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Abstract: Rock mineral recognition is a costly and time-consuming task when using traditional
methods, during which physical and chemical properties are tested at micro- and macro-scale in
the laboratory. As a solution, a comprehensive recognition model of 12 kinds of rock minerals
can be utilized, based upon the deep learning and transfer learning algorithms. In the process,
the texture features of images are extracted and a color model for rock mineral identification can also
be established by the K-means algorithm. Finally, a comprehensive identification model is made by
combining the deep learning model and color model. The test results of the comprehensive model
reveal that color and texture are important features in rock mineral identification, and that deep
learning methods can effectively improve identification accuracy. To prove that the comprehensive
model could extract effective features of mineral images, we also established a support vector machine
(SVM) model and a random forest (RF) model based on Histogram of Oriented Gradient (HOG)
features. The comparison indicates that the comprehensive model has the best performance of all.

Keywords: rock mineral; classification recognition; deep learning model; transfer learning model;
clustering algorithm

1. Introduction

The classification and identification of rock minerals are indispensable in geological works.
The traditional recognition methods are based on the physical and chemical properties of rock minerals,
which are used to identify rock minerals at macro- and micro-scales [1,2]. With the development of
computer science and artificial intelligence, the recognition model can be established using machine
learning methods [3–7]. Traditional recognition methods have definite physical meaning; while machine
learning methods are driven by data [8,9]. The two methods have their own strengths and weaknesses.

The significant strength of traditional identification model is that the model can be explained.
Vassilev and Vassileva [10,11] analyzed the optical properties of low-temperature ash (LTA) and
high-temperature ash (HTA) of the coal samples to get the weight of each mineral in the crystalline
matter basis. Then they classified the inorganic matter in coal using the composition from the HTA
and got a good result. But the experiment environment and operating procedures of this method
are difficult to implement. Zaini [12] used wavelength position, linear spectral un-mixing and a
spectral angle mapper to explore carbonate mineral compositions and distribution on the rock mineral
surface and got a good result. Moreover, Zaini’s method needs SisuCHEMA SWIR sensor, which is
integrated with a computer workstation to collect the data. Adep [13] developed an expert system
for hyperspectral data classification with neural network technology. Their system was also used to
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calculate the depth and distribution of iron ore in a specific engineering project. The scholars chose the
key factors to build the model. However, the professional knowledge and equipment are necessary for
the process. It is not an efficient and economical way to conduct traditional model sometimes.

In recent years, machine learning methods have been applied in image recognition, including
sensing images [14,15] and mineral images [16]. Multi-source and multi-type mineral datasets are
suitable for machine learning methods [17,18]. Moreover, the application of machine learning in the
identification of rock images has been proved useful and efficient [19–23]. Aligholi et al. [24] classified
45 slices of 15 kinds of rock minerals automatically based on the color of the rock minerals and achieved
high accuracy. Li et al. [25] applied feature selection and transfer learning to classify microscopic
images of sandstone. The feature engineering is significant in machine learning model establishment.
However, it is easy to be influenced by subjective factors. As a result, it is necessary to develop an
end-to-end mineral identification model.

At present, deep learning algorithms have been developed and studied widely. Google introduced
the design and application of a deep learning framework, which was flexible to build deep learning
models [26]. Moreover, deep learning methods have achieved a remarkable prominence in recognition
of rock mineral images. Zhang et al. [27] retrained Inception-v3 to identify granite, phyllite and breccia,
and thereby proved that the Inception-v3 model was suitable for rock identification. The neuro-adaptive
learning algorithm was also used to classify the iron ore real-timely [28]. Lots of researchers studied
the application of deep learning in geochemical mapping [29], mineral prospectivity mapping [30] and
micro-scale images of quartz and resin [31]. It proves that deep learning models are outstanding in
complex image data processing and analysis. While, it is hard to improve deep learning model, because
the deep learning architecture is fixed. The model ensemble can be adopted to solve the problem.

In this paper, a comprehensive model for rock mineral identification was developed by combining
the Inception-v3 model and a color model. First, as shown in Section 3.1, the texture features of
rock minerals in the image were extracted based on the color and brightness of rock minerals. Then,
the Inception-v3 model was retrained with these preprocessed images. Moreover, a color model was
proposed (as shown in Section 3.2) to recognize the mineral images based on the result of Inception-v3
model. Finally, the comprehensive identification model based on the deep learning model and color
model can be established (as shown in Section 4). We also constructed two models using SVM
and RF-based on Histogram of Oriented Gradient (HOG) features. The comparison of the three
models indicates that the comprehensive model can achieve significant performance. In this research,
the elaborate mineral images are adopted, whose features are obvious. We want to study whether the
comprehensive model can extract the obvious features, such as cleavage and luster. If effective features
can be extracted, the model can be used in a larger domain.

