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Abstract: The occurrence of pyrite concretions in the Permian Longtan Formation sheds light on
the paragenesis, formation conditions and regional paleoenvironment. We analyzed the mineral
and geochemical characteristics of pyrite concretions using scanning electron microscopy-energy
dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD) and laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) from the Longtan Formation shales in Anhui, Eastern China.
These pyrite concretions consist of two types, each with a distinct nucleus and outer layer: The
former is mainly made up of quartz, bivalve fragments and minor gypsum, ankerite, siderite and
pyrite, the latter consists of pyrite (FeS2) in the voids of quartz. Based on the correlation matrix and
geochemical/mineralogical affinity, trace elements in the pyrite concretions fall into three groups,
that is, I (Sr, Ba, Rb and K) in calcic minerals from bivalve-bearing nucleus, II (Nb, Ta, Zr and Hf) in
certain heavy minerals and III (V, Cr, Co and Ni) in pyrites. Mineral assemblage and paragenetic
analysis show that the formation of pyrite concretions can be divided into three stages: (1) deposition
of bivalve-bearing nucleus, (2) lithification of diatoms and (3) diagenesis of pyrite. Mineral and
geochemical indicators suggest that the formation environment of pyrite concretions has undergone
a major shift from lagoon with intense evaporation, to strong reducing marsh.

Keywords: pyrite concretions; Longtan Formation; Permian; LA-ICP-MS mineral geochemistry;
sedimentary pyrite; Anhui (Eastern China)

1. Introduction

Mineral concretions in sedimentary rocks, including ferromanganese (Fe-Mn), Co-rich, siderite and
phosphorite ones, contain potential important (non)-metallic resources [1–6] and record many important
diagenetic and paleoenvironmental information [5–8]. Although increasing studies tend to divide
concretions into three main types, that is, syngenetic, diagenetic and epigenetic [9–11], all of them record
the composition and conditions of the surrounding sediment layers [5,6]. Pyrite concretions record the
sedimentary formation processes [7,8], the subsequent metasomatic growth and/or alteration [12,13],
microbial sulphate reducing pyrite formation versus later-formed (metasomatic or hydrothermal
related) pyrite formation [12,13] and thus determine the mineral and geochemical characteristics of
pyrite concretions are highly important [8]. A large number of pyrite concretions were recently found
from the Longtan Formation (Chaohu, Eastern China), whose genesis and sedimentary environment are
still unclear [14,15]. In this paper, we tackle this issue from a mineralogical and geochemical perspective
of pyrite concretions. Using scanning electron microscopy-energy dispersive spectrometer (SEM-EDS)
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and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses [16–18],
we identified the composition of nucleus and rims of pyrite concretions and proposed that pyrite
concretions were formed in multiple stages of diagenesis and metasomatism. This paper offers new
insight into the sedimentary conditions of the Longtan Formation.

2. Geological Setting

The Upper Permian Longtan Formation is exposed in the Pingdingshan area (Chaohu city, Anhui
Province) in Eastern China (Figure 1a,b). Geologically, the study area lies on the northwestern margin
of the Yangtze Plate [19]. Local stratigraphy consists mainly of Silurian to Permian and Jurassic
sequences (Figure 1c) The Permian sequences at Chaohu comprise (from bottom up) the Qixia, Gufeng,
Longtan and Dalong Formations. The Permian sequences are overlain by the Lower Triassic Yinkeng
Formation and overlie the Upper Carboniferous Chuanshan Formation [14,15]. The Longtan Formation
is dominated by terrigenous clastic rocks, approximately 60 m thick and includes three members:
The lower member consists of grayish-black siltstone, mudstone and shale with abundant fossils,
such as brachiopods and gastropods. The middle member consists of (dark)-gray thick-bedded
quartz sandstone with thin mudstone interbeds. The upper member consists of dark-grey mudstone
with interbedded thin coal seams and thick bioclastic/micritic limestone. The pyrite concretions are
exposed in the shale of the lower member (Figure 2), which was interpreted to have deposited in a
swampy environment.
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Figure 2. Stratigraphic column of the Upper Permian Longtan Formation at the Chaohu area, showing
the locations of pyrite concretions.

