The layer is ~0.25 m thick,
and has a similar orientation as the ore body. The ore is surrounded by a white-green dolomitic marble,
with some samples containing a high percentage of magnesite (Table 1). The contact between the ore
body and surrounding rocks is slightly irregular, but distinct and sharp.
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Figure 3. Geology of the south wall of the Dobbie open-pit mine, showing the remaining magnesite ore
body in 2005.

The ore zone is made of three minerals: Dolomite, magnesite, and serpentine, which comprise >99%
of the total rock (Figure 4a). Ore body samples range from ~10% to 50% magnesite (determined by image
processing of the BSE images), averaging 32± 16%. Dolomite ranges from 20–50% (averaging 35 ± 10%)
and serpentine 20–40% (averaging 33 ± 6%). Dolomite cross-cuts magnesite in ore body samples
(Figure 4a). Serpentine is not commonly cross-cut by dolomite, contains magnesite inclusions,
and appears to have formed as pseudomorphs of diopside [4]. Surrounding dolomitic marbles
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(Figure 4b) have an average composition of 14 ± 13% magnesite, 53 ± 19% dolomite, 32 ± 19%
serpentine, and trace amounts (<1%) of strontianite and celestine. In these samples some dolomite
is also texturally late.

Table 1. Stable isotope data from the Dobbie mine, Kilmar magnesite district, Quebec.

Sample L δ13C
(Dol)%�

δ18O
(Dol)%�

δ13C
(Mag)%�

δ18O
(Mag)%� δ11B%� %Mag %Dol %Serp Distance (m)

GE-1 D 0.63 24.45 33 49 13 0
GE-2 D 0.44 23.71 9 63 28 1.1
GE-3 M 1.54 25.19 1.88 24.62 25 41 34 3.0
GE-5 D −0.90 23.91 10 55 34 4.3
GE-6 D −1.10 24.67 10 43 47 5.2
GE-7 D −0.11 22.83 8 91 1 5.4
GE-8 M 1.36 23.20 1.27 24.79 12 49 39 5.7
GE-9 M 1.61 26.15 1.81 25.56 15.5 40 25 35 5.9
GE-10 D/M 1.10 24.41 9 48 43 6.4
GE-11 M 1.63 25.91 1.75 25.51 15.5 41 32 27 7.0
GE-12 M 1.77 25.68 1.92 25.83 18.4 37 34 29 7.4
GE-13 M 1.83 25.58 1.82 25.42 34 35 30 7.8
GE-14 M 1.77 26.20 1.73 25.60 56 18 26 8.0
GE-15 D 0.85 24.30 6 53 41 8.1
GE-16 D −0.57 24.44 7 70 23 8.3
GE-17 D −0.88 24.29 Tr 33 67 8.7
GE-18 D −0.77 24.94 22.6 4 48 48 10.3
GE-20 D −0.17 24.34 31 27 42 11.9
GE-21 D 0.57 23.89 35 23 42 12.4

Note: L = lithology, D = white dolomitic marble, M = gray magnesite ore, Tr = trace. Marble sample 96MR29 [14]
has δ11B = 6.13%�.
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Figure 4. Backscattered electron images: (a) Magnesite ore; (b) dolomitic marble.

Six samples were analyzed by XRD to confirm mineral identifications. Magnesite and dolomite
were detected in the ore samples, as was a 7.3 Å phyllosilicate that texturally is likely to be antigorite
serpentine. Cm-scale, post-tectonic fibrous veins were also confirmed to be brucite. A distinctive
mica-rich sample was collected from the mine dump, and is similar to rocks described by [17] as
typically found near the contacts with intrusive quartz monzonite. The XRD of this sample identified
phlogopite and serpentine mixed with small amounts of illite, likely a mica weathering product.
This sample also contains calcite and a 15.7 Å phase seen in glycolated XRD mounts that may be
the mixed layer phyllosilicate corrensite.
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4.2. Oxygen and Carbon Isotope Ratios of Magnesite and Dolomite

