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Abstract: 26 river bank sediments and 15 estuary seafloor sediments were sampled from the Dagu
River and the estuary of Northwestern Jiaozhou Bay to determine contaminations of heavy metals
and metalloids (Cu, Pb, Zn, Cr, Cd, Hg and As). The trace metal contents in sediment from the
estuary area were much higher than those of the river. Correlation analysis showed that except for Pb,
the metals were mainly controlled by the grain size, and enriched by adsorption of aluminosilicate
minerals, Fe/Mn oxides and organic matter in river and estuary sediments. In addition to Cu in some
stations, the metals met the requirements of the marine organism and humans for the quality of
the marine environment. The concentrations of Cu, Pb, Cr, Hg and As were between the threshold
effect level (TEL) and probable effect level (PEL), indicating those metals might have occasional
adverse effects. Results of Enrichment Factor values revealed that the entire study area was enriched
in Pb and Hg, at moderate environmental risk, but the estuary was more significant. Pb and Hg
contaminations in this area were mainly from coal combustion and automobile emissions. River
runoff and atmospheric deposition dominated the metals distribution and enrichment in the study
area. Contaminants in sediments entering the estuary were further transported to the south and east
under the river runoff and reciprocating current in the Jiaozhou Bay.

Keywords: heavy metals and metalloids; distributions; contaminations; sources; Dagu River;
Jiaozhou Bay

1. Introduction

The coastal zone is the region most closely related to human survival and development in the
ocean and also a key area for studying global change, which plays an increasingly important role in
modern society [1–3]. With rapid population agglomeration, urban expansion, economic development,
the contradiction between the population and environment has become increasingly prominent and
many coastal areas in China face serious environmental risks [4–7]. Rivers play an important role in
the development of the regional economy. However, excessive human activities such as industrial
production, agricultural irrigation and domestic water use has caused the river to become a discharge
channel for industrial and domestic pollutants [8,9]. Coupled with runoff and sediment load that has
drastically reduced, the dilution and absorptive capacity of the river has correspondingly dropped, and
environmental risks are becoming increasingly severe. As a consequence, the economic development
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and ecological environment of the region has been seriously affected due to the large amounts of
industrial and agricultural and domestic wastewater discharged into the sea [4,5]. Heavy metals and
metalloids are defined as metallic elements that can cause toxicity at lower levels [10]. If they accumulate
and reside in sediments for a long time, they will endanger human health through the food chain [11,12].
In recent years, people have been paying increasing attention to the contamination of these metals in the
environment. Therefore, understanding the concentration changes and contamination status of heavy
metals and metalloids is essential for regional contamination control and environmental restoration.

There has also been a large number of heavy metals and metalloids studies in the study area. Hg,
Cu, Ni and Zn in the Dagu River were present far more than what is allowed according to the standards
of the Florida Department Environmental Protection (FDEP) [13]. Cd, As, and Pb contamination
occurred in the eastern catchment of the Jiaozhou Bay [8]. In the Jiaozhou Bay, Cd and Sb in sediments
were in relatively higher enrichment levels, and Cu, Ni, Cd and Zn were at low to medium risks [14].
Over 40.0% of Cu and As came from anthropogenic emissions from the 1950s [15]. However, previous
studies did not use river-estuary-bay as a source-sink system for heavy metals and metalloids research
in the region of the Jiaozhou Bay. The aims of our study were to: (1) elucidate the distribution of heavy
metals and metalloids (Cu, Pb, Zn, Cr, Cd, Hg and As) in sediments from the Dagu River and the
estuary; (2) evaluate sediment environmental quality and metal contaminations; (3) reveal the sources
and transportation of trace metals. The study will be of help in fully understanding the enrichment
characteristics of heavy metals and metalloids in coastal river systems, and also provide references for
environmental quality.

2. Materials and Methods

2.1. Study Area

Qingdao is a coastal hilly city (Figure 1) located on the Southeast coast of Shandong Province,
with a population of 9.39 million in 2018, covering an area of 11,282 km2. Its terrain is high in the
east and low in the west. It is located in the sub-tectonic unit of the Xinhuaxia uplift zone—the
Northeastern margin of the Jiaonan uplift and the South-central part of the Jiaolai depression [16–22].
The entire Paleozoic strata and some Mesozoic strata are missing in the area, but the volcanic strata of
the Cretaceous Qingshan Formation are well developed and widely exposed. The magmatic rocks are
mainly composed of the Yuejishan gneissic granite in the Jiaonanian period of the Proterozoic, and the
Aishan granodiorite and the Laoshan granite in the late Yanshanian period of the Mesozoic [23–30].

