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Abstract: The rejection of pyrrhotite and pyrite has become a long-standing problem in the copper
ore industry. This paper describes the first successful depression and adsorption mechanism of a
novel and non-hazardous reagent, polyglutamic acid (PGA), on pyrrhotite in the selective flotation
of chalcopyrite with xanthate as the collector, making use of various laboratory-scale measurement
techniques. The addition of PGA inhibited the flotation of pyrrhotite much more strongly than that
of the chalcopyrite in a wide pH range. The prior addition of PGA achieved an improved selective
flotation of chalcopyrite from pyrrhotite at pH 8, at which the grade and recovery of chalcopyrite in
concentrate were over 80%. Surface measurement techniques including XPS spectral, IR spectral, zeta
potential, and reagent adsorption analyses indicated that the PGA interacted differently with the two
minerals, and had much greater affinity towards pyrrhotite than chalcopyrite. The presence of PGA
blocked the electrochemical activity of the collector on the pyrrhotite surface and thus depressed
its flotation, whereas the adsorption of the collector and its oxidation to dixanthogen were more
effective on the chalcopyrite surface, indicating a weaker interaction of PGA with chalcopyrite. Our
results suggest that the application of PGA could replace the toxic inorganic depressants in flotation
technology, and could significantly reduce the environmental impacts of processing.
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1. Introduction

Copper, a nonferrous base metal, is required in every modern manufacturing industry. It is
extracted mainly through the smelting processing of copper-bearing minerals. There are many minerals
available for the production of copper, but chalcopyrite is the largest source from which copper is
economically and efficiently extracted [1]. Gangue minerals containing iron as a dominant metal are
part of a great majority of copper ore deposits [2]. Of these, pyrrhotite (Fe1-xS) and pyrite (FeS2) are
the two most common iron sulfide minerals. Pyrrhotite occurs either in hexagonal or monoclinic
form. Monoclinic pyrrhotite is a strong ferromagnetic and is richer in sulfur, while the hexagonal
form has no magnetic properties and is poorer in sulfur content [3]. Since the pyrrhotite contains
relatively more iron (approximately 60% Fe) than pyrite (approximately 47% Fe), the misreporting of
pyrrhotite in concentrates dilutes the grade of the metal [3,4]. Moreover, the presence of pyrrhotite
increases the sulfur content in copper concentrates, which not only causes the corrosion of equipment
but also pollutes the environment through SO2 emissions during the metallurgical processing [5,6].
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Hence, the rejection of pyrrhotite from base metal sulfide ores in the initial stage of processing has
various economic and environmental advantages. However, the removal of pyrrhotite in the presence
of xanthate has been a long-standing problem in the copper ore industry.

Froth flotation is practically used for the separation of copper-bearing minerals from either pyrite
or pyrrhotite gangues [7,8]. Its separation is based mainly on the difference in the physico–chemical
characteristics of valuables and gangue minerals present in the ore body [9,10]. Well-known flotation
reagents including collectors, depressants, frothers, and modifiers are commonly used to modify the
hydrophobic/hydrophilic characteristics of mineral particles present in the mineral suspensions [11].
Many research studies have been carried out on the flotation of pyrrhotite over the past few decades,
but different researchers have drawn different conclusions. In the literature, it is widely acknowledged
that the crystal structure, chemical composition, and physical properties of pyrrhotite determine
its floatability [12]. During flotation, the pyrrhotite is commonly rejected to the tailings as a waste
product, and hence in massive sulfide ores treatment, the process often aims to depress the pyrrhotite
flotation [6,13,14]. The pyrrhotite responds well to xanthate, the strong and most widely used thiol
collector in base metal sulfide flotation [15,16], and floats easily with the valuable minerals. Therefore,
the mineral industry mostly needs a depressant for pyrrhotite in the flotation of copper minerals with
xanthate as the collector.

There are many inorganic reagents available that have been applied for the depression of pyrrhotite
flotation. Of these, high-pH reagents such as lime (CaO), sodium hydroxide (NaOH), and sodium
carbonate (Na2CO3) are widely used depressants for pyrrhotite in the conventional flotation circuits of
the copper ore industry [17,18]. However, the depression of pyrrhotite by lime is comparatively more
effective than by sodium hydroxide and sodium carbonate. In the presence of CaO in high-pH solutions,
hydrophilic species like Fe(OH)3, FeSO4, and CaSO4 are formed on the pyrrhotite surface, which
inhibits the adsorption of xanthate ions and thus depresses the flotation of pyrrhotite. The depression
of pyrrhotite through lime usually requires larger doses of lime, which not only increases the operating
cost but also reduces the plant performance if gypsum precipitation occurs. Moreover, in high-pH
solutions, the electrochemical interaction of metal ions such as Cu2+ and Pb2+ may occur on the
pyrrhotite surface during the grinding and flotation conditioning processes, which can activate the
pyrrhotite flotation and diminish the selective depression, even in the presence of lime [3,19,20].
In addition to pH reagents, other highly toxic chemicals including potassium dichromates, sulfites,
sulfur dioxides, and cyanides have also been applied for the inhibition of pyrrhotite flotation [14,16,21].
These depressant reagents have shown to be more effective in rejecting pyrrhotite; however, their
applications are limited by environmental or economic concerns [22,23]. Therefore, the copper industry
is constantly looking for a more suitable depressant of pyrrhotite in Cu–Fe flotation separation.