Oxygen and carbon isotope ratios are distinct between magnesite ore and host dolomitic
marble (Table 1). Dolomitic marble wall rocks to the deposit have δ18O = 24.2 ± 0.6%� (VSMOW)
and δ13C = −0.2 ± 0.7%� (VPDB, n = 11). The magnesite ore zone has magnesite δ18O = 25.5 ± 0.4%�

and δ13C = 1.7 ± 0.2%� (n = 7). A magnesite-rich layer separated from the main ore lens (GE-3)
has δ18O = 24.6%� and δ13C = 1.9%�. A dolomite-rich layer from within the orebody (GE-10) has
δ18O = 24.4%� and δ13C = 1.1%�. Dolomite from magnesite ore samples is more variable in composition
(δ18O = 25.3 ± 1.0%�, δ13C = 1.6 ± 0.2%�, n = 8). As a first-order interpretation, these carbon and oxygen
isotope ratios are in the typical range for marine carbonate rocks and their metamorphic equivalents,
and are distinct from igneous isotope ratios.

The differences in oxygen and carbon isotope ratios between the magnesite ore and dolomitic
marble host rock argue for preservation of pre-metamorphic heterogeneities in isotope ratios
(Figures 5 and 6). This is especially true for carbon isotopes, where a ~1.5%� difference between
the ore and dolomitic marble host rock has been preserved through granulite facies metamorphism.
The difference in the oxygen isotope ratio has considerably more scatter. The cross-layer metamorphic
fluid flow would tend to homogenize the oxygen and carbon isotope ratios of different layers [21],
which is not observed here. The only evidence for isotopic exchange between the host dolomitic
marble and magnesite ore is at the edges of the orebody and in the isolated magnesite ore stringer,
where δ18O(Mag) is slightly lower than the average for other magnesite ore samples. For this reason,
we take δ18O(Mag) = 25.6 ± 0.2%� from the four samples in the center of the ore to be indicative
of pre-metamorphic isotope ratios and to reflect magnesite formation. Note that the δ13C of all magnesite
samples (including the ore stringer) is consistently high, suggesting the preservation of protolith δ13C
values through metamorphism. This kind of protolith-derived layer-to-layer variability is commonly
preserved in granulite facies rocks, and is an indication of negligible cross-layer fluid flow during
metamorphism [21].
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It is difficult to assess isotope equilibrium between magnesite and secondary dolomite
in the ore rocks because fractionations between dolomite and magnesite are small and not well
constrained. The carbon isotope fractionation between magnesite and dolomite in the ores is
positive and small (∆13C(Mag-Dol) = 0.10 ± 0.15%�), which is consistent with a high-temperature
equilibrium. However, carbon isotope fractionation of magnesite and dolomite are too similar
to be an effective thermometer at these temperatures [22]. Oxygen isotope fractionations are more
variable (∆18O(Mag-Dol) = −0.08 ± 0.78%�) which is a strong function of magnesite:dolomite ratio
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in the rocks, mainly because of the variability in δ18O(Dol). Excluding the samples, which were more
likely to equilibrate with the dolomitic marble host-rock (from the edges of the orebody and the
magnesite stringer), ∆18O(Mag-Dol) = 0.25 ± 0.32%�, consistent with granulite facies equilibrium [22].
The high-temperature isotopic equilibrium with magnesite indicates that this texturally-secondary
dolomite is likely locally-derived, and precipitated under low water/rock ratios.
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4.3. Boron Isotope Ratios

Boron isotope ratios of Kilmar samples range from δ11B = 15.5–22.7%�, and average
δ11B = 18.03 ± 3.42%� (n = 4). For comparison, a representative calcite marble from the southern
Morin terrane (from outside of the ore zone) has δ 11B = 6.13%�. Boron isotopes correlate well with
oxygen isotopes in magnesite from ore zone rocks (r2 = 0.98). Boron isotope analyses of Precambrian
carbonate rocks are sparse in the literature, and the ancient evolution of seawater δ 11B is relatively poorly
constrained [23], making interpretation of these data somewhat preliminary. Boron isotopes of modern
seawater and evaporitic marine sediments typically have high δ11B values, similar to the results from
magnesite ore, while most metamorphic rocks, continental crust, and non-marine evaporites have
lower values (Figure 7).
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Boron isotopes from large Proterozoic evaporitic magnesite deposits in China have δ11B = 16
to 18%� [25], which is very similar to the results here and also consistent with a marine origin for the
Kilmar magnesite deposits.