2. Methodology

This research is based on the deep learning method, transfer learning and clustering algorithm.
The overall of the method is shown in Figure 1. The process can be divided into two parallel ones. One
of them cut the raw images (images without any pre-process) into pieces. Then T1 is calculated, and the
color model is established using these image slices. T1 is broadcasted to the other process at the same
time. The other process will calculate and outline the binary points in the raw images once received T1.
Then the processed images are going to be trained using the transfer learning method based on deep
learning method. Finally, a comprehensive model is established, combining the Inception-v3 model
and color model. T and T1 are thresholds defined in Section 3.1.
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Figure 1. The training process and identification process of a comprehensive model.

2.1. Deep Learning Algorithm

Deep learning was proposed by Hinton and Salakhutdinov [32] and has been widely applied
in semantic recognition [33], image recognition [34], object detection [35], and the medical field [36].
In image recognition, the end-to-end training mode is adopted in the training process. In each iteration
of a training process, each layer can adjust its parameters according to the feedback from training data
to improve the accuracy of the model. Moreover, the nonlinear function mapping ability is added to
the deep learning model. As a consequence, it reduces the computational time for extracting features
from images and improves the accuracy of the deep learning model.

In this paper, the Inception-v3 model [37] was set as a pre-trained model. In the Inception-v3
model, there are five convolutional layers and two max-pooling layers in front of the net structure.
To reduce the computation cost, the convolution kernel is converted from one 5 × 5 matrix to two
3 × 3 matrixes. Then, 11 mixed layers follow. These mixed layers could be divided into three categories,
named block module 1, block module 2 and block module 3. Block module 1 has three repetitive mixed
layers, and each layer is connected by a contact layer. The input size of first mixed layer is (35,35,192),
and output size is (35,35,256). The rest mixed layers’ input, and output size are (35,35,288) in the block
module 1. Batch size is the number of training samples in each step. In the front of block module 2,
there is a small mixed layer, whose input size is (35,35,288) and the output size is (17,17,768). The rest
of the mixed layers’ input and output size are (17,17,768) in the block module 2. In block module 3,
the input size is (17,17,768) and output size is (8,8,2048). After the mixed layer, a convolutional layer,
mean pooling layer and dropout layer is followed to extracted image features. Finally, the softmax
classifier is trained at the end of the net.
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In the process of convolution, a color image is converted into a 3D matrix including all RGB values;
then, each pixel is evaluated using the kernel and pooling during each iteration. The average pooling
layer and max-pooling layer could get the average value and max value of a matrix, respectively. Finally,
the common features can be extracted from a large number of images. In the mixed layer, convolution
and pooling are synchronized, which is able to achieve better performance in feature extraction.

2.2. Transfer Leaning Method

According to transfer learning, the parameters in trained models from clustering domains can be
utilized to establish a new model efficiently. In a new task of images recognition, the parameters of a
pre-trained model are set as the initial parameters. Transfer learning can help scholars avoid building a
model from scratch and make full use of the data, which reduces computational cost and dependence
on big datasets.

In this research, the Inception-v3 model was selected as the pre-trained model for rock mineral
image recognition. The pre-trained deep learning model is able to reduce computational and time cost
when a new model is trained. Therefore, transfer learning based on a deep learning model has been
widely used [38,39]. The original data set of the Inception-v3 model contains about 1.2 million images
from more than 1000 categories. The model involves about 25 million parameters. However, with the
transfer learning method, the training process based on this model can be quickly finished even though
the computer has no GPU in general. Figure 2 shows the process of transfer learning method.
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2.3. Clustering Algorithm

The clustering algorithm has a mass application in pattern recognition (PR) and is based on the
Euclidian Distance. Absolute distance is the main point of Euclidian Distance, which measures the
clustering of lots of datasets by absolute distance. Reasonably, a rank will be proposed by the distance
size of the dataset.