Owing to their characteristics of renewability, biodegradability, abundant availability,
environmental friendliness, and low cost, bio-based depressants have gained increasing industrial
interest in recent years. The most common organic depressants for pyrrhotite flotation include mercapto
organic compound (DMPS) [24], guar gum [25], diethylenetriamine [26], sodium metabisulfite and
triethylenetetramine [27]. Microorganism bacteria, such as Leptospirillum ferriphilum and Acidithiobacillus
caldus [28], have also been used to modify the surface properties of pyrrhotite, as an alternative to
depress the pyrrhotite flotation. Some of these have shown favorable results in the rejection of
pyrrhotite when used in laboratory-scale flotation experiments. Generally, the depression mechanism
of organic polymers is either to desorb the collector or activator from the mineral surface, prevent
the collector adsorption, or make the mineral surface more hydrophilic [29,30]. The hydrophilic
functional groups in the molecular structure of organic polymers enhance the hydrophilic character of
the mineral surface, facilitating the depression of mineral particles through the reduced possibility of
bubble–particle attachment [31,32]. One limitation to the use of organic reagents as depressants is their
poor selectivity; high doses of organic depressants may cause the depression of all sulfide minerals
present in the flotation slurry. However, the main advantages of organic over inorganic depressants
are that the biopolymers have much greater flexibility and potential to be modified physically or
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chemically, which can effectively improve their selectivity as well as depression performance. Hence,
there is still significant scope for the development of bio-based reagents to produce specifically selective
depressants to function effectively for a specific mineral or application.

The present paper therefore describes the first successful depression and adsorption mechanism
of a novel and environmentally friendly depressant reagent, polyglutamic acid (PGA), on pyrrhotite in
the selective flotation of chalcopyrite with xanthate as the collector, making use of single and binary
mineral selective flotation experiments, X-ray photoelectron spectroscopy (XPS), infrared spectroscopy
(IR), zeta potential measurements, and reagent adsorption analysis techniques. Polyglutamic acid
or poly-γ-glutamic acid is chemically composed of D-and L-glutamic acid connected through amide
linkages between γ-carboxylic acid and α-amino groups [33]. It is a naturally occurring anionic
polymer, and its charge varies depending on solution pH. It has many outstanding properties, such
as non-toxicity, renewability, water solubility, and biodegradability. Due to its biodegradability and
non-toxicity to humans and the environment, the optimal usage of polyglutamic acid could extensively
reduce the environmental impacts of processing. To the best of our knowledge, there is no reported
work on the application of PGA as a flotation depressant of pyrrhotite in mineral processing.

2. Methodology

2.1. Samples and Reagents

The mineral samples of chalcopyrite and pyrrhotite used in this investigation were provided by
Yunfu, Guangdong Province, China. The purity of samples was measured by X-ray diffraction analysis,
as shown in Figure 1. For single and binary mineral selective flotation experiments, particles with
38−74 µm size were produced via crushing, grinding, and sieving. The particles with size < 2 µm were
produced for XPS spectral measurements, IR spectral measurements, zeta potential measurements,
and reagent adsorption analysis. After the sample preparation procedures, all of the samples were
placed in sealed glass bottles to protect them from oxidation.
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Figure 1. X-ray diffraction analysis of pyrrhotite and chalcopyrite.

Polyglutamic acid (PGA, analytical-grade reagent with 92% purity and relative molecular weight
of 700,000) from Shanghai Macklin Biochemical Co., Ltd., China was used as the main depressant
reagent in this study. Figure 2 shows the molecular structure and IR spectrum of PGA, and Table 1
presents the characteristic infrared peaks of the major functional groups in PGA. Sodium isobutyl
xanthate (SBX), an industrial-grade collector with 95% purity, was received from Chemical Factory
of Zhuzhou, China. Analytical-grade terpineol was employed as the frothing agent, and sodium
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hydroxide and nitric acid were used as the pH modifiers. Deionized water (resistivity of 18.2 MΩ·cm)
was used in the experiments.
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Table 1. The main functional groups in polyglutamic acid.