The Jiaozhou Bay (JZB) is located off the Southern coast of Shandong Peninsula in China, which is
a semi-closed bay, connecting to the Yellow Sea (Figure 1). It covers an area of 397 km2 with an average
water depth of 7 m, deepening from the Northwest to Southeast [31–34]. The annual amount of river
sediments discharged into the bay is about 1.5 × 104 tons, mainly from the Dagu River [34]. The Dagu
River is 179.9 km long and has a drainage area of 4161.9 km2. The river sediments entering the sea are
mainly deposited in the Northwestern part of the bay. The tides in the Jiaozhou Bay are semi-diurnal
(average tidal range: 2.80 m) [32]. The tidal current velocity of the flood tide is greater than that of
the ebb tide, which is generally 10–15 cm/s in the bay. Since the 1980s, the construction of dams or
reservoirs in river basins and climate change has dramatically reduced river loads [33], resulting in bay
sediment transport that is mainly affected by tidal currents [35]. The Jiaozhou Bay Bridge with a total
length of 26.7 km was built in 2011, across the east and west coasts of the Jiaozhou Bay (Figure 1).
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2.2. Sampling

Forty-one samples were collected from the upper layers of sediments in the Dagu River (Qingdao,
China) and the estuary (Figure 1). Among them, 26 river beach sediments covering upstream and
downstream of the whole river were collected by a wooden shovel in the natural banks as much as
possible to avoid human influence. 15 seafloor sediments were collected using a grab sampler in
the Dagu River Estuary of Northwestern Jiaozhou Bay. All samples were packed in plastic bags and
transported to the laboratory.

2.3. Analytical Methods

All samples were sub-packed for grain size analysis and elemental analysis. The subsamples
were first immersed in 15 mL distilled water, 5 mL 10% hydrogen peroxide (H2O2) and 5 mL 0.1 mol/L
hydrochloric acid (HCl) to remove organic matter, calcium carbonate and other impurities. Then, 5 mL
of 0.5 mol/L sodium hexametaphosphate (Na(PO3)6) was used to disperse the particles sufficiently [1,2].
Grain size was tested by a laser particle size analyzer (Mastersizer-2000, Malvern, UK). Millimetre
unit (mm) of grain diameter (d) was converted to the equivalent Phi unit (Φ) according to the formula
ϕ = log2d, and then classified based on the Udden-Wentworth classification. Grain size parameters
were calculated following the formula of Folk and Ward [36].

The subsamples for element analysis were dried and ground to a powder less than 200 meshes.
About 0.2 g samples were placed in a teflon digestion vessel, a mixed solution of HNO3 + HCl +

HF (5:4:1) was added and allowed to digest, then the samples were heated to 120 ◦C for 12 h on a
heating plate. The samples were then moved to an oven dry, and then extracted with HNO3. Al,
Fe and Mn was measured with an X-ray fluorescence spectrometer (XRF, Axios PW4400, Almelo,
The Netherlands). Cu, Pb, Zn, Cd and Cr were measured with inductively coupled plasma mass
spectrometry (ICP-MS, Thermo X series, Waltham, MA, USA). As and Hg were measured with an
atomic fluorescence spectrometer (AFS-920, Beijing, China). 115In was used as an internal standard
element (unit: 10 ppb) during the analysis process of ICP-MS. The total organic carbon (TOC) was
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measured with an elemental analyzer (Vario EL-III, Langenselbold, Germany) [4,5]. The analyses for
data QA/QC were used with GBW07345, GSD9, and GSD4 [37]. The recoveries ranged from 90% to
110%, except for Cr (99 to 113%). The relative error was less than 5%, and the precision for replicate
samples was controlled below 10% [37].