In this research, the color model is established based on the K-means algorithm. In the algorithm,
the absolute distances of objects are calculated, and the objects that share the closest absolute distances
are in the same category. Finally, a silhouette coefficient is used to evaluate the clustering effect:

Si =
bi − ai

max(ai, bi)
. (1)

In Equation (1), ai is the average distance from the ith point to other points in the same kind,
which is called intra-cluster dissimilarity; bi is the average distance from the ith point to the points
in any kind, which is called inter-cluster dissimilarity. When the number of kinds is more than 3,
the average value is set as a silhouette coefficient. The silhouette coefficient is in [−1, 1]. In the training
color model, the model receiving the maximum silhouette coefficient is going to be established.
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2.4. Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method. When given a binary classification
dataset

{
xn, yn

}N
n=1 with xn ∈ RD and yn ∈ [−1, 1], for each (xn, yn) belongs to

{
xn, yn

}N
n=1. An SVM

model can be established by the equation:

f (x) = ωTx + b. (2)

The optimal weight vector wT and bias b are obtained by the Hinge Loss Function [40]. In this
research, the Histogram of Oriented Gradient (HOG) algorithm was used to extract the feature of rock
mineral images and then an SVM model was trained with these features.

2.5. Random Forest

Random Forest (RF) is proposed by Leo Breiman. The steps of establishing an RF model are
as following:

Step 1: Input T as training dataset size and M as feature numbers.
Step 2: Input the feature number of each node (m, m << M) to get the decision result at a node in

the tree.
Step 3: Select K samples with playback from a dataset N randomly. Then, K taxonomic trees are

constructed by these selected samples. The rest of the dataset is used to test the model.
Step 4: Randomly select m features at each node and find the best splitting mode by the

selected features.
Step 5: Each tree grows completely without pruning and may be adopted after a normal tree

classifier is built.

3. Algorithm Implementation

Rock minerals have unique physical properties, such as color, streak, transparency, aggregate
shape and luster [41]. By analyzing their properties, rock minerals can be identified more accurately.
Table 1 shows the properties of 12 kinds of rock minerals.

Table 1. Twelve kinds of rock mineral’s physical properties.

Minerals Color Streak Transparency Aggregate Shape Luster

Cinnabar Red Red Translucent Granule, massive form Adamantine luster

Hematite Red Cherry red Opaque Multi-form From metallic luster to
soil state luster

Calcite Colorless or
white White Translucent

Granule, massive form,
threadiness, stalactitic

form, soil state
Glassy luster

Malachite Green Pale green
From

translucent to
opaque

Emulsions, massive,
incrusting, concretion
forms or threadiness

Waxy luster, glassy
luster, soil state luster

Azurite Navy blue Pale blue Opaque Granule, stalactitic,
incrusting, soil state Glassy luster

Aquamarine Determine by
its component White Transparent Cluster form Glassy luster

Augite Black Pale green,
black Opaque Granule, radial pattern,

massive Glassy luster

Magnetite Black Black Opaque Granule, massive form Metallic luster

Molybdenite Gray Light gray Opaque Clintheriform, scaly
form or lobate form Metallic luster

Stibnite Gray Dark gray Opaque Massive, granule or
radial pattern Strong metallic luster

Cassiterite Crineus, yellow,
black

White, pale
brown

From opaque to
transparent Irregular granule Adamantine luster, sub

adamantine luster

Gyp White, colorless White Transparent,
translucent

Clintheriform, massive,
threadiness

Glassy luster, nacreous
luster
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In Table 1, color is a key feature of rock minerals in rock mineral image recognition, because
different compositions of rock minerals lead to different colors. Also, the composition of different rock
minerals usually changes, and the colors vary widely. Some rock minerals with a single composition
have a pure color. For example, cinnabar is usually red, malachite is green, and calcite is white.
A rock mineral often shows a mixed color on the surface because of mixed composition, which is often
indicated by binomial nomenclature, such as lime-green. However, whether a particular type of rock
mineral has a pure or mixed composition, those in that classification always share some certain kinds
of colors. Therefore, color is an important classification criterion.

The texture is also an important feature for rock mineral image recognition. The main components
of rock mineral texture are aggregate shape and cleavage. Different rock minerals have different
distinctive textures. For example, cinnabar’s aggregate is granular, with perfect cleavage and uneven
to sub-conchoidal fracture; aquamarine’s aggregate is cluster form, with imperfect cleavage and
conchoidal to irregular fracture; malachite’s aggregate is multi-form, as shown in Figure 3. The texture
is also helpful in recognizing rock minerals. Therefore, the combination of color and texture can
improve the accuracy of the rock mineral recognition model.
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Figure 3. Samples of rock mineral characteristics [42]. (a) Aquamarine; (b) cinnabar; (c) hematite.