Wavenumber (cm−1) Assignment

1295.11 C–N stretching
1408.66 CO2

− symmetric stretching
1562.01 CO2

− asymmetric stretching
2951.36 C–H stretching
3455.47 N–H stretching

2.2. Procedure of Flotation Experiments

The depressive performance of PGA on pyrrhotite and chalcopyrite was evaluated via single and
binary mineral selective flotation experiments using a 40 mL flotation cell and 1650 r/min impeller
speed. All of the experiments were performed in an XFG series single flotation cell machine (Jilin
Exploring Machinery Plant, Jilin, China) at room temperature (25 ± 1 ◦C). In each of the experiments,
the pulp was prepared by mixing 2.0 g of the desired mineral with 35 mL of DI water into a 40 mL
plexiglass cell. Following the pH adjustment with sodium hydroxide or nitric acid with a stirring time
of 2 min, the desired reagent was added and conditioned for 3 min each. Finally, the frother was added
to mineral suspension with a 1 min conditioning time, and the concentrates and tails were collected for
5 min, oven-dried at about 60 ◦C, and weighed for the recovery calculations. The adopted flotation
procedure is illustrated in Figure 3. The procedure was repeated three times, and the average recovery
was reported as the final value. Moreover, under same experimental situations, the standard deviation,
which is represented by an error bar, was also calculated using the mean of three measurements.
In binary mineral selective flotation experiments, the flotation experimental procedure was the same as
shown in Figure 3. However, the flotation feed for binary mineral flotation was prepared by mixing the
chalcopyrite and pyrrhotite in a 1:1 ratio, and the recovery and grade of the minerals were calculated
based on solid mass distribution between the concentrates and tailings and their chemical composition.
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2.3. Zeta Potential of Minerals

Zeta potential measurements were carried out in a ZETASIZER spectrometer (Nano-Zs90 series,
Malvern Instruments, Worcestershire, UK) at room temperature (25± 1 ◦C). In each of the measurements,
tests were performed by mixing 0.020 g of the desired mineral particles of <2µm size into a 1× 10−3 mol/L
KCl solution (40 mL) as the background electrolyte solution. Following the pH adjustment with sodium
hydroxide or nitric acid with a stirring time of 2 min, the desired reagent was added and conditioned
for 10 min each. The addition order of the reagent(s) was the same as illustrated in Figure 3. After
5 min settling of the coarser particles, the pH of the solution was noted and the fine particles in the form
of supernatant were transmitted to a cell for measurements. Three measurements were performed for
each sample, and the average was calculated as the final value.

2.4. Reagent Adsorption Measurements

Using the solution depletion technique, the adsorbed amount of PGA on the surface of pyrrhotite
and chalcopyrite was calculated at different PGA concentrations. All of the measurements were
performed at room temperature (25 ± 1 ◦C). In each of the measurements, the suspension was prepared
by mixing 2.0 g of the desired mineral with 35 mL of DI water into a 40 mL plexiglass cell. Following
the pH adjustment with sodium hydroxide or nitric acid with a stirring time of 2 min, the desired dose
of PGA was added to the mineral suspension and conditioned for 3 min. After the conditioning time,
each mineral solution was centrifuged at 10,000 rpm for 30 min in order to settle the solid particles,
and the PGA residual concentration in the solutions was determined. A total organic carbon analyzer
(TOC-LCPH, Shimadzu, Kyoto, Japan) was used for the determination of total organic carbon. The
adsorbed amount of reagent was calculated using the following Equation (1):

Γ =
V

1000m
(Co − C) (1)

where Γ represents the adsorbed amount of reagent (mg/g); V is the total volume of the solution (L); Co

and C are the PGA concentrations in initial solution and supernatant, respectively, and m represents
the mass of the mineral sample (g).

2.5. Infrared Spectroscopy Analysis

A Bruker Alpha FTIR spectrometer (Nicolet 6700, Thermo Scientific, Waltham, MA, USA) was
used to collect the infrared spectra of mineral particles before and after the reaction with reagents. The
samples were prepared by mixing 2.0 g of the desired mineral with 35 mL of DI water into a 40 mL
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plexiglass cell. Following the pH adjustment with sodium hydroxide or nitric acid with a stirring time
of 2 min, the desired reagent was added and conditioned for 20 min each. The addition order of the
reagent(s) was the same as illustrated in Figure 3. After the treatment with reagent(s), mineral particles
were rinsed with deionized water, filtered, and dried in a vacuum desiccator prior to the infrared
spectroscopy measurements. In order to acquire the infrared spectra, about 1% of each mineral (mass
fraction) was mixed with a spectroscopic-grade KBr. All of the measurements were performed at room
temperature (25 ± 1 ◦C).