2.4. Assessment of Sediment Contamination

The primary criteria (MSQ-1) from the Chinese marine sediment quality criteria (GB
18668-2002) [38] is suitable for assessing the effects of the metal toxicity on marine organism and
humans [4]. The criteria were established by the Administration of Quality Supervision, Inspection and
Quarantine (AQSIQ, 2002), and widely used for the assessment of estuarine-nearshore environmental
quality [38].

The sediment quality guidelines (SQGs) are also applied to assess the sediment-associated chemical
status that might adversely affect aquatic organisms [39–41]. Chemical concentrations below the
threshold effect level (TEL) represent adverse biological effects that rarely occur, and concentrations
above the probable effect level (PEL) represent adverse biological effects that are more frequently
observed [40,41].

Enrichment factor (EF) is used to estimate contamination status of heavy metals and metalloids
and distinguish between the anthropogenic source and natural origin. In order to eliminate the
particle size effect, Al is often used for elimination [4,42,43]. The EF values were calculated using the
following formula:

EF = (Me/Al)sample/(Me/Al)baseline

where, (Me/Al)sample and (Me/Al)baseline are the ratios of one metal to Al in the sample measured and
natural background value, respectively. The evaluation grade is divided as follows: no enrichment
(0.5 < EF < 1.5), minor enrichment (EF = 1.5–3), moderate enrichment (EF = 3–5), moderately severe
enrichment (EF = 5–10), severe enrichment (EF = 10–25), very severe enrichment (EF = 10–25) and
extremely severe enrichment (EF > 50) [44,45]. The average metal concentrations of the upper
continental crust in North China [46] were used as the background metal values (Cu = 25, Pb = 15,
Zn = 61, Cr = 90, Cd = 0.091, Hg = 0.0094 and As = 5.6, concentration unit: mg kg−1).

2.5. Geostatistical Methods

Pearson correlation analysis is used to measure the degree of linear association between two
variables, with a range of r coefficient values from −1 to +1 and is widely used in natural science
research. The closer the r coefficient is to ±1, the stronger the linear relationship between the two
variables. In addition, to evaluate the total metal variability in sediments, we also used factor analysis
based on the principal component method and used a rotated orthogonal factor matrix for metal values.
Pearson correlation analysis and factor analysis were both carried out using the SPSS software (IBM,
Armonk, NY, USA) [47].

The analysis of the grain-size trends modified by Gao and Collins (1992) were used to obtain a
net transport trend of sediments in the estuary, which transformed “trend vectors” into “transport
vectors”, representing the net transport paths [48]. The trend vectors were defined based on the two
specific trends proposed by McLaren and Bowles (1985), which dominates along the transport path.
One is that the sediments will become finer, better sorted and more negatively skewed, the other is
that the sediments will become coarser, better sorted and more positively skewed [49]. The approach
obtains a trend vector by comparing the grain size parameters (mean grain size, sorting coefficient
and skewness) of each sampling site to the neighbouring site. If the spatial distance between any
two sites is less than the characteristic distance (Dcr, representing the space-scale of sampling in the
grid of sampling sites), they are considered as neighbouring sites and their grain-size parameters are
compared. The determination of the characteristic distance needs to comprehensively consider the
sampling intervals and the spatial differentiation eigenvalues of the grain size parameters [48]. Grain
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size trends were obtained using the Gao-Collins model [50] and were drawn using the Surfer software
(Golden, Lakewood, CA, USA).

3. Results

3.1. Sediment Characteristics

According to Folk’s classification [51], all 41 sediment samples were identified. The river sediment
types were mainly composed of coarse particles such as sandy gravel, gravelly sand and gravelly mud
with very poor sorting. The mean grain size (Mz) in the river sediments ranged between −1.6Φ and
6.8Φ (average 1.5Φ), and the mud contents (>4Φ) varied between 0.1% and 96.2% (average 22.7%),
indicating that the sediment particle sizes varied greatly at different sites in the river basin, but were
mainly dominated by sand components (Figure 2). Moreover, the downstream sediment particles
were significantly finer than those upstream, especially in the region closer to the estuary. The surface
sediment types in the Dagu River Delta were mainly characterized by mud deposits such as sandy
silt, sandy mud, mud and clay with poor sorting. The Mz values in the estuary delta sediments
varied between 2.0Φ and 6.3Φ (average 4.5Φ), and the mud contents (>4Φ) ranged between 77.3% and
98.0% (average 87.4%), indicating that the sediments were fine-grained and mainly consisted of silt
components. It can be seen that the estuary delta sediments were finer in size and had much higher
mud contents than those of the river, indicating that the estuary delta was the main sedimentary area
of fine particles (Figure 2).
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3.2. Heavy Metals and Metalloids Concentrations