4.4. Major and Trace Elements

Major and trace element compositions of dolomitic marble and magnesite ore zone rocks are
reflective of the mineralogy of these rocks (Table 2); CaO ranges from 9–25 wt%, reflecting the dolomite
content, and SiO2 ranges from 2–20 wt%, reflecting the serpentine content. Most trace elements have
low concentrations, with Σ(REE) = 11–25 ppm for the dolomitic marble and 3.6–5.1 ppm for the
magnesite ore samples (Figure 8), which is near detection limits. The exception to this is Sr, which is
1100–2920 ppm for the dolomitic marble and 510–810 ppm for the magnesite ore samples, and correlates
well (r2 = 0.92) with the CaO content. This indicates that the dolomite content is controlling Sr in these
rocks. The dolomite content seems to control the REE composition in both lithologies. When the
silica-rich sample GE18 is excluded, Σ(REE) also has a strong correlation with CaO (r2 = 0.92).

Table 2. Major and trace elements from the Dobbie mine, Kilmar magnesite district, Quebec.

Sample L SiO2
wt%

Al2O3
wt%

Fe2O3
wt%

MnO
wt%

CaO
wt%

V
ppm

Ni
ppm

Zn
ppm

Rb
ppm

Sr
ppm

Y
ppm

Zr
ppm

GE-2 D 6.12 0.03 0.16 0.05 25.00 10 <5 71 <0.2 2920 12.5 2.8
GE-7 D 16.20 0.05 0.47 0.05 18.50 10 7 253 0.4 2040 6.8 0.7
GE-9 M 2.13 0.05 0.54 0.08 15.00 10 5 68 <0.2 810 4.5 <0.5
GE-11 M 2.64 0.05 0.52 0.08 9.38 23 6 77 0.3 510 4.2 <0.5
GE-12 M 4.55 0.10 0.36 0.06 10.10 13 <5 90 0.2 640 4.1 <0.5
GE-18 D 20.40 0.04 0.37 0.09 15.20 19 <5 278 0.2 1100 14.2 3.1

Sample L La
ppm

Ce
ppm

Pr
ppm

Nd
ppm

Sm
ppm

Eu
ppm

Gd
ppm

Dy
ppm

Ho
ppm

Er
ppm

Yb
ppm

Lu
ppm

GE-2 D 2.8 7.9 0.7 3.3 0.6 0.22 0.97 1.69 0.37 1.24 1 0.14
GE-7 D 2.1 4.6 0.37 1.9 0.3 0.14 0.35 0.50 0.1 0.34 0.2 <0.05
GE-9 M 0.5 2.4 0.18 1.2 0.1 <0.05 0.18 0.41 0.06 0.27 0.1 <0.05
GE-11 M 0.3 1.6 0.08 0.9 <0.1 <0.05 0.22 0.30 0.07 0.17 0.1 <0.05
GE-12 M <0.1 2.0 0.11 1.1 <0.1 <0.05 0.21 0.32 0.07 0.20 0.1 <0.05
GE-18 D 4.3 10.3 0.96 4.1 0.9 0.21 1.07 1.70 0.38 1.11 0.8 0.12

Note: L = lithology, D = dolomitic marble, M = magnesite ore.
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In some magnesite deposits, REE signatures have been interpreted as being strongly controlled
by the REE of detrital clays in protolith rocks [27]. Alumina contents of the dolomitic marble
and magnesite ore are very low (0.03 to 0.10%), and do not correlate with REE compositions; thus clays
are not likely to represent an important REE contribution in the Kilmar deposits, even given the overall
low REE abundances of these rocks. For example, if the Al2O3 contents of the Kilmar rocks are taken
to represent a clastic contribution similar to the North American Shale Composite (NASC), then the
detrital clay component could account for <1 ppm of the total REE budget in the dolomitic marble
and magnesite ore protoliths.