3. Samples and Methods

Pyrite concretions (n = 20) were sampled from outcrops of the Longtan Formation in the Chaohu
area and were processed at the Geological Laboratory of Anhui University. All concretions were
analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the best-zoned
concretion (based on SEM and XRD results) was processed with LA-ICP-MS spot analyses (n = 18).
Analysis sites were chosen on the equatorial plane of concretions parallel to the bedding. Thin sections
(about 60 µm thick) were observed with scanning electron microscopy (SEM, FE-ΣIGMA VP300, Carl
Zeiss AG., Heidenheim, Germany) for the morphology and distribution of pyrite concretions at the
Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes, Sun Yat-sen
University. The samples were gold-coated with a Quorum Q150T ES sputtering coater. The working
distance of the SEM-EDS was 10–16 mm using 10.0 kV beam voltage and 6 nm aperture with a 5 nm
spot size. The images were captured via a retractable solid-state backscattered electron (BSE) detector.
Mineral compositions of the powdered pyrite samples (200 mesh) were measured with a Rigaku
SmartLab X-ray powder diffractometer (XRD, SmartLab 9kW, Rigaku Corporation, Tokyo, Japan) at
the Modern Experimental Technology Center, Anhui University. The X-ray generator comprises a 9
kW rotating anode, which was operated at 40 kV, 100 mA and equipped with a single-crystal graphite
monochromator. Power samples were scanned in the 2θ range of 5–90◦ with step size of 0.01◦.

Elemental concentrations were measured with LA-ICP-MS (laser ablation inductively coupled
plasma mass spectrometry) at the Laboratory of Sample Solution in Wuhan, China. The analysis was
performed with a Resonetic RESOLution M-50 ArF-Excimer laser ablation system (Coherent Inc., Santa
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Clara, CA, USA) coupled to an Agilent 7700 ICP-MS (Agilent Technologies, Santa Clara, CA, USA).
Operating conditions include 193 nm wavelength and 80 mJ laser energy, 10 Hz frequency, 44 µm spot
size and used He as the carrier gas. Element contents were calculated with the software ICPMS DataCal
(Version 10.2, China University of Geosciences, Wuhan, China), an in-house program developed by the
China University of Geosciences. The detection limits of trace elements were 2–8 ppb and the analytical
precision was better than 5%, while the detection limits of major elements were greater than 0.1 wt. %.

4. Results

4.1. Texture of Pyrite Concretions

Most pyrite concretions are well-preserved in the black shale of the Lower Longtan Formation.
The shales are laminated (2–5 mm thick) and comprise predominantly clay minerals. Lenticular coal
seam (0.2 × 0.5 m ~ 0.5 × 2.5 m) and abundant sulfur occur in the shales (Figure 3a). Concretions cut
through the bedding plane of surrounding rocks and no deformation was found along their contact.
Equatorial planes of concretions are parallel to the bedding (Figure 3b). The concretions are mostly
spheroidal and minor ellipsoidal or irregularly-shape. They are 4–15 cm in diameter with lateral
spacing of about 5–10 cm. These concretions preserve the original depositional stratification of their
hosting shales. The weathered surfaces are rough and are grayish yellow due to oxidation (Figure 3c).
The concretions contain circumferential and radial structures in their cross section and their fresh
surfaces can be divided into the dark-gray euhedral pyrite outer layer and the black nucleus organic
matter (Figure 3d). Both the nucleus and outer layer are relatively dense and contain radial fractures
between the former two. The central part of fractures is not filled (void) and there are abundant
minerals along the void margin. The nucleus occupies one-third of the concretions.
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Figure 3. Photographs of pyrite concretions from the Longtan Formation at Pingdingshan. (a) Coal and
abundant sulfur (smoke emitted from spontaneous combustion) occur in the shales; (b) Outcrops of
pyrite concretions in the shales; (c) Individual pyrite concretions; (d) Cross-section of a pyrite concretion,
showing the nucleus and the outer layer. White dots denote the LA-ICP-MS analysis spots.
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4.2. SEM Imaging