As shown in Table 1, the contents (mg kg−1) of the heavy metals and metalloids in the Dagu River
were as follows: Cu (5.2–50.2, average: 15.7), Pb (10.5–33.3, average: 23.3), Zn (10.2–83.0, average:
33.0), Cr (6.7–71.2, average: 34.9), Cd (0.04–0.13, average: 0.05), Hg (0.005–0.14, average: 0.02) and As
(0.56–7.56, average: 2.79). In the estuary area, the concentrations of the heavy metals and metalloids
were as follows: Cu (4.9–50.1, average: 24.6), Pb (25.4–31.9, average: 28.1), Zn (24.2–95.1, average: 62.8),
Cr (23.0–87.8, average: 61.1), Cd (0.04 to 0.10, average: 0.07), Hg (0.005–0.055, average: 0.03) and As
(4.0–10.8, average: 6.1). Obviously, the metal contents in sediments from the estuary area were much
higher than those of the river (Figure 3).
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We compared the metal concentrations from the Dagu River estuary area to those of other estuaries
and coastal areas (Table 1). The metal concentrations in the Dagu River Estuary were much lower than
those in the intertidal Jiaozhou Bay [9], Coastal Bohai Bay [52], Changjiang River Estuary [53] except
for Pb, and Pearl River Estuary [54]. However, they were significantly higher than those found in
Liaodong Bay for Cu and Cr [43], Luanhe River Estuary for Cu, Zn, Cr and Hg [4], Laizhou Bay for Cu,
Pb, Zn, Cr [55], and Changjiang River Estuary for Pb.
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Table 1. Comparison of heavy metals and metalloids concentrations in the surface sediments of the Dagu River Estuary and other representative areas (unit: mg) kg−1).

Locations Cu Pb Zn Cr Cd As Hg References

Dagu River 15.68
(5.20~50.20)

23.30
(10.50~33.30)

35.01
(10.20~83.00)

34.94
(6.69~71.20)

0.05
(0.04~0.13)

2.79
(0.56~7.56)

0.02
(0.005~0.140) This study

Dagu River Estuary 24.56
(4.90~50.10)

28.14
(25.40~31.90)

62.84
(24.20~95.10)

61.06
(23.00~87.80)

0.07
(0.04~0.10)

6.12
(4.0~10.8)

0.030
(0.005~0.055) This study

Intertidal Jiaozhou Bay 38.8 55.2 107.4 69.9 0.42 9.2 na [9]
Liaodong Bay 19.4 31.8 71.7 46.4 na 8.3 0.04 [43]

Luanhe River Esturary 18.76 30.98 44.63 41.14 0.09 7.21 0.02 [4]
Coastal Bohai Bay 38.5 34.7 131.1 101.4 0.22 na na [52]

Laizhou Bay 22 21.9 60.4 60 0.12 12.7 na [55]
Changjiang Estuary 30.7 27.3 94.3 78.9 0.26 na na [53]
Pearl River Estuary 46.2 59.3 150.1 89 na na na [54]

MSQ-1 35 60 150 80 0.5 20 0.2 AQSIQ (2002)

Metals concentrations of all the above locations refer to the average values. The values bracketed in the Dagu river and estuary refer to the content ranges of metals. MSQ-1 is Chinese
Marine Sediment Quality standard criteria (GB 18668-2002). “na” presents no data.
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4. Discussion

4.1. Metals Contamination

4.1.1. Sediment Quality

In aquatic sediments, it is important to master the bioavailability of metals to benthic organisms
because it is directly related to human health through the food chain. However, there are many
factors, such as metal form, physical properties of sediment, water environment, and deposition
processes, which make it difficult to calculate the metals bioavailability [56]. Here, we used several of
the more common sediment quality assessment methods to obtain the sediment quality in the Dagu
River Estuary.