2.6. X-ray Photoelectron Spectroscopy Analysis

Using an ESCALAB 250Xi spectrometer (Thermo Fisher-VG Scientific, Waltham, MA, USA), the
X-ray photoelectron spectra of mineral particles before and after the reaction with reagents were
collected with Al Kα as the sputtering source at 12 kV and 6 mA. The pressure in the analyzer chamber
was fixed at 1.0 × 10−12 Pa, and the binding energies of C(1s) were fixed at 284.8 eV. Thermo Scientific
Avantage software was used for curve fitting and quantification of the spectra. The samples were
prepared by mixing 2.0 g of the desired mineral with 35 mL of DI water into a 40 mL plexiglass cell.
Following the pH adjustment with sodium hydroxide or nitric acid with a stirring time of 2 min, the
desired reagent was added and conditioned for 20 min each. The addition order of the reagent(s) was
the same as illustrated in Figure 3. After the treatment with reagent(s), mineral particles were rinsed
with deionized water, filtered, and dried in a vacuum desiccator prior to XPS measurements. All of the
measurements were performed at room temperature (25 ± 1 ◦C).

3. Results and Discussion

3.1. Single Mineral Flotation

The flotation performance of minerals with PGA as the depressant and SBX as the collector was
first investigated through single-mineral flotation tests. As shown in Figure 4, in the absence of PGA,
pyrrhotite and chalcopyrite exhibited excellent flotation with SBX, and their recoveries were more
than 80% in a wide pH range of 2–11. The improved flotation of chalcopyrite and pyrrhotite in this
pH range was because of the adsorption of xanthate and its oxidation to stable dixanthogen on the
mineral surfaces. Meanwhile, the decrease in flotation recovery at pH >11 indicates that the oxidation
of xanthate to dixanthogen was not thermodynamically stable in highly alkaline solutions, and thus
was not adsorbed onto the mineral surfaces [34]. From these results it is clearly shown that the selective
separation between the chalcopyrite and pyrrhotite was impossible without adding any depressant.
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In the presence of PGA (added before SBX), the flotation recoveries of both minerals were decreased
simultaneously, indicating that the PGA had a depressive effect on the mineral flotation. Figure 4
indicates that the addition of PGA depressed the two minerals differently; flotation of pyrrhotite was
inhibited more strongly than that of the chalcopyrite in the whole tested pH range of 2–12, indicating
that PGA could be a better depressant of pyrrhotite than chalcopyrite. The prior addition of PGA
depressed the flotation recovery of pyrrhotite to about 10% from 85% in a pH range of 7–11, whereas
the recovery of chalcopyrite remained more than 80% under the same experimental conditions. These
preliminary flotation results indicate that a selective separation window between the chalcopyrite and
pyrrhotite exists with PGA as the depressant.

As shown in Figure 4, in the presence of PGA, the strongest depression of pyrrhotite and the largest
difference between the recoveries of pyrrhotite and chalcopyrite occurred at pH > 7. To investigate the
effect of different concentrations of PGA on the flotation behavior of these minerals, single-mineral
flotation tests were extended further by fixing the pH at 8. Figure 5 shows that by increasing the
doses of PGA from 10 to 110 mg/L, the flotation recoveries of pyrrhotite and chalcopyrite were also
decreased; however, the decreasing effect on pyrrhotite was much stronger than that of the chalcopyrite.
As shown, an important recovery difference was again obtained at the lower concentration of PGA
(i.e., 10–60 mg/L), indicating that PGA has a great potential to depress the flotation of pyrrhotite in the
selective flotation of chalcopyrite with xanthate as the collector. These results therefore suggest that
PGA could be an alternative inhibitor for iron sulfide gangues in the conventional flotation procedures
of the copper ore industry.
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3.2. Selective Flotation

Flotation experiments on the individual minerals clearly showed that the prior addition of PGA
depressed the flotation of pyrrhotite more strongly than that of the chalcopyrite. In addition to
single-mineral flotation, the selective flotation experiment on manually mixed minerals is the best
laboratory measurement to reveal the selectivity of any new reagent as a collector or depressant. In this
regard, binary mineral selective flotation experiments were further conducted by using the optimized
experimental parameters: 50 mg/L PGA, 20 mg/L SBX, and pH 8. Flotation feed for selective flotation
experiments was prepared by blending the chalcopyrite and pyrrhotite minerals in a 1:1 ratio. Table 2
provides the selective flotation results.

A significant improvement in the grade of concentrate compared with feed before flotation
revealed that an improved selective separation of chalcopyrite from pyrrhotite occurred by adding
PGA as the depressant. The addition of PGA produced a flotation concentrate with a chalcopyrite
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grade of more than 80%, with an improved recovery of more than 85%. Whereas, under the same
experimental conditions the grade and recovery of pyrrhotite remained less than 20%. These results
indicate that in the mineral suspension where both chalcopyrite and pyrrhotite were present together,
the PGA selectively adsorbed onto the surface of pyrrhotite, depressed its flotation, and allowed the
chalcopyrite to float from the suspension.

Table 2. Selective flotation results of the binary mixed chalcopyrite and pyrrhotite at 50 mg/L PGA,
20 mg/L SBX, and pH 8.