3.1. Mineral Texture Feature Extraction

The visual features of rock minerals also include the texture of rock mineral aggregates and
cleavage. In light conditions, the reflection of different cleavages is different. Meanwhile, the reflection
of a given rock mineral follows a pattern because of its own characteristics. Therefore, the texture of
rock minerals can be extracted based on the brightness and color variation of images.

In an area where the brightness changes significantly in the image, the rock mineral texture can
be outlined. According to the RGB color system, color images can be converted to grayscale to show
brightness variations more effectively. The conversion rule [43] is as follows:

gray = 0.299×R + 0.587×G + 0.114× B, (3)

where, gray is the grayscale value of a pixel, and R, G and B are the three primary color values of
the pixel. The gray value of the image can be calculated by Equation (3). In the light condition,
the brightness in the opaque area of a rock mineral image is distinctly different from that of the
surrounding pixels. If the rock mineral’s luster is brilliant in the image, some pixels achieve a higher
brightness value than that of their surrounding area, while the rest of the pixels do not. If the luster of
a rock mineral is dull in the image, which indicates that it has a low reflection, pixels achieve a lower
brightness value than their surrounding pixels, as shown in Figure 4.
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calcite image; (c) cinnabar; (d) brightness distribution of cinnabar image.

In the same light condition, the brightness value fluctuates around a fixed value, and the changed
value of the fluctuation is set as |∆Zi|. The brightness value dramatically changes if it is beside the
texture and the value is far more than |∆Zi|, namely |∆Z| >> |∆Zi|. The variation for a pixel is calculated:

∆Zi = grayi − gray, (4)

where, ∆Zi is the variation of brightness for each pixel and the grayscale value for pixel points is
determined by Equation (3). Moreover, gray is the mean value of the grayscale of the central pixel and
8 pixels around the central pixel. In order to eliminate edge influence, the maximum and minimum are
removed, as shown in Equations (5) and (6).

gray = (
n=9∑
i=1

grayi − graymax − graymin)/7, (5)

|∆Zi|
′ =

∣∣∣|∆Zi| − |∆Z|
∣∣∣ = ∣∣∣∣∣∣∣|∆Zi| −

1
7

7∑
k=1

|∆Zk|

∣∣∣∣∣∣∣, (6)

where, the grayi is the value of the ith pixel’s grayscale value, graymax and graymin are the maximum
and minimum grayscale values of the pixels being calculated, |∆Zi|

′ is the variation of the ith grayscale
pixel. T is selected as the threshold value. After experimentation, we found that a value of T = 15 was
suitable. If the point satisfies |∆Zi|

′> T, it will be set as a feature point.
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In addition, the texture features could be extracted from color changes at the interface of rock
minerals. Therefore, the color change at the interface of a rock mineral could be measured by the
variation of RGB proportion. Three linearly independent indexes, namely C1, C2 and C3 were selected,
which were calculated in Equation (7). Moreover, n was set as 0.01 to avoid a denominator of zero.

C1 = R/(G + n), C2 = G/(B + n), C3 = B/(R + n), (7)

where, C was calculated to evaluate the variation of C1, C2 and C3 comprehensively, as shown in
Equation (7).

C = K
√

C1
2 + C22 + C32, (8)

where, K is the expansion coefficient, and in this research, K was set to 1. C will change sharply when
any one of C1, C2 and C3 changes. ∆C was set as the maximum difference in coefficients:

∆C = max{∆Ci}, (9)

where, ∆Ci was the difference between the pixel and the surrounding pixels, and T1 was used as a
threshold value to determine whether the point was a texture boundary point; and T’ was a matrix,
which was used to store the maximum distances within each class. T1 indicated the max distance
between the 12 rock minerals, which was calculated by K-means. First, a matrix which contains the
RGB values of every type of rock mineral image was calculated by K-means algorithm. Then, a result
matrix that contained the max distance for these 12 kinds of rock mineral was assigned to T’:

T′ = {D1, D2, . . . , Di, . . . , Dm}, (10)

where, Di is the max distance in each category from any point’s C value to the mean colors’ RGB values;
and m is the number of mineral classes. Finally, the maximum value in T’ was assigned to T1. When T1

is smaller than ∆C, the pixel point will be marked as a texture boundary point; and in the contrary
case, it is not going to be marked. The texture and cleavage can be outlined in the image by combining
the brightness and color change. The recognition accuracy of rock mineral images can be increased
with the extraction of texture and the cleavage of rock minerals.