In comparison to the primary criteria (GB 18668-2002) (Table 1), one site (D5) in the upper reach of
Dagu River, one site (D22) near the downstream entrance, and three sites (J6, J9 and J10) located in the
subsea channel had Cu concentrations exceeding the primary criteria, which was 1.3, 1.4, 1.4, 1.3 and
1.1 times the upper limit value, respectively. All other metal concentrations were below the primary
criteria. Therefore, the sediments in the study area met the requirements of the marine organism and
humans for the quality of the marine environment.

Compared with the TEL-PEL SQGs (Table 2), the values of Cu, Pb, Zn, Cr, Cd, Hg and As
were below TEL with 82.9%, 87.8%, 100%, 87.8%, 100%, 95.1% and 97.6% of samples in Dagu River,
respectively. The values of Cu, Pb, Zn, Cr, Cd, Hg and As were in the range of TEL and PEL with
17.1%, 12.2%, 0%, 12.2%, 0%, 4.9% and 2.4% of samples, respectively, showing that Cu, Pb, Cr, Hg and
As had occasional adverse effects. In the estuary, the concentrations of Cu, Pb, Zn, Cr, Cd, Hg and
As were below TEL with 73.2%, 95.1%, 100%, 73.2%, 100%, 92.7% and 100% of samples, respectively.
While the values of Cu, Pb, Zn, Cr, Cd, Hg and As were in the range of TEL and PEL with 26.8%, 4.9%,
0%, 26.8%, 0%, 7.3% and 0% of samples, respectively, showing that Cu, Pb, Cr and As had occasional
adverse effects. None of the metals in the study area exceeded the PEL, suggesting that the sediments
were not very toxic (Table 2).

Table 2. Comparison between heavy metals and metalloids concentrations (mg/kg) in the Dagu River
Estuary and sediment quality guidelines (SQGs) with percentage of samples in each guideline.

Sediment Quality
Guidelines Locations Cu Pb Zn Cr Cd As Hg

Threshold effect level (TEL) 18.7 30.2 124 52.3 0.68 7.24 0.13

Probable effect level (PEL) 108 112 271 160 4.21 41.6 0.7

Compared with TEL and PEL (% of samples in each guideline)

<TEL (%)
Dagu River 82.9 87.8 100 87.8 100 95.1 97.6

Dagu River Estuary 73.2 95.1 100 73.2 100 92.7 100

≥TEL < PEL (%)
Dagu River 17.1 12.2 0 12.2 0 4.9 2.4

Dagu River Estuary 26.8 4.9 0 26.8 0 7.3 0

4.1.2. Enrichment Factor (EF)

The EF values of these metals in the Dagu River sediments were as follows (Table 3 and Figure 4):
Cu (0.2–2.0, average: 0.6), Pb (0.8–2.2, average: 1.6), Zn (0.2–1.1, average: 0.6), Cr (0.1–0.8, average:
0.4), Cd (0.4–1.2, average: 0.6), Hg (0.5–12.9, average: 2.0) and As (0.1–1.4, average: 0.5). The mean EF
values of these metals in decreasing order in the Dagu River were as follows: Hg > Pb > Cu > Zn > As
> Cd > Cr.
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Table 3. Background values and enrichment factors (EF) of heavy metals and metalloids in the Dagu
River Estuary.

Parameters Locations Cu Pb Zn Cr Cd As Hg

Mbackground
[46] (mg/kg) North China 25 15 61 90 0.091 5.6 0.0094

EF
Dagu River 0.6 1.6 0.6 0.4 0.6 0.5 2.0

0.2~2.0 0.8~2.2 0.2~1.1 0.1~0.8 0.4~1.2 0.1~1.4 0.5~12.9

Dagu River
Estuary

0.8 1.6 0.4 0.6 0.6 0.9 2.7

0.2~1.6 1.4~1.8 0.4~1.3 0.2~0.8 0.4~0.9 0.6~1.6 0.5~4.9

Mbackground presents the background metal values, which were the average metal concentrations of the upper
continental crust in North China [46].
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The enrichments of metals in the river and estuary were very similar. The EF values of these
metals in the estuary sediments were as follows (Table 3 and Figure 4): Cu (0.2–1.6, average: 0.8), Pb
(1.4–1.8, average: 1.6), Zn (0.4–1.3, average: 0.9), Cr (0.2–0.8, average: 0.6), Cd (0.4–0.9, average: 0.6),
Hg (0.5–4.9, average: 2.7) and As (0.6 to 1.6, average: 0.9). The mean EF values of these metals in
decreasing order in the estuary sediments were as follows: Hg > Pb > As > Zn > Cu > Cd > Cr.