Products
Yield Recovery (%) Grade (%)

(wt. %) CuFeS2 Fe1−xS CuFeS2 Fe1−xS

Concentrate 53.00 ± 0.68 85.73 ± 0.37 20.20 ± 0.33 80.97 ± 0.40 19.03 ± 0.40
Tailing 47.00 ± 0.68 14.27 ± 0.37 79.80 ± 0.33 15.20 ± 0.37 84.80 ± 0.37

Flotation feed 100 100 100 50 50

To summarize, all of the flotation experimental results indicate that the PGA has a superior
selective depression effect on pyrrhotite in the selective flotation of chalcopyrite with xanthate as the
collector. Thus, the optimal usage of PGA could replace the most toxic inorganic depressants in copper
ore industry, and could reduce the environmental impacts of processing.

3.3. Zeta Potential

The essential reaction behavior of PGA with chalcopyrite and pyrite was investigated through zeta
potential measurements. As can be seen in Figure 6, untreated pyrrhotite particles represented a highly
positive zeta potential charge in a wide pH range of 3–7, with an isoelectric point at pH 7.4. Whereas,
untreated chalcopyrite particles indicated comparatively less positive charge, with an isoelectric point
less than pH 4. The highly positive charge and isoelectric point at higher pH has been reported
to indicate the presence of oxidation species on the pyrrhotite surface [35,36]. The addition of SBX
significantly decreased the zeta potentials of chalcopyrite and pyrrhotite simultaneously, indicating
that the xanthate anions were strongly absorbed on the pyrrhotite and chalcopyrite surfaces before the
treatment with PGA. These results validate the mineral flotation tests indicating that both minerals were
highly floatable with SBX. Moreover, an important difference in the zeta potentials of chalcopyrite and
pyrrhotite particles in the presence of PGA clearly shows that PGA behaved differently with the two
minerals. This important difference certainly caused the different flotation behaviors of chalcopyrite
and pyrrhotite in the single and binary mineral selective flotation experiments.
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As shown in Figure 6, PGA decreased the zeta potentials of pyrrhotite particles more strongly
than that of the chalcopyrite, indicating that, the surface of pyrrhotite was more susceptible than
chalcopyrite to PGA reaction. In the presence of PGA, the zeta potentials of pyrrhotite particles
were decreased to approximately 10 mV, especially in the pH range 5–10, compared to a decrease of
approximately 4 mV for the chalcopyrite.

As described previously, PGA is a naturally occurring polymer that is chemically composed
of glutamic acids. It contains two carboxyl groups (–COOH) and one amino group (–NH2) in its
molecular structure, with a chemical formula of HOOC–CH(NH2)–(CH2)2–COOH. PGA is an anionic
biopolymer; however, its charge varies depending on pH of the solution [37]. In highly acidic
solutions (pH < 2), the amino group gains a proton and the molecule becomes positively charged,
HOOC–CH(NH+3)–(CH2)2–COOH. In the pH range of 2–4, the carboxylic acid closer to the amine
loses a proton and the molecule becomes a neutral zwitterion, −OOC–CH(NH+3)–(CH2)2–COOH.
In neutral solutions (pH range 7–7.5), the other carboxylic acid group loses a proton to form a conjugate
base. Under these conditions, the molecule formed is known as singly-negative anion glutamate
−OOC−CH(NH+3)−(CH2)2−COO− [38]. Whereas, in highly alkaline environments (pH > 8), the
prevalent species is the doubly-negative anion −OOC–CH(NH2)–(CH2)2–COO−.

Based on these observations, it could be hypothesized that PGA adsorbed mainly through its
negatively charged functional groups, and the stronger decrease in zeta potential of pyrrhotite may be
attributed to the adsorption of PGA anions on the pyrrhotite surface, as it was comparatively more
positive than chalcopyrite. More interestingly, the presence of the collector (SBX) greatly reduced the
zeta potentials of PGA-adsorbed chalcopyrite by more than 10 mV, suggesting that the adsorption of
PGA was much weaker on the surface of chalcopyrite. In contrast, the zeta potential of PGA-adsorbed
pyrrhotite was slightly reduced after the addition of SBX; a minor decrease of approximately 2.5 mV
could only be noted at a low pH range of 4–7. However, no significant shift in the zeta potential of
PGA-adsorbed pyrrhotite was noted after increasing the solution pH beyond 7, indicating that the
pre-adsorption of PGA strongly inhibited the adsorption of collector onto the pyrrhotite surface.

To summarize, PGA reacted differently with the two minerals and it had a stronger affinity
towards the surface of pyrrhotite than chalcopyrite. The prior addition of PGA formed a passive
negatively charged layer on the pyrrhotite surface, which inhibited the adsorption of collector and thus
caused the depression of pyrrhotite. The significant adsorption of collector onto the PGA-adsorbed
chalcopyrite surface indicates that PGA has a weaker interaction towards the chalcopyrite surface.