Rare Earth and trace element compositions of the Kilmar magnesite ores are comparable
to other magnesite deposits. Iron and Mn contents are relatively low compared to other deposits,
especially those attributed to metasomatism [5]. Rare Earth Element compositions are in the range
for sparry (sedimentary) magnesite deposits, and lack the negative Ce anomalies reported for some [5].
It is unclear if the positive Ce anomalies in magnesite are geochemically meaningful or are an analytical
effect of being close to instrumental detection limits.

Rare Earth element compositions of Kilmar host dolomitic marbles are similar to other Grenville
marbles for which data are available (Figure 9). In general, Grenville marbles are LREE-enriched
((La/Sm)n ≈ 2–5), HREE depleted ((Sm/Yb)n ≈ 1–4), and have REE contents that range from ca. 1–200x
chondritic values for LREE and 0.4–30x for HREE [28–31]. The Kilmar dolomitic marbles fall at the
lower end of the range in terms of LREE enrichment. Some Grenville marbles show the negative cerium
anomalies expected for primary chemical precipitates from seawater, most notably low-Al calcite
marbles and some dolomitic marbles from the Sharbot Lake and Mazinaw domains of Ontario [28,31].
Negative cerium anomalies are small or lacking from Adirondack marbles [29,30], and is not present
in the Southern Quebec composite marble of [32] (n = 7 samples), or the Kilmar dolomitic marbles.
This could be attributable to alteration after primary deposition. In terms of REE, the Kilmar dolomitic
marbles are most similar to dolomitic marbles from the Adirondack Lowlands [29].
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5. Discussion

5.1. Comparison to Grenville Marbles in Nearby Terranes

Oxygen and carbon isotopes in Grenville marbles are reflective of depositional conditions and later
metamorphic effects. It has long been recognized that Grenville marbles have isotope ratios similar
to marine limestones [33], which suggests that depositional isotope ratios have been broadly preserved
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in carbonate with minor effects of calcite-graphite exchange, metamorphic devolatilization reactions,
and the contact effects of plutonic rocks. Although interpretation of oxygen isotopes of Grenville
marbles is complicated by the water-rock interaction history, carbon isotopes are more robust and often
show differences from terrane-to-terrane. For example, in the New Jersey Highlands carbon isotope
ratios of unmineralized samples of the Franklin marble are very restricted (δ13C = 0.3 ± 0.7%�, n = 46),
which is interpreted as reflecting a common depositional setting for these rocks [34]. However,
oxygen isotope ratios in those rocks range from δ18O = 16.8%� to 24.5%�, reflecting pre-metamorphic
seafloor hydrothermal systems [34]. Similar isotopic provinciality and the preservation of sedimentary
isotope ratios is seen in the Elzevir terrane of Ontario: δ13C values of marbles are ~3%� higher than
contemporaneous Grenville marbles in nearby terranes, consistent with restricted basin deposition [35].

Oxygen and carbon isotope ratios of Kilmar host dolomitic marbles are statistically
indistinguishable from other marbles from the Morin terrane (δ18O = 23.3 ± 0.4%�, δ13C = 0.7 ± 1.2%�,
n = 37, [14]), and with δ18O and δ13C near the maximum values for Morin terrane marbles (Figure 10).
The Morin terrane and geologically similar Adirondack Highlands + Lowlands all have large ranges
in δ13C [36], and carbon isotopes from these three terranes are statistically indistinguishable by t-test.
However, carbon isotopes of Grenville marbles in the Elzevir terrane, Frontenac terrane, and Parry
Sound domain of Ontario, the Central Metasedimentary Belt of Quebec, and the Franklin marble
of New Jersey are statistically distinct from those in the Morin terrane [34,35,37–39].