The average EF values of Cu, Zn, Cr, Cd and As were less than 1.5 in the river and estuary,
indicating that most of these metals came from natural weathering products [4,5]. The average values of
EFPb and EFHg were over 1.5, with 69.2% and 30.8% of the river sampling sites, respectively, suggesting
that they might be human contaminants. Minor enrichments of Pb were distributed throughout the
river. However, a small number of stations were moderately enriched by Hg, and one station was
even severely enriched. The average values of EFPb and EFHg were over 1.5, with 80.0% and 86.7% of
the estuary sampling sites, respectively. Compared with the river sediments, the estuary sediments
were highly enriched by Pb and Hg, especially for the enrichment of Hg. This was characterized by
minor enrichment of Pb and moderate enrichment of Hg, showing that they might be human emissions
accumulated in the estuary area.

4.2. Metals Control Factors and Sources

According to the results of Pearson correlation coefficients (Tables 4 and 5), Mz in the river
sediments were significantly positively correlated (r > 0.75) with Zn, Cr and As, and moderately
positively correlated with Cu, Cd and Hg (0.5 < r < 0.6), and weakly positively correlated with Pb
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(r = 0.34). Similarly, Mz in the estuary sediments had moderate and significant positive correlations
with the metals except for Pb (r = 0.22), indicating that in addition to Pb, other metals in the river
sediments and estuary sediments were significantly associated with sediment particle sizes. TOC
in the river sediments also had moderate positive correlations with Cu, Zn, Cr, Cd, Hg and As, and
low positive correlations with Pb, showing that TOC was also an important factor in controlling the
accumulation of heavy metals and metalloids. The enrichment of Pb was basically unaffected by the
particle sizes, but more easily adsorbed by the Al-rich clay mineral particles, therefore, it had a good
correlation with Al. Although the correlation with Mz was low, Mn tends to be symbiotic with Fe and
exhibits highly siderophile affinity and high Fe contents tend to have relatively high Mn contents [4,5].

In the estuary sediments, the correlations among TOC and metals were more significant, showing
high and extremely high correlations. These correlations suggested that organic matter played an
important role in controlling the metals concentrations in the sediments. In river sediments, Al were
highly correlated with Zn and moderately related to other metals. Fe had high correlations with
Cu, Zn and Cr, and moderate correlations with Cd, As and Hg, and an extremely low correlation
with Pb. Mn was moderately correlated with Cu, Zn, Cd, Cr and As, and extremely low related to
Pb and Hg. Moreover, Al, Fe, and TOC were all moderately related to Mz. Al and Fe are usually
enriched in fine-grained sediments, generally weathering products of rocks and soils under natural
conditions, and not influenced significantly by the authigenic and biologic processes, representing
terrestrial inputs with relatively stable chemical properties. The good correlations among Mz and Al,
Fe and TOC indicated that the grain size was the main factor controlling the elements enrichment and
TOC, while the fine-grained sediments were good carriers for metal elements [57–59]. In addition, Fe
was also moderately related to Al and Mn. Fe/Mn oxides can adsorb metals, resulting in moderate
correlations between Mn and most metals. In summary, the concentrations of Pb were not restricted
by particle sizes in the river and estuary sediments, but were related to adsorption of fine-grained
aluminosilicate minerals. Other metals were closely related to the grain size, and enriched by adsorption
of aluminosilicate minerals, Fe/Mn oxides and organic matter.