3.4. Reagent Adsorption

Zeta potential results indicated that PGA behaved differently with the two minerals and it had
a stronger affinity towards the surface of pyrrhotite than chalcopyrite. To verify the zeta potential
results, the amounts of PGA adsorbed onto the chalcopyrite and pyrrhotite surfaces were determined
at different PGA doses. As shown in Figure 7, by increasing the reagent doses, the adsorption of PGA
was increased linearly and simultaneously on the surface of both minerals. As can be seen, at the
same doses of PGA, the adsorption density of PGA onto the pyrrhotite surface was much greater
compared with the chalcopyrite. Hence, the reagent adsorption results confirmed the zeta potential
measurements and showed that the PGA densely adsorbed onto the pyrrhotite surface. Thus, the
significant decrease in zeta potentials of pyrrhotite compared with the chalcopyrite could be attributed
to the higher adsorption density of PGA on the pyrrhotite surface.
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3.5. Infrared Spectroscopy

Infrared spectroscopy was further performed to explore the reaction mechanism of PGA on the
mineral surfaces. Figure 8 demonstrates the infrared spectra of mineral particles in the presence of
different flotation reagents. The infrared spectra of untreated particles of chalcopyrite and pyrrhotite
were in good agreement with the previous reported studies. In the pyrrhotite spectrum, the presence of
peaks around 1085.04, 1026.88, and 792.52 cm−1 corresponding to FeO, Fe(OH)2, and Fe(SO4)3 indicate
the existence of oxidation species on pyrrhotite surface [36,39]. Moreover, the spectrum of pyrrhotite
after the treatment with SBX indicated the possible peaks of xanthate–iron complexes (1079.91 cm−1),
dixanthogen (1269.03 cm−1), and CH2 groups (2975.13 cm−1) on the pyrrhotite surface. Similarly, in
the spectrum of chalcopyrite after the treatment with SBX, the peaks around 1079.73, 1269.00, and
2930.81 cm−1 correspond to xanthate–copper complexes, dixanthogen, and CH2 groups on chalcopyrite
surface, respectively. These results indicate that the collector was strongly absorbed on the pyrrhotite
and chalcopyrite surface before the treatment with PGA.

Figure 8a displays that the reaction of PGA produced the characteristic adsorption peaks of
–COOH groups (1558.76 and 1403.35 cm−1), C−N groups (1290.32 cm−1), –CH2 groups (2950.83 cm−1),
and –CONH groups (3441.50 cm−1) on the pyrrhotite surface. In addition, the surface oxidation
peaks on pyrrhotite were reduced in intensity and shifted to lower values at 1084.13, 1025.21, and
791.06 cm−1 after reacting with PGA. The disappearance or decrease of surface oxidation peaks
indicated that the addition of PGA formed a passive layer on the pyrrhotite surface. The significant
shifts in surface oxidation peaks and PGA adsorption peaks (Figure 2) provided evidence in support
of a chemisorption mechanism between pyrrhotite and PGA. As can be seen, the adsorption peaks
of xanthate and/or dixanthogen did not appear after the subsequent addition of the collector (SBX),
which further supported the strong chemical reaction of PGA onto the pyrrhotite surface. Thus, these
results indicate that the prior addition of PGA blocked the electrochemical activity of the collector onto
the pyrrhotite surface.

Figure 8b illustrates the infrared spectra of chalcopyrite under the same experimental conditions.
It is apparent that, compared with pyrrhotite, the PGA reacted weakly with the chalcopyrite surface.
The weaker characteristic adsorption peaks of –CH2 groups (2852.30 and 2930.81 cm−1) suggest that
PGA adsorbed onto the chalcopyrite surface only through hydrogen bonding. Moreover, the xanthate
adsorption peaks (1079.73 cm−1, copper–xanthate compounds) and dixanthogen peaks (1269.00 cm−1)
appeared on the surface of PGA-treated chalcopyrite, supporting further the weaker affinity of PGA for
the chalcopyrite. These results therefore infer that the collector was effectively adsorbed and oxidized
to the dixanthogen on the chalcopyrite surface, even in the presence of PGA.
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Polyglutamic acid is one of the categories of polysaccharide-based polymers whose adsorption
behavior depends essentially on the extent of hydroxyl metal species present on the mineral
surfaces [40–42]. Zeta potential measurements and infrared spectral analysis indicated the presence
of surface oxidation species on the pyrrhotite surface. Therefore, the much greater affinity of PGA
towards pyrrhotite compared with chalcopyrite can be attributed to the presence surface oxidation
species on pyrrhotite surface; PGA formed chemical coordination with FeO, Fe(OH)2, and Fe(SO4)3

species on the pyrrhotite surface. Similar adsorption mechanisms have also been reported for other
organic depressants on the oxidized pyrite surface [43,44].
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3.6. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopic (XPS) measurements are the best tools to determine the chemical
surface species on mineral surfaces for reagent adsorption. The XPS full survey spectra of mineral
particles before and after the reaction with PGA are shown in Figure 9. The elemental concentration
and the changes in the binding energies of elements after the reaction with PGA are shown in Tables 3
and 4, respectively.
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Table 3. Elemental concentration of important species in the absence and presence of 50 mg/L PGA at
pH 8.