In a word, the feature of rock mineral images can be extracted by calculating the changes in
brightness values and color values. In this research, texture features of rock minerals were extracted
to strengthen the texture features of the original rock mineral images by marking and outlining the
texture boundary points, as shown in Figure 5. After extraction, Inception-v3 model and the color
model will be trained.
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Figure 5. Samples of texture extraction for rock mineral images. (a) Cinnabar; (b) texture extraction of
cinnabar; (c) calcite; (d) texture extraction of calcite; (e) malachite; (f) texture extraction of malachite.

3.2. Color Model of Rock Mineral

The colors of the 12 types of rock minerals considered here are shown in Table 1. A computer
generated the color through combining red, green, and blue to build RGB color space, in which red,
green, and blue have values in [0, 255]. As a result, there are 1,677,216 (226 × 256 × 256 = 1,677,216)
colors in RGB color space. Any change of the value in R, G or B will lead to color variation. It is
possible to implement recognition for rock mineral images based on the feature of color. The rock
mineral label can be determined by the following equation:

S ji = ρ ji
2 =

(
Ri − R ji

)2
+

(
Gi − G ji

)2
+

(
Bi − B ji

)2
, (11)

where, ρji are the Euclid Distance. Ri, Gi and Bi are the mean values of RGB value in rock mineral
images. Rji, Gji and Bji are the mean values of the RGB value of the ith color in the jth rock mineral.
According to the color distance Sji, the rock mineral ranked top 6 are recognized, and shown in the
result. See Equations (11) and (12).

Score′j = 1−
min

{
S ji

}
∑n

j=1 min
{
S ji

} (i = 0, 1, . . . , k), (12)

Score j =
Score′j∑n

j=1 Score′j
. (13)

Here a color model for rock mineral will be established based on the colors of rock mineral.
The color model will be used to assist inception-v3 model in identifying rock minerals. During
identification of the type of a mineral, the inception-v3 model identifies the mineral first, then a six-size
set of identification results is passed to the color model. The final result is given by the color model
after matching the color of the mineral with the results from Inception-v3 model.

4. Experiment and Results

4.1. Image Processing

The dataset [42] consists of 4178 images of 12 kinds of elaborate rock minerals. The information
about rock mineral images in each category is shown in Table 2. Twenty images were selected randomly
in each category as a test dataset, and the remaining images were used to retrain the Inception-v3 model.

In establishing the model, numerous factors including the number and clarity of rock mineral
images, background noise and differences between features of minerals all influence its accuracy.
Generally, accuracy increases as the number of rock mineral images increases. However, the imbalance
among different types in quantity may lead to low accuracy. Therefore, we collected the images and
ensured that the total number of each category was at least 150. The proportion of rock minerals in an
image was then adjusted to at least 80%. Finally, the noise of the image, such as complex backgrounds
and labels, was removed to give the images the same size. In the process of training and the color
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model, the texture features of all images were extracted and strengthened. All images were also
translated into the RGB matrix. Then, the brightness values and a matrix containing the ∆C values of
the points of each image were calculated by Equation (3) and Equations (7)–(9), respectively. If they
were determined to be boundary points, the points were marked and outlined. Some pre-processed
results are shown in Figure 5. Then, the Inception-v3 model was trained.

Table 2. The types and numbers of rock mineral images.

Rock Minerals Number Rock
Minerals Number

Cinnabar 327 Hematite 324
Aquamarine 380 Calcite 451
Molybdenite 316 Stibnite 423

Malachite 335 Azurite 323
Cassiterite 378 Augite 171
Magnetite 335 Gyp 415

4.2. Model Establishment

4.2.1. Model Training

The processed images were used as the raw data. The input image size was set to 299 × 299. All
the input images were pre-processed for training. There were three input channels for length, width,
and color. The training steps were set to 20,000, and the learning rate was set to 0.01. The prediction
results were compared with the true label in each step, so that the training and validation accuracy were
both calculated to update the weights in the model. The true label is the class name from the dataset.
The primary measures used to evaluate training effectiveness are the training accuracy, validation
accuracy and train cross-entropy, as shown in Figure 6.
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Figure 6. Training process with Inception-v3.

The lighting conditions have an influence on the RGB value of the images. To get a better color
model, the self-adaption K-means algorithm, which is optimized by the silhouette coefficient, was used
to train the model based on 10 image slices for each category in different lighting condition (with a size
of about 300 × 300). There were about 900,000 points in each category. These points were then used
to train the color model by K-means. When the model was trained, the silhouette coefficient and the
maximum distance, which is the Di in Equation (10), of each category from point to the mean value
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were calculated. The training process ended until the silhouette coefficient was maximum. The training
results of the color model is shown in Table 3. Additionally, Figure 7 shows samples of rock mineral
images which were trained in color model.