As shown in the results of the factor analysis in Table 6 and Figure 5, the first two principal
components extracted with eigenvalues greater than three in the river accounted for 73.1% of the
total variability. Factor 1 was strongly positively loaded with Mn, Fe, Cu, Zn, Cr and As, and
moderately positively loaded with TOC and Cd. Fe/Mn oxides and TOC are very effective metal
carriers in sediments. According to the results of the EF, these metals were mainly from terrestrial
inputs discharged by the river. Factor 2 was strongly positively loaded with Al, Pb and Hg, and
moderately positively loaded with Zn and Cd. These metals are mainly related to vehicle emissions,
coal and oil combustion due to the precipitation of aerosols [42,60,61]. Fine-grained aluminosilicate
minerals could adsorb the trace metals, resulting in the enrichments of Pb and Hg. However, the
first two factors with eigenvalues greater than two in the estuary accounted for 85.9% of the total
variability. Factor 1 was strongly positively loaded with Fe, TOC, Cu, Zn, Cr, Cd, Hg, and Factor 2
was strongly positively loaded with Al and Pb. As mentioned previously, Al and Fe are the major
components of silica minerals that are the products of rock and soil weathering, generally concentrated
in fine-grained sediments. Moreover, organic matter contents are generally higher in finer sediments.
Therefore, most metals are more susceptible to adsorption and enrichment by fine-grained sediments
and organic matter in the estuary area [4,5]. Hg pollutants are mainly discharged into the atmosphere
through coal combustion, metal processing, waste incineration, chemical and cement production, and
then enriched in soil and seafloor sediments by sedimentation. Among them, coal combustion is the
primary source of Hg pollutants. Hg emissions in China account for one-third of the world’s total
emissions, mainly because China’s traditional energy structure is dominated by coal. Especially in the
northern regions, winter heating is mainly carried out through coal combustion [62,63]. In addition
to fossil fuel burning, mining, and manufacturing, Pb emissions are derived mainly from vehicular
exhausts and Pb ores [61–63].
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Table 4. Pearson’s correlation matrix for the heavy metals and metalloids and selected elements (Al, Fe, Mn), total organic carbon (TOC) and mean grain size (Mz)
(n = 26) in the river.

Variables Al Mn Fe TOC Cu Pb Zn Cr Cd As Hg Mz

Al 1.00

Mn 0.10 1.00

Fe 0.48 * 0.57 ** 1.00

TOC 0.34 0.29 0.48 * 1.00

Cu 0.41 * 0.66 ** 0.92 ** 0.49 * 1.00

Pb 0.61 ** 0.10 0.15 0.37 0.23 1.00

Zn 0.72 ** 0.43 * 0.86 ** 0.61 ** 0.87 ** 0.47 * 1.00

Cr 0.49 * 0.49 * 0.86 ** 0.59 ** 0.79 ** 0.25 0.85 ** 1.00

Cd 0.48 * 0.43 * 0.66 ** 0.68 ** 0.65 ** 0.48 * 0.76 ** 0.71 ** 1.00

As 0.37 0.50 ** 0.57 ** 0.63 ** 0.61 ** 0.29 0.68 ** 0.78 ** 0.51 ** 1.00

Hg 0.56 ** 0.17 0.41 * 0.40 * 0.41 * 0.49 * 0.60 ** 0.62 ** 0.74 ** 0.47 * 1.00

Mz 0.60 ** 0.22 0.54 ** 0.60 ** 0.54 ** 0.34 0.76 ** 0.77 ** 0.50 ** 0.79 ** 0.56 ** 1.00

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).
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Table 5. Pearson’s correlation matrix for the heavy metals and metalloids and selected elements (Al, Fe, Mn), total organic carbon (TOC) and mean grain size (Mz)
(n = 15) in the estuary.

Variables Al Mn Fe TOC Cu Pb Zn Cr Cd As Hg Mz

Al 1.00
Mn 0.38 1.00
Fe 0.54 * 0.57 * 1.00

TOC 0.39 0.46 0.96 ** 1.00
Cu 0.38 0.37 0.85 ** 0.90 ** 1.00
Pb 0.74 ** 0.36 0.69 ** 0.66 ** 0.65 ** 1.00
Zn 0.44 0.56 * 0.98 ** 0.97 ** 0.92 ** 0.65 ** 1.00
Cr 0.48 0.67 ** 0.97 ** 0.94 ** 0.85 ** 0.61 * 0.97 ** 1.00
Cd 0.47 0.31 0.83 ** 0.85 ** 0.87 ** 0.61 * 0.88 ** 0.84 ** 1.00
As 0.70 ** 0.43 0.92 ** 0.86 ** 0.79 ** 0.74 ** 0.86 ** 0.85 ** 0.73 ** 1.00
Hg 0.47 0.48 0.97 ** 0.96 ** 0.87 ** 0.68 ** 0.98 ** 0.94 ** 0.90 ** 0.86 ** 1.00
Mz 0.10 0.44 0.58 * 0.55 * 0.54 * 0.22 0.65 ** 0.66 ** 0.60 * 0.41 0.65 ** 1.00