SEM-backscattered electron (BSE) imaging of different parts of the concretion nucleus and outer
layer were conducted. The nucleus mainly consists of bivalve fossils and surrounded layers (Figure 4a).
While the former shows features such as symmetric shells, concentric patterns and curved beaks
(566 to 877 µm in shell width; Figure 4b), the latter represents a diatom layer with abundant porous
(Figure 4c). Aggregated, acicular and platy crystals are visible in the cavities of the bivalves (Figure 4d).
The main constituent of the outer layer is fine-medium pyrite crystals, which are in the forms of cube
a{100}, octahedron o{111} and pentagonal dodecahedron e{210} (Figure 4e). Pyrite crystals are angular
polyhedral and those closer to the outer layer margin are coarser and better crystallized. Fine-grained
pyrite crystals are visible near the nucleus. Striations on adjacent planes of the porous pyrite crystals
are perpendicular to each other and the fractures between them are distinct under high magnification
(×1500) (Figure 4f).
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Figure 4. Microstructure of pyrite concretions under scanning electron microscope (SEM). (a) Abundant
bivalve fossils in the nucleus; (b) A bivalve with curved beak; (c) Porous layer in the nucleus; (d) Acicular
and platy crystals in the bivalve cavities; (e) Different forms of individual pyrite crystals in out layer;
(f) Porous crystalline pyrite crystals. Note: Spot 1–4 are the scanning electron microscopy-energy
dispersive spectrometer (SEM-EDS) spots and (b) and (c) are the zoom-in of the pink-line boxes in
(a) and (b), respectively.

In addition, four energy dispersive spectrometric (EDS) points of diatom layer in the nucleus
(Spot 1), acicular and platy crystals in the bivalve cavities (Spot 2) and individual pyrite crystals (Spot 3)
and porous pyrite (Spot 4) in the outer layer were analyzed in this study. The EDS spectrum of Spot 1
are composed of oxygen (61.05 atom %) and silicon (36.02 atom %) (Figure 5a), indicating that the
mineral of porous diatom layer around the bivalve is most probably quartz (SiO2). Results of Spot 2
is composed of oxygen (40.91 atom %), sulfur (27.51 atom %) and calcium (30.63 atom %) show that
the acicular and platy crystals in the bivalve are gypsum (CaSO4) (Figure 5b). Meanwhile, the EDS
results of Spot 3 confirm that individual pyrite in the outer layer comprises predominantly pyrite
(FeS2) (Figure 5c), whilst those of spot 4 of porous pyrite (contains sulfur, iron and minor silicon and
oxygen) suggest the presence of diatom remnants/pseudomorphs (Figure 5d).
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4.3. XRD

XRD patterns of the pyrite concretions are shown in Figure 6. The results show that the main
mineral of the concretions is quartz and pyrite. The nucleus comprises mainly quartz, pyrite with
minor gypsum, ankerite and siderite (Figure 6a), whilst the outer layer comprises predominately pyrite
with trace quartz (Figure 6b). The proportion and degree of crystallization of pyrite in the outer layer
is markedly higher than that in the nucleus.
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4.4. LA-ICP-MS Mineral Geochemistry

The LA-ICP-MS geochemical results of the pyrite concretions are shown in Table 1. All main
elements (>0.1 wt. %) are shown as oxides except iron and sulfur in the form of pyrite (FeS2). Based on
the 2:1 ratio between water (H2O) and quartz (SiO2), it is considered that the water (H2O) should be
crystalline water in quartz (SiO2) and record as SiO2·2H2O. Trace elements are expressed in ppm.

Except for Spots 8 and 9 in the fissure between the nucleus and outer layer (Figure 3d), the FeS2

and SiO2·2H2O contents account for 91.79–99.41 wt. %. The nucleus contains mainly SiO2·2H2O
(66.37–91.14 wt. %), FeS2 (1.89–25.81 wt. %) and Al2O3 (2.07–3.66 wt. %) and minor K2O (0.43–1.07
wt. %), CaO (0.46–1.78 wt. %) and P2O5 (0.38–1.03 wt. %), while the outer layer contains mainly
FeS2 (57.38–98.12 wt. %) and with a very wide range SiO2·2H2O (1.29–39.15 wt. %) and low Al2O3

(0.23–1.89 wt. %). Major element contents in the nucleus are significantly higher than those of the outer
layer, whereas the FeS2 content of the nucleus is lower (Table 1).