Table 3. Training results of color model.

Rock Minerals
Colors (R, G, B)

Color1 Color2 Color3

Cinnabar (142,79,69) (105,36,31) (184,107,102)
Hematite (168,96,80) (127,157,138) -

Molybdenite (121,125,126) (93,96,98) -
Calcite (193,199,193) (175,177,167) -

Cassiterite (44,47,53) - -
Magnetite (36,33,31) - -
Malachite (88,168,129) (67,144,104) (50,108,75)
Azurite (0,19,151) (44,77,201) -

Aquamarine (0,95,56) (35,159,112) -
Augite (82,80,82) (122,120,124) -
Stibnite (92,104,115) - -

Gyp (161,161,163) (230,220,192) -
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To eliminate the influence of different lighting condition, we trained numerous images in different
lighting conditions. Due to the difference in the reflection of rock minerals, some mineral’s RGB values
changed significantly, while some do not, therefore, the number of RGB value kinds of these minerals
in the color model is different.

When training the SVM model and RF model, the features of raw images were extracted by the
HOG method. Then all features were resized to 256 × 256. The parameters of SVM and RF were
determined by the grid search algorithm. Finally, we found that the penalty coefficient and gamma of
SVM are 0.9 and 0.09. The number of trees of RF is 180. The parameters of RF are the default.

4.2.2. Model Test and Results

First, two Inception-v3 models were retrained from both raw images and texture feature extraction
images. Then, the retrained model from the texture feature extraction images was combined with the
color model to create a comprehensive model. The comparison was made among the three models to
find one with the highest accuracy. To ensure the accuracy was more convincing, 440 images were
used to test these models, and the testing images were randomly selected from the image dataset of the
rock mineral. These testing images are going to be used as the input data for a comprehensive model
and Inception-v3 model trained with or without feature extraction images. Meanwhile, the images are
going to be automatically processed when testing the comprehensive model and Inception-v3 model
trained with feature extraction images by the program. The test result is shown in Table 4.
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Table 4. Results of five models.

Models
Validation
Accuracy

Test Accuracy
Top-1 Top-3

Model based on raw images 73.1% 64.1% 96.0%
Model based on texture extraction images 77.4% 67.5% 98.3%

Comprehensive model 77.4% 74.2% 99.0%
SVM-HOG 33.6%

30.4%RF-HOG

To ensure the models in Table 4 are statistically feasible, the precision rate, recall rate and
F1-measure value are used to validate the models. In Table 4, the retrained Inception-v3 model based
on raw images was able to reach a validation accuracy of 73.1%, and the top-1 and top-3 accuracies were
64.1% and 96.0%, respectively. The test accuracies (precision rate) of SVM-HOG and RF-HOG are 32.8%
and 31.2%, respectively. The accuracy is too low, which indicates that the HOG features are not effective.
On the other side, the comprehensive model has a significant performance, which proves it can extract
the texture features. The test accuracies of each category (recall rate) of these models are shown in
Figure 8, and the F1-measure value of the models is shown in Table 5. As we can see, the accuracy of
each category of the comprehensive model is much higher than that of the rest models, which indicates
that the comprehensive model is suitable for rock mineral identification. The F1-measure value of the
comprehensive model indicates that the model is statistically feasible.
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Figure 8. Test accuracies of each category.

Table 5. Validation parameters of models.

Models Precision Rate Recall Rate F1-measure Value

Comprehensive model 74.2% 77.5% 0.758
SVM-HOG 33.6% 28.5% 0.308
RF-HOG 30.4% 31.2% 0.308
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It revealed that the accuracy of the Inception-v3 model, with the texture feature extraction images,
is higher than that with the raw images in Table 4. The Inception-v3 model with the texture feature
extraction images reached a higher accuracy, which means the texture is a significant feature for rock
mineral identification. The texture extraction makes it easier to distinguish different rock minerals,
which improves the accuracy of the retrained model.

The comprehensive model achieved the highest accuracy in the three models. Color properties
could increase identification accuracy greatly. From the test accuracy of the comprehensive model,
we can see that the top-1 accuracy is 74.2%, and the top-3 accuracy is 99.0%. By combining the retrained
Inception-v3 model and the color model, a comprehensive identification could be made for different
rock minerals. The texture and color features were used the most during identification.