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).
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Table 6. Rotated component matrix for data of surface sediments and eigenvalues, percentage of
variances, and eigenvectors for the two principal components (PC1–PC2).

Parameter
Dagu River Dagu River Estuary

PC1 PC2 PC1 PC2

Al 0.21 0.80 0.15 0.96
Mn 0.78 −0.10 0.41 0.41
Fe 0.89 0.24 0.88 0.43

TOC 0.52 0.47 0.94 0.28
Cu 0.90 0.23 0.89 0.26
Pb −0.02 0.84 0.43 0.78
Zn 0.74 0.60 0.94 0.32
Cr 0.83 0.41 0.90 0.36
Cd 0.59 0.63 0.85 0.28
As 0.71 0.34 0.71 0.61
Hg 0.30 0.76 0.92 0.35

Eigenvalues 4.73 3.31 6.61 2.84
Percentage of Variances 42.96 30.09 60.12 25.83

Cumulative % Eigenvectors 42.96 73.05 60.12 85.95

Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization. Rotation
converged in three iterations.
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4.3. Metals Transport

It is obvious that in the coastal zone, rivers are the principal form of transport of metallic elements
into the ocean. However, after entering the ocean, how are they transported in the estuary? In order to
understand the net transport trends and sedimentary dynamic environmental conditions of sediment
in the study area, we used the approach of a grain-size trends analysis, which has been widely used in
sediment transport studies in various marine environments [48,50]. Using the geostatistical method, we
found that the characteristic distance of 0.039◦ was representative and could reflect the characteristics of
the transport trend in the estuary. The surface sediment from the river estuary in the Northwest of the
Jiaozhou Bay were transported to the south under the influence of the runoff recharge from the Dagu
River (Figure 6). This has also been confirmed by studies of seabed topography, sediment particle size
and heavy mineral [32,33]. There were also significant differences in the transport tendencies between
the north and south sides of the Jiaozhou Bay bridge. On the north side, the sediment was transported
to the Northeast and east, but the sediment in the south side was transported to the Northeast. It might
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be related to the barrier function of the bridge, where the river runoff met the weak tidal power of the
sea, and the sediment transport direction was deflected clockwise to the east. As confirmed by many
studies, there was net sediment transport towards the South-southeast in the shallow sea area of the
Northwest of the Jiaozhou Bay due to the rectilinear current that dominated in the bay [35].Minerals 2019, 9, x FOR PEER REVIEW 15 of 18 
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Figure 6. Sediment transport trend in the estuary. The red arrow represents the runoff direction of the
Dagu River, and the blue arrow represents the possible current direction of the sea.

5. Conclusions

The river sediments were mainly composed of coarse particles, but the estuary delta sediments
were finer in grain size. The metal contents in sediments from the estuary area were much higher than
those of the river.

Correlation analysis showed that the concentrations of Pb were not restricted by particle sizes in
river and estuary sediments but were related to the adsorption of fine-grained aluminosilicate minerals.
Other metals were mainly controlled by the grain size, and enriched by adsorption of aluminosilicate
minerals, Fe/Mn oxides and organic matter.

The values of Cu, Pb, Cr, As and Hg were between TEL and PEL, indicating these metals might
have occasional adverse effects. Results of EF values revealed that the entire study area was enriched in
Pb and Hg, but the estuary was more significant, especially for the enrichment of Hg. Coal combustion
and automobile exhaust emissions were their main sources.

Pollutants were mainly deposited in the estuary after entering the ocean and were further
transported to the south and east under the action of river runoff and reciprocating current.

Furthermore, the chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile
sulfides) based on the technique adopted by the US-EPA will be considered to better understand the
metal bioavailability of estuarine and bay sediments.
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