In addition, trace elements in the nucleus and outer layer mainly fall into three groups based
on the correlation matrix or geochemical (Figure 7) and mineralogical affinity [20]. The 1st group
(Sr, Ba, K and Rb) is correlated with CaO and P2O5 in the nucleus and is mostly associated with the
bivalve nucleus [21]. The 2nd group (Nb, Ta, Zr and Hf) is related to diatomite (SiO2·2H2O) across
the whole concretion. We speculate that the 2nd group elements may have occurred in diatomite [22].
Meanwhile, the 3rd group (Co, Ni, V and Cr) is associated with pyrite (FeS2) centralized in the entire
concretion and their contents gradually increase from inside out [23].
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Table 1. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) geochemical results (ppm) of the pyrite concretions from Pingdingshan.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Position Nucleus Outer Layer

FeS2 1.89 5.85 5.52 8.72 10.25 11.41 25.81 25.71 12.18 57.38 65.33 79.64 82.61 87.72 92.58 91.87 97.01 98.12
SiO2·2H2O 91.14 86.51 86.69 83.07 82.45 81.91 66.37 65.17 61.43 39.15 30.04 17.37 13.64 8.01 4.50 5.59 2.28 1.29

Al2O3 3.37 3.66 2.90 2.07 3.59 3.17 3.54 2.17 4.20 0.79 1.45 1.89 1.25 1.36 0.87 1.00 0.38 0.23
K2O 0.54 0.47 0.43 1.07 0.56 0.58 0.49 0.39 0.68 0.14 0.26 0.02 0.23 0.63 0.18 0.18 0.01 0.01
CaO 0.59 0.67 1.37 1.78 0.46 0.62 0.79 2.87 11.66 0.66 1.14 0.05 0.74 0.48 0.72 0.24 0.04 0.05
P2O5 0.49 0.43 0.97 1.03 0.38 0.47 0.41 0.99 2.02 0.20 0.42 0.07 0.33 0.54 0.39 0.40 0.04 0.01
K2O 0.54 0.47 0.43 1.07 0.56 0.58 0.68 0.49 0.39 0.14 0.26 0.02 0.23 0.63 0.18 0.18 0.01 0.01
SrO 0.20 0.12 0.50 0.05 0.08 0.09 0.14 1.30 3.20 0.04 0.06 0.00 0.07 0.02 0.09 0.04 0.00 0.00
BaO 0.05 0.03 0.12 0.01 0.03 0.03 0.04 0.24 0.59 0.01 0.01 0.00 0.02 0.01 0.02 0.01 0.00 0.00
total 98.82 98.22 98.92 98.88 98.36 98.84 98.27 99.31 96.35 98.52 98.97 99.05 99.12 99.38 99.54 99.52 99.79 99.73

K 4514 3935 3551 8917 4624 4772 5635 4066 3219 1149 2138 134 1949 5190 1506 1527 114 111
Sr 1665 1004 4208 383 717 782 1159 11032 27051 378 520 3.62 593 176 768 319 8.11 5.81
Ba 486 258 1107 106 232 248 338 2116 5275 94.6 133 5.51 158 53.9 214 77.1 4.11 3.66
Rb 25.86 23.53 19.86 53.7 26.5 27.6 24.0 18.4 32.06 6.46 13.1 0.47 13.1 40.6 8.92 10.6 0.70 0.74
V 142 107 287 68.7 101 91.4 112 227 507 42.4 82.3 42.7 73.0 57.1 88.8 120 15.6 6.07