Following are some recognition samples in Figure 9. As you can see, these models sometimes
achieved different results. When the texture features are similar, and the colors are different. For example,
magnetite’s cleavage is similar to the azurite’s, but their colors are not similar, the color model could
identify them successfully. When the minerals’ color is similar, but has different cleavage such as
calcite and gym, the Inception-v3 model trained with feature extraction images could identify them
successfully. Therefore, the comprehensive model has the advantages of both the color model and the
Inception-v3 model trained with feature extraction images. Occasionally, however, the comprehensive
model is going to be wrong when the minerals’ texture feature is vague, or the color is abnormal.
This condition will confuse the comprehensive model, as shown in Figure 10. It is magnetite in
Figure 10, but because of the blue lighting and vague texture feature, these models all received an
incorrect result.
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Figure 9. Samples of recognition results. (a–c) are from the comprehensive model, (d–f) are from
the Inception-v3 model trained with feature extraction images, (g–j) are from the Inception-v3 model
without feature extraction.
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5. Conclusions

In this research, three models based on Inception-v3 model were established. The deep learning
model, coupled with color model reached top-1 and top-3 accuracies of 74.2% and 99.0%, respectively.
The retrained model using raw images reached top-1 and top-3 accuracies of 64.1% and 96.0%,
respectively. The retrained model using texture extraction images reached top-1 and top-3 accuracies
of 67.5% and 98.3%, respectively. The comparison of the three models indicates that the comprehensive
model is the best of all. The SVM-HOG model achieved a validation accuracy of 32.8%. The RF-HOG
model achieved a validation accuracy of 31.2%. The results indicate that the deep learning model can
extract effective image features. The comparison between the traditional models and the deep learning
model shows that the deep learning models are much more effective than the traditional ones.

The deep learning algorithm provides a new idea for rock mineral identification. The clustering
algorithm could also improve the performance of the deep learning model. Therefore, the combination
of a deep learning algorithm and clustering algorithm is an effective way for rock mineral identification.
Meanwhile, the color features and texture features of rock minerals are significant properties for
identification. The identification accuracy of Inception-v3 model could be improved greatly by texture
and color extraction.

Furthermore, the elaborate mineral images, with clear mineral features, are adopted. If the
features, such as cleavage and luster, can be extracted, the comprehensive model can be further tested
for mineral specimen identification, even for field survey.



Minerals 2019, 9, 516 15 of 17

Author Contributions: Modules design and development, C.L.; Overall framework design, M.L.; Data collection
and application test, Y.Z. and Y.Z.; Algorithm and model improvement, S.H.

Funding: This research was funded by the National Natural Science Foundation for Excellent Young Scientists of
China (Grant no. 51622904), the Tianjin Science Foundation for Distinguished Young Scientists of China (Grant no.
17JCJQJC44000) and the National Natural Science Foundation for Innovative Research Groups of China (Grant
no. 51621092).

Conflicts of Interest: We declare that we have no financial and personal relationships with other people or
organizations that can inappropriately influence our work, there is no professional or other personal interest
of any nature or kind in any product, service or company that could be construed as influencing the position
presented in, or the review of, the manuscript entitled.

References

1. Yeshi, K.; Wangdi, T.; Qusar, N.; Nettles, J.; Craig, S.R.; Schrempf, M.; Wangchuk, P. Geopharmaceuticals of
Himalayan Sowa Rigpa medicine: Ethnopharmacological uses, mineral diversity, chemical identification
and current utilization in Bhutan. J. Ethnopharmacol. 2018, 223, 99–112. [CrossRef] [PubMed]

2. Rustom, L.E.; Poellmann, M.J.; Johnson, A.J.W. Mineralization in micropores of calcium phosphate scaffolds.
Acta Biomater. 2019, 83, 435–455. [CrossRef] [PubMed]

3. Laura, B.; Nina, E.; Mona, W.M.; Udo, Z.; Andò Sergio Merete, M.; Reidar, I.K. Quick, easy, and economic
mineralogical studies of flooded chalk for eor experiments using raman spectroscopy. Minerals 2018, 8, 221.