Minerals 2019, 9, x FOR PEER REVIEW 10 of 14 

 

of sedimentary isotope ratios is seen in the Elzevir terrane of Ontario: δ13C values of marbles are ~3‰ 
higher than contemporaneous Grenville marbles in nearby terranes, consistent with restricted basin 
deposition [35]. 

Oxygen and carbon isotope ratios of Kilmar host dolomitic marbles are statistically 
indistinguishable from other marbles from the Morin terrane (δ18O = 23.3 ± 0.4‰, δ13C = 0.7 ± 1.2‰, 
n = 37, [14]), and with δ18O and δ13C near the maximum values for Morin terrane marbles (Figure 10). 
The Morin terrane and geologically similar Adirondack Highlands + Lowlands all have large ranges 
in δ13C [36], and carbon isotopes from these three terranes are statistically indistinguishable by t-test. 
However, carbon isotopes of Grenville marbles in the Elzevir terrane, Frontenac terrane, and Parry 
Sound domain of Ontario, the Central Metasedimentary Belt of Quebec, and the Franklin marble of 
New Jersey are statistically distinct from those in the Morin terrane [34,35,37–39]. 

 

Figure 10. Oxygen and carbon isotopes of samples from the Dobbie mine and regional Morin terrane 
marbles [14]. 

The relatively high δ18O and δ13C of the Kilmar magnesite rocks have several possible explanations. 
Evaporative environments are typically enriched in 18O by evaporation and 13C by CO2 degassing and 
other processes [40,41]. It is also important to note that some fundamental processes that result in 
isotope shifts during metamorphism are likely to be of minor importance in these rocks. Metamorphic 
devolatilization reactions during metamorphism can lower δ18O and δ13C, but does not result in high 
isotope ratios [14]. Magnesite-dolomite isotope fractionations in these rocks are small because of their 
similar crystal structures and high temperatures, so exchange between these minerals will not 
appreciably shift either isotope ratio. Graphite was not observed in the analyzed samples, so 
carbonate-graphite exchange could not have lowered carbonate δ13C values. 

5.2. Magnesite Ore Deposit Models 

There are two primary environments that produce large magnesite bodies. The first is 
cryptocrystalline magnesite associated with alteration of ultramafic rocks. Cryptocrystalline 
magnesite is often either found as veins within ultramafic bodies or as concretions in nearby 
sediments [42]. Carbon isotope ratios of cryptocrystalline magnesite are distinctly low (δ13C≈ −10‰), 
indicating a component of oxidized organic carbon in magnesite-depositing fluids [43]. Ultramafic 
rocks are rare in the Morin terrane [9], and are not associated with the Kilmar deposits [4]. The 
geology and carbon isotopes of the Kilmar deposits effectively exclude the class of cryptocrystalline 
magnesite deposits as possible protoliths. 

Figure 10. Oxygen and carbon isotopes of samples from the Dobbie mine and regional Morin terrane
marbles [14].

The relatively high δ18O and δ13C of the Kilmar magnesite rocks have several possible explanations.
Evaporative environments are typically enriched in 18O by evaporation and 13C by CO2 degassing
and other processes [40,41]. It is also important to note that some fundamental processes that
result in isotope shifts during metamorphism are likely to be of minor importance in these rocks.
Metamorphic devolatilization reactions during metamorphism can lower δ18O and δ13C, but does not
result in high isotope ratios [14]. Magnesite-dolomite isotope fractionations in these rocks are small
because of their similar crystal structures and high temperatures, so exchange between these minerals
will not appreciably shift either isotope ratio. Graphite was not observed in the analyzed samples,
so carbonate-graphite exchange could not have lowered carbonate δ13C values.
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5.2. Magnesite Ore Deposit Models