Co 0.69 1.53 1.67 4.77 2.31 2.04 3.27 4.65 20.3 5.44 6.40 0.29 5.76 5.11 7.56 3.83 0.21 0.67
Ni 4.27 8.70 11.6 21.2 13.2 13.5 19.5 33.2 70.2 29.8 34.4 4.70 29.1 19.3 28.2 16.6 3.34 3.21
As 3.50 7.69 9.98 3.49 8.67 9.51 9.81 14.2 16.4 12.4 10.2 6.69 10.6 28.9 16.5 25.5 6.05 9.20
Nb 2.26 3.43 1.89 1.67 2.23 2.41 3.06 3.98 2.70 0.82 2.20 0.01 3.19 1.35 2.20 1.52 0.18 0.27
Ta 0.20 0.26 0.14 0.13 0.16 0.21 0.20 0.29 0.18 0.06 0.22 0.00 0.35 0.13 0.24 0.13 0.02 0.02
Zr 84.6 75.5 89.2 71.1 84.2 86.4 76.2 62.2 100 28.2 45.0 5.23 43.1 73.7 53.4 22.1 2.71 1.44
Hf 1.07 1.07 1.07 0.87 1.09 1.27 1.09 0.85 1.41 0.50 0.84 0.11 0.79 1.85 1.16 0.47 0.10 0.04
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5. Discussion

5.1. Formation Stage of Pyrite Concretions

Pyrite concretions in sedimentary rocks, including deposited, lithificated and diagenetic type, are
formed by the aggregation of authigenic minerals [9,12]. These minerals usually consist of several
kinds and formed in different stages [24,25]. For this reason, paragenetic association of minerals in
pyrite concretions can be used to reveal the formation of concretion [7,26]. According to the SEM-EDS
and XRD results, the mineral compositions of the nucleus and outer layer are clearly different from
each other: the former is mainly made up of quartz, with minor gypsum, pyrite, ankerite and siderite,
whereas the latter consists mainly of pyrite and quartz.

Gypsum, ankerite and siderite crystals in the nucleus are mainly preserved in the bivalve fossils
and the quartz occurs mainly as porous diatomite filling with some pyrite grains in the bivalves. Based
on the distributions of minerals and bivalves in the nucleus, it is inferred that the gypsum was likely be
formed before the bivalve fossils [10] and minerals around the bivalve (e.g., pyrite, quartz) may have
formed after the burial of the bivalves [9]. In the outer layer, pyrites occurs mainly as fine-grained
pyrite filled in diatomite pore or cubic pyrite with minor diatom residue on the crystal surface. This
indicates that the pyrite was formed after the porous diatomite [1].

Meanwhile, the relationship between pyrite (FeS2) and diatomite (SiO2·2H2O) has also been
clarified from all the concretions. FeS2 and SiO2·2H2O show negative correlations (Figure 8a) and
the percentage of SiO2·2H2O decline and FeS2 ratio accordingly increase from the nucleus to the
outer layer (Figure 8b). The components of FeS2 and SiO2·2H2O in the concretions indicate that the
diatomite is mainly enriched in the nucleus, while the pyrite is primarily concentrated in the outer
layer. Distribution characteristics of the diatomite may be related to the growth habits of diatoms,
which gradually become looser from the nucleus to outer layer [27]. Pyrite enrichment in the outer
layer is probably the result of pyrite filling in the voids of diatom, which becomes gradually denser
from the nucleus to the outer layer [1].
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Figure 8. Diagrams of pyrite (FeS2) and diatomite (SiO2·2H2O) contents in the pyrite concretions
from the Pingdingshan area. (a) Pyrite (FeS2) versus diatomite (SiO2·2H2O) contents in the pyrite
concretions; (b) The contents of pyrite (FeS2) and diatomite (SiO2·2H2O) in the pyrite concretions.

According to the paragenetic relations of minerals and other components, the formation of pyrite
concretions can be divided into three main stages: (1) deposition of bivalve-bearing nucleus and
gypsum; (2) lithification of diatomite around the bivalve-bearing nucleus; (3) diagenesis of pyrite in
the voids of diatomite.
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5.2. Formation Environment of Pyrite Concretions

Different parts of the pyrite concretions in the Longtan Formation were likely formed in different
sedimentary environments and recorded the corresponding environmental information [28,29].

The presence of gypsum in the bivalve fossils indicates that the nucleus has likely come from an
arid and oxidizing environment [30–32]. The main composition of the concretions around the nucleus is
diatomite (SiO2·2H2O) with no detrital particles and carbonate rocks. This supports that these diatoms
were formed in shallow water translucent zone [9] but suggests that the seawater in that environment
contains few clastic materials [33,34]. These barren seas was so nutritionally deficient for diatoms that
they have to grow around the nucleus to get nutrients [35,36]. Differently, diagenetic pyrite filled in
the voids of diatomite represents restore environment. It is speculated that the environment of pyrite
diagenesis may be marsh facies in Longtan Formation [9].