4. Ramil, A.; López, A.J.; Pozo-Antonio, J.S.; Rivas, T. A computer vision system for identification of
granite-forming minerals based on RGB data and artificial neural networks. Measurement 2017, 117, 90–95.
[CrossRef]

5. Sadeghi, B.; Madani, N.; Carranza, E.J.M. Combination of geostatistical simulation and fractal modeling for
mineral resource classification. J. Geochem. Explor. 2015, 149, 59–73. [CrossRef]

6. Li, R.; Albert, N.N.; Yun, M.; Meng, Y.S.; Du, H. Geological and Geochemical Characteristics of the Archean
Basement-Hosted Gold Deposit in Pinglidian, Jiaodong Peninsula, Eastern China: Constraints on Auriferous
Quartz-Vein Exploration. Minerals 2019, 9, 62. [CrossRef]

7. Rajendran, S.; Nasir, S. ASTER capability in mapping of mineral resources of arid region: A review on
mapping of mineral resources of the Sultanate of Oman. Ore Geol. Rev. 2019, 108, 33–53. [CrossRef]

8. Shi, B.; Liu, J. Nonlinear metric learning for kNN and SVMs through geometric transformations.
Neurocomputing 2018, 318, 18–29. [CrossRef]

9. Sachindra, D.; Ahmed, K.; Rashid, M.M.; Shahid, S.; Perera, B. Statistical downscaling of precipitation using
machine learning techniques. Atmos. Res. 2018, 212, 240–258. [CrossRef]

10. Vassilev, S.V.; Vassileva, C.G. A new approach for the combined chemical and mineral classification of the
inorganic matter in coal. 1. Chemical and mineral classification systems. Fuel 2009, 88, 235–245. [CrossRef]

11. Vassilev, S.V.; Vassileva, C.G. A new approach for the classification of coal fly ashes based on their origin,
composition, properties, and behaviour. Fuel 2007, 86, 1490–1512. [CrossRef]

12. Zaini, N.; Van Der Meer, F.; Van Der Werff, H. Determination of Carbonate Rock Chemistry Using
Laboratory-Based Hyperspectral Imagery. Remote. Sens. 2014, 6, 4149–4172. [CrossRef]

13. Adep, R.N.; Shetty, A.; Ramesh, H. EXhype: A tool for mineral classification using hyperspectral data.
ISPRS J. Photogramm. Remote. Sens. 2017, 124, 106–118. [CrossRef]

14. Othman, A.A.; Gloaguen, R. Integration of spectral spatial and morphometric data into lithological. J. Asian
Earth Sci. 2017, 146, 90–102. [CrossRef]

15. Li, Y.; Chen, C.; Fang, R.; Yi, L. Accuracy enhancement of high-rate GNSS positions using a complete
ensemble empirical mode decomposition-based multiscale multiway PCA. J. Asian Earth Sci. 2018, 169, 67–78.
[CrossRef]

16. Wang, W.; Chen, L. Flotation Bubble Delineation Based on Harris Corner Detection and Local Gray Value
Minima. Minerals 2015, 5, 142–163. [CrossRef]

17. Chen, J.; Chen, Y.; Wang, Q. Synthetic Informational Mineral Resource Prediction: Case Study in Chifeng
Region, Inner Mongolia, China. Earth Sci. Front. 2008, 15, 18–26. [CrossRef]

18. Shardt, Y.A.; Brooks, K. Automated System Identification in Mineral Processing Industries: A Case Study
using the Zinc Flotation Cell. IFAC-Papers OnLine 2018, 51, 132–137. [CrossRef]

http://dx.doi.org/10.1016/j.jep.2018.05.007
http://www.ncbi.nlm.nih.gov/pubmed/29751124
http://dx.doi.org/10.1016/j.actbio.2018.11.003
http://www.ncbi.nlm.nih.gov/pubmed/30408560
http://dx.doi.org/10.1016/j.measurement.2017.12.006
http://dx.doi.org/10.1016/j.gexplo.2014.11.007
http://dx.doi.org/10.3390/min9010062
http://dx.doi.org/10.1016/j.oregeorev.2018.04.014
http://dx.doi.org/10.1016/j.neucom.2018.07.074
http://dx.doi.org/10.1016/j.atmosres.2018.05.022
http://dx.doi.org/10.1016/j.fuel.2008.09.006
http://dx.doi.org/10.1016/j.fuel.2006.11.020
http://dx.doi.org/10.3390/rs6054149
http://dx.doi.org/10.1016/j.isprsjprs.2016.12.012
http://dx.doi.org/10.1016/j.jseaes.2017.05.005
http://dx.doi.org/10.1016/j.jseaes.2018.07.025
http://dx.doi.org/10.3390/min5020142
http://dx.doi.org/10.1016/S1872-5791(08)60035-4
http://dx.doi.org/10.1016/j.ifacol.2018.09.288


Minerals 2019, 9, 516 16 of 17
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