There are two primary environments that produce large magnesite bodies. The first is cryptocrystalline
magnesite associated with alteration of ultramafic rocks. Cryptocrystalline magnesite is often either
found as veins within ultramafic bodies or as concretions in nearby sediments [42]. Carbon isotope ratios
of cryptocrystalline magnesite are distinctly low (δ13C≈ −10%�), indicating a component of oxidized
organic carbon in magnesite-depositing fluids [43]. Ultramafic rocks are rare in the Morin terrane [8],
and are not associated with the Kilmar deposits [4]. The geology and carbon isotopes of the Kilmar
deposits effectively exclude the class of cryptocrystalline magnesite deposits as possible protoliths.

The second major mode of magnesite genesis are sparry deposits hosted in metasediments.
As a class, sparry deposits probably represents several modes of magnesite formation and later
modification. Some deposits are thought to have syngenetic protoliths, being formed during evaporation
or diagenetic replacement in a sedimentary environment [44–46]. These deposits typically have oxygen
and carbon isotope ratios similar to marine carbonates. The lower oxygen isotope ratios of some
magnesite deposits (<10–15%�) often correlates with higher metamorphic grade of orogenic host rocks,
suggesting high-temperature fluid interaction [43]. In some magnesite deposits hydrothermal alteration
by meteoric water may have lowered oxygen isotope ratios (e.g., [47]), an effect which is not uncommon
in marine evaporitic dolomites [48], but is not observed at Kilmar. The magnesite and dolomitic marble
host rock from the Dobbie mine are more consistent with a marine or marine diagenetic origin than
a later metasomatic genesis. The stratiform geometry of the magnesite, its interbedded nature with
the host dolomitic marble, and layer-to-layer variability in (marine) stable isotope ratios all suggest
a sedimentary origin.

5.3. Regional Implications for Depositional Settings of Ores in Grenville Marbles

Recent models for sedimentary exhalative zinc sulfide deposits hosted in carbonates typically
involve a shallow water carbonate platform depositional environment and emphasize association
with evaporitic sediments [6,49]. Several geologic features have been taken to suggest evaporitic
environments for high-grade marble protoliths, in the context of Zn mineralization, including anhydrite
layers, stratiform magnesite or brucite, dolomite-rich marbles, and tourmaline-rich layers e.g., [6,50–52].
The most clear example of this association is the world-class Balmat Zn mining district in the Adirondack
Lowlands, where massive sphalerite is found associated with thick anhydrite layers in a meta-evaporate
sequence [50]. Anhydrite is also recognized at the exhalative Cadieux sphalerite deposit in the Central
Metasedimentary Belt of Quebec, which is hosted by a similar dolomitic marble sequence as the Balmat
ore deposits [52]. The regional geologic context of Balmat and Cadieux are somewhat different,
which may be reflected in different fluid compositions: The Cadieux deposit is associated with
metavolcanic rocks and has sulfides with an average δ34S of −2.3%� CDT [53], consistent with igneous
sulfur, while the Balmat ore deposits are not associated with metavolcanic rocks and have sulfides
with sedimentary δ34S values = 13 to 16%� [54].

The Kilmar magnesite deposits and the carbonate hosts to the Balmat ore deposits have similar
oxygen and carbon isotope ratios, which may prove to be a useful characteristic for evaluating evaporitic
protoliths. The Balmat ore deposits have relatively high δ18O values when compared to other marbles
in the Adirondack Lowlands, similar to the relationship between the Kilmar magnesite deposits
and marbles of the Morin terrane (Figures 10 and 11). High δ18O values (23–27%�) are also seen in the
Salerno Lake and Thirty Island Lake deposits of the Ontario Grenville Province, which are sedimentary
exhalative zinc deposits that may belong to the same class as Balmat [55]. In contrast, Grenville
Supergroup exhalative zinc deposits associated with volcanic rocks have a larger span of δ18O and δ13C
that trend to lower values, suggesting mixing with igneous fluids [55,56], consistent with the evidence
from sulfur isotopes [53].
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