Salinity of water and sedimentary facies can be determined by the 1st group elements and their
ratios (e.g., Sr/Ba ratio and the Rb/K ratio) in sedimentary rocks. The Sr/Ba and Rb/K ratios of river
and fresh-water lake are generally lower than those of marine sediments [37,38]. Sr/Ba ratios of the
bivalve nucleus are of 1.59 to 5.21 (all >1), which may suggest salty-water and marine deposits [38,39].
The Rb/K ratio of bivalve nucleus (0.0056–0.006) is above 0.004 but below 0.006, which indicate sea-land
transitional facies [37]. Therefore, it is inferred that the nucleus of concretion of this study should be
formed in the evaporative microfacies of marine environments near the sea-land transitional facies,
possibly lagoonal, environment.

The 2nd group elements (Nb, Ta, Zr and Hf) occur commonly in certain heavy minerals
(e.g., columbites, zircon) and can infer the element source and formation environment [40].
The concentrations of Nb and Ta, Zr and Hf are positively correlated with each other in this study
(Figure 9), showing that the nucleus and outer layer should not have similar provenance. A marked
difference of ratio and contents of Zr and Hf, Nb and Ta between the nucleus and the outer layer
infer that the diatom in the nucleus and pyrite in the outer layer were probably formed in different
environments [41]. The narrower deviation in the nucleus than the outer layer suggests that the
formation environment of bivalve-hosting diatom nucleus is calmer than the outer pyrite layer [42].
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Figure 9. Binary diagrams of Ta, Nb, Hf, Zr contents in the nucleus and outer layer of pyrite concretions
from the Chaohu area. (a) Ta versus Nb; (b) Hf and Zr.

Elements of the 3rd group (V, Cr, Co and Ni) could replace Fe2+ of pyrites and the Co/Ni ratio can
indicate the genetic types of pyrites [43]. The Co/Ni ratios in these pyrite concretions are of 0.06 to 0.27
(<1), representing a sedimentary origin [43]. The strong linear Co versus Ni relationship suggests that
these pyrite grains were deposited in a similar time. Compared to Ni, V is more easily accumulated
in anoxic condition or in organic-rich sediments. Therefore, the high V/(V + Ni) ratios represent a
strong hypoxic environment. V/(V + Ni) ratios of the pyrite concretions are of 0.59 to 0.97, showing
predominantly hypoxic and sulfidic environments based on the classification of Zhang et al. (2011) [44].
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Combined with mineralogical evidence, we suggest that the formation environment of pyrite in the
voids of diatomite was likely a hypoxic and sulfidic marshy environment.

5.3. Three-Stage Formation Model of Pyrite Concretions

Depositional formation of the gypsum-bearing bivalve: the paleoenvironment of the lower Yangtze
region in the Chaohu area was possibly a sea-land transitional lagoonal environment [33]. In the
lagoon, there are large bivalves with gypsum precipitated on them during evaporation events [45].
These bivalves were swept into the sea by waves and turned into the bivalve nucleus via abrasion
(Figure 10a).

Lithification formation of diatomite concretion: Some diatoms are nourished by organic-rich
bivalve in the sea [22]. They grew and aggregated around the bivalve nucleus, forming diatom
nodules [46]. Presumably, the bivalves are the actual physical nucleation points. In these diatom
nodules, the earlier diatoms are generally denser in the interior and the later-formed diatoms in the
outer layer are looser than the interior (Figure 10b).

Diagenetic formation of pyrite: Sedimentary environment in the study area quickly turned
into a marshy environment. The diatom nodules were buried rapidly by fine carbonaceous detrital
sediments [12]. During the diagenesis, this biodetritus may have released sulfur-bearing and strongly
reducing fluids [9,47]. They combined with ferrous ions to form pyrite and fill the voids of diatoms [48].
The pyrites formed in the outer layer prevented seawater from entering into the concretion interior,
resulting in lesser amount of pyrite in the nucleus (Figure 10c).