Sample Elemental Concentration (%)

Cu Fe S O C

Pyrrhotite - 32.93 41.96 21.89 3.21
Pyrrhotite with PGA - 19.31 27.01 34.11 19.51

Chalcopyrite 27.03 16.31 31.45 21.63 3.51
Chalcopyrite with PGA 23.39 14.93 29.38 23.37 8.89

Table 4. Binding energies of important species in the absence and presence of 50 mg/L PGA at pH 8.

Sample Binding Energy (eV) Chemical Shift (eV)

Cu(2p) Fe(2p) S(2p) O(1s) C(1s) Cu(2p) Fe(2p) S(2p) O(1s) C(1s)

Pyrrhotite - 707.45 161.47 530.33 284.33 - - - - -
Pyrrhotite with PGA - 708.01 162.00 531.03 284.93 - 0.56 0.53 0.70 0.60

Chalcopyrite 931.81 707.51 161.49 529.91 284.79 - - - -
Chalcopyrite with

PGA 931.89 707.56 161.52 529.98 284.84 0.08 0.05 0.03 0.07 0.05

The significant broadness and higher intensities of S(2p) and O(1s) peaks before the reaction with
PGA provided the evidence of surface oxidation species on the pyrrhotite surface. Pyrrhotite is a very
sensitive mineral that rapidly oxidized during the sample preparation procedures in open atmosphere,
and thus its surface was covered with ferric hydroxide and or sulfate species. The significant changes
in the surface of the pyrrhotite compared with chalcopyrite confirmed the conclusions drawn from the
above-mentioned measurements—that PGA had a superior affinity towards pyrrhotite compared to
chalcopyrite. As is shown, the intensities of C and O peaks were significantly increased, and those of
Fe and S peaks were decreased after the adsorption of PGA onto the mineral surfaces. However, the
percentage increase in the atomic concentration of oxygen and carbon and the percentage decrease in
the atomic concentration of iron and sulfur on pyrrhotite surface were more apparent compared with
those on the chalcopyrite surface (Table 3), clearly indicating that the surface of pyrrhotite adsorbed a
much greater amount of PGA than that of the chalcopyrite.

Moreover, the addition of PGA significantly shifted the binding energies of the most important
species (Fe, S, C, and O) on the pyrrhotite surface. As the shifts in the binding energies of Fe(2p), S(2p),
C(1s), and O(1s) species were more than 0.1 eV (Table 4), it suggests a strong chemical reaction of PGA
onto the pyrrhotite surface. Under the sample experimental conditions, the binding energy shifts in
these species on the chalcopyrite surface were very low (less than 0.1 eV), representing a much weaker
reaction of PGA onto the chalcopyrite—most likely physical adsorption. As described previously, the
enhanced affinity of PGA towards pyrrhotite compared with chalcopyrite is attributed to the presence
of hydroxyl oxidation species on pyrrhotite surface.

Polyglutamic acid contains very reactive functional groups such as –COOH and –OH on its molecular
structure, which played an important role for the adsorption of PGA onto the mineral surfaces. To acquire
this information, the high-resolution XPS spectra of O(1s) species from the surfaces of both minerals in
the presence of PGA were collected and best-fitted into the possible existing peaks as shown in shown
Figure 10. In the pyrrhotite spectrum before the reaction with PGA, the peaks with the binding energies of
529.91, 530.01, and 532.00 eV corresponded to O2−,−OH, and SO−4 species, respectively [45]. The presence
of such species indicated that the pyrrhotite surface contained surface oxidation species.

As can be seen in Figure 10a, the reaction of PGA increased the intensities and broadened the peaks
of O2−, −OH, and SO−4 species on the pyrrhotite surface. The more pronounced peak with a binding
energy of about 532.35 3 eV corresponded to the double oxygen atoms of the deprotonated carboxylic
groups (carboxylate groups) [46]. This implies that the PGA adsorbed mainly through its oxygen
atoms. Figure 10b portrays the high-resolution XPS spectra of O(1s) species from the chalcopyrite
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surface under the same experimental conditions. As is shown, the chalcopyrite surface did not show
the peaks of −OH and SO−4 species; the peak around 529.93 eV may be assigned to lattice oxygen.
Little to no changes in the binding energies of the lattice oxygen provided clear evidence that there
was a very limited effect of PGA on the chalcopyrite surface.Minerals 2019, 9, x FOR PEER REVIEW 13 of 16 
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3.7. Adsorption Model and Depression Mechanism of PGA on Pyrrhotite