Minerals 2019, 9, x FOR PEER REVIEW 11 of 14 

5.3. Three-Stage Formation Model of Pyrite Concretions 

Depositional formation of the gypsum-bearing bivalve: the paleoenvironment of the lower 

Yangtze region in the Chaohu area was possibly a sea-land transitional lagoonal environment [33]. 

In the lagoon, there are large bivalves with gypsum precipitated on them during evaporation 

events [45]. These bivalves were swept into the sea by waves and turned into the bivalve nucleus 

via abrasion (Figure 10a). 

Lithification formation of diatomite concretion: Some diatoms are nourished by organic-rich 

bivalve in the sea [22]. They grew and aggregated around the bivalve nucleus, forming diatom 

nodules [46]. Presumably, the bivalves are the actual physical nucleation points. In these diatom 

nodules, the earlier diatoms are generally denser in the interior and the later-formed diatoms in the 

outer layer are looser than the interior (Figure 10b). 

Diagenetic formation of pyrite: Sedimentary environment in the study area quickly turned into 

a marshy environment. The diatom nodules were buried rapidly by fine carbonaceous detrital 

sediments [12]. During the diagenesis, this biodetritus may have released sulfur-bearing and 

strongly reducing fluids [9,47]. They combined with ferrous ions to form pyrite and fill the voids of 

diatoms [48]. The pyrites formed in the outer layer prevented seawater from entering into the 

concretion interior, resulting in lesser amount of pyrite in the nucleus (Figure 10c). 

 

Figure 10. Sketch map of formation model of pyrite concretions from Chaohu. (a) Depositional formation 

of gypsum-bearing bivalve, (b) Lithification formation of diatomite concretion, (c) Diagenetic 

formation of pyrite concretion. 

6. Conclusions 

(1) Compositions between the nucleus and outer layer of pyrite concretions are clearly 

different from each other. The former is mainly made up of quartz, bivalve fragments and minor 

gypsum, ankerite, siderite and pyrite, whilst the latter consists of pyrite in the voids of quartz.  

(2) Mineral paragenesis indicates that the formation of pyrite concretions has undergone three 

stages: 1) deposition of gypsum-bearing bivalve, 2) lithification of diatomite concretion, 3) 

diagenesis of pyrite concretion.  

(3) We speculate that the formation environment of pyrite concretions has undergone a major 

shift from sedimentary to diagenetic stage. The early sedimentary environment was likely a 

nutrient-poor sea-land transitional lagoon with intense evaporation, while the diagenetic 

environment was likely strongly reductive marshy environment with abundant 

clastic/carbonaceous detritus supply. 

Author Contributions: conceptualization, Y.A.; methodology, Q.H. and Y.A.; validation, Q.H. and F.S.; 

investigation, Y.A.; resources, F.S.; data curation, Y.A. and Q.H.; writing—original draft preparation, Q.H.; 

writing—review and editing, Y.A. and C.L.; supervision, C.L.; funding acquisition, Y.A. and Q.H. 

Funding: This work was funded by the National Natural Science Foundation of China (41802006, 41602173), 

the Natural Science Foundation of Anhui Province (1708085QD86) and the University Natural Science 

Research Project of Anhui Province (KJ2018A0005). 

Figure 10. Sketch map of formation model of pyrite concretions from Chaohu. (a) Depositional
formation of gypsum-bearing bivalve, (b) Lithification formation of diatomite concretion, (c) Diagenetic
formation of pyrite concretion.

6. Conclusions

(1) Compositions between the nucleus and outer layer of pyrite concretions are clearly different
from each other. The former is mainly made up of quartz, bivalve fragments and minor gypsum,
ankerite, siderite and pyrite, whilst the latter consists of pyrite in the voids of quartz.

(2) Mineral paragenesis indicates that the formation of pyrite concretions has undergone three
stages: (1) deposition of gypsum-bearing bivalve, (2) lithification of diatomite concretion, (3) diagenesis
of pyrite concretion.

(3) We speculate that the formation environment of pyrite concretions has undergone a major shift
from sedimentary to diagenetic stage. The early sedimentary environment was likely a nutrient-poor
sea-land transitional lagoon with intense evaporation, while the diagenetic environment was likely
strongly reductive marshy environment with abundant clastic/carbonaceous detritus supply.
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