Flotation results indicated that the addition of PGA depressed the flotation of pyrrhotite much
more strongly than chalcopyrite. Surface measurement techniques including zeta potential, reagent
adsorption, IR spectral, and XPS spectral analyses showed that PGA considerably adsorbed and
modified the surface properties of pyrrhotite and enhanced its hydrophilic character. The IR and XPS
spectral analyses suggested that PGA formed chemical bonds with the hydroxyl oxidation species on
the pyrrhotite surface. Overall, the prior addition of PGA significantly reduced the adsorption of the
collector and its oxidation to dixanthogen onto the pyrrhotite surface, and thus depressed the flotation
of pyrrhotite. Based on these observations, an adsorption model and depression mechanism of PGA
on the pyrrhotite in the presence of collector (xanthate) is proposed. Figure 11 shows an illustrative
scheme for the systematic inhibition behavior of PGA on the pyrrhotite surface.Minerals 2019, 9, x FOR PEER REVIEW 14 of 16 

 
Figure 11. Schematic illustration of the adsorption model and depression mechanism of PGA on 
pyrrhotite. 

4. Conclusions 

The depression and adsorption mechanism of a novel reagent, polyglutamic acid (PGA), on 
chalcopyrite and pyrrhotite flotation separation was successfully investigated in this study. The 
main findings can be summarized as follows: 

(1) Single-mineral flotation results revealed that the addition of PGA inhibited the flotation of 
pyrrhotite more strongly than that of the chalcopyrite. The prior addition of PGA achieved an 
improved selective separation of chalcopyrite from pyrrhotite with sodium butyl xanthate as the 
collector, at which the flotation concentrate with an improved chalcopyrite grade and recovery of 
over 80% was received. 

(2) All of the surface analysis techniques, including zeta potential analysis, reagent adsorption 
analysis, IR spectral measurements, and XPS spectral measurements, revealed that the PGA 
behaved differently with the two minerals, and the pyrrhotite surface showed much greater affinity 
towards PGA. 

(3) IR spectral and XPS spectral analyses provided evidence in support of a chemical reaction 
between the PGA and pyrrhotite surface; PGA formed chemical bonds with the hydroxyl oxidation 
species on the pyrrhotite surface. 

(4) The prior addition of PGA blocked the electrochemical activity between the collector and 
pyrrhotite surface, and thus depressed the flotation of pyrrhotite. In contrast, the collector 
significantly adsorbed and oxidized to the dixanthogen on the chalcopyrite surface, which 
improved its flotation even in the presence of PGA. 

The findings of this study suggest that PGA has a superior depressive selectivity towards the 
iron-bearing sulfide gangues in Cu-Fe flotation systems. The optimum usage of PGA could replace 
the most toxic inorganic depressants in the copper ore industry and could reduce the 
environmental impacts of processing. 

Author Contributions: Conceptualization, Y.H. and W.S.; experimental methodology and writing—original 
draft preparation, S.A.K.; writing—review and editing, Z.G. and X.M. 

Funding: This research was supported by the Natural Science Foundation of China (No. 51634009); the 
Innovation Driven Plan of Central South University (No. 2015CX005); the National 111 Project (No. B14034); 
the Collaborative Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources, 
the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing 
Mineral Resources (No. 2018TP1002), and the Fundamental Research Funds for the Central Universities of 
Central South University (No. 2018zzts227). 

Figure 11. Schematic illustration of the adsorption model and depression mechanism of PGA on pyrrhotite.



Minerals 2019, 9, 510 14 of 16

4. Conclusions

The depression and adsorption mechanism of a novel reagent, polyglutamic acid (PGA), on
chalcopyrite and pyrrhotite flotation separation was successfully investigated in this study. The main
findings can be summarized as follows:

(1) Single-mineral flotation results revealed that the addition of PGA inhibited the flotation
of pyrrhotite more strongly than that of the chalcopyrite. The prior addition of PGA achieved an
improved selective separation of chalcopyrite from pyrrhotite with sodium butyl xanthate as the
collector, at which the flotation concentrate with an improved chalcopyrite grade and recovery of over
80% was received.

(2) All of the surface analysis techniques, including zeta potential analysis, reagent adsorption
analysis, IR spectral measurements, and XPS spectral measurements, revealed that the PGA behaved
differently with the two minerals, and the pyrrhotite surface showed much greater affinity towards PGA.

(3) IR spectral and XPS spectral analyses provided evidence in support of a chemical reaction
between the PGA and pyrrhotite surface; PGA formed chemical bonds with the hydroxyl oxidation
species on the pyrrhotite surface.

(4) The prior addition of PGA blocked the electrochemical activity between the collector and
pyrrhotite surface, and thus depressed the flotation of pyrrhotite. In contrast, the collector significantly
adsorbed and oxidized to the dixanthogen on the chalcopyrite surface, which improved its flotation
even in the presence of PGA.

The findings of this study suggest that PGA has a superior depressive selectivity towards the
iron-bearing sulfide gangues in Cu-Fe flotation systems. The optimum usage of PGA could replace
the most toxic inorganic depressants in the copper ore industry and could reduce the environmental
impacts of processing.
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