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Abstract: This paper investigates the distribution of four natural radioisotopes 238U, 226Ra, 232Th
and 40K in one hundred twenty-five granitic samples covering sixteen mountainous areas situated at
the northern, central and southern parts of the Eastern Desert of Egypt (EDE). The concentrations
of the examined radioisotopes in the collected samples were recognized utilizing a HPGe detector
based gamma spectrometry. The average concentrations of these radioisotopes were higher when
compared with the worldwide reference values. The radiation risk indicators including the radium
equivalent activity index (Raeq), external and internal hazard indicators (Hex and Hin), external and
internal level indicators (Iα and Iγ), absorbed dose rate (ADR), annual effective dose rate (AEDR),
annual gonadal dosage equivalent (AGDE), and excess lifetime cancer risk (ELCR), associated with
these radioisotopes have been calculated and compared with their recommended global values
and safety limits. These indicators showed that the granites from most studied areas exceeded the
universal standards pointing to the difficulty of using them as building materials. This study together
with future investigations will serve to develop an essential database for future environmental
monitoring surveys.
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1. Introduction

All living organisms are exposed every day to natural radiation within the variety of particles
and rays from cosmic sources and background radiation from Earth materials. Most of the natural
radioactivity in rocks is caused by 238U, 235U, 232Th, and to a lesser extent 40K. Such radiation is a
function of the geological conditions [1], such as rock type. The former has been estimated in numerous
parts of the world using variety of techniques assessing the absorbed dosage rates.

Granitic rocks and their derived industrial products usually contain a particular amount of
terrestrial radioisotopes at different concentrations based on their origin. Since granites are utilized in
dwellings as decorative and building materials, it is important to measure the concentration levels
of natural occurring radionuclides (e.g., 238U, 232Th and their progenies in addition to 40K) in these
rocks for evaluating the radiological risks to the population. Furthermore, the concentration level
distribution measurements of radionuclides will be useful in establishing standards for management
and usage of these rocks [2]. Some studies were performed to consider the natural radioactivity levels
(238U, 226Ra, 232Th, and 40K) and the radiological risks parameters in the granitic rocks from the Eastern
Desert of Egypt [3–6].

The natural radionuclide concentrations in the granitic rocks collected from Gebel G. Gattar
(North Eastern Desert) were reported by El-Dine [7]. El-Taher [8] studied the granitic rocks used as
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building stone from Wadi El Allaqi and found that the activity concentrations of 226Ra, 232Th and 40K,
were below the worldwide reference values. Uosif and Abdel-Salam [9] have assessed the external
radiological impact in the granites of G. Ras Barud (Central Eastern Desert). The concentrations of the
major, minor and rare earth elements measurements, besides the natural radionuclides of uranium and
thorium in granites collected from four localities in Aswan area (Wadi El-Allaqi, G. Ibrahim Pacha,
El-Shalal and Seyhel Island) were documented by El-Taher [10] using neutron activation analysis
(NAA). Issa et al. [11] investigated the petrographic and geochemical characteristics in addition to
evaluating the natural radionuclide concentrations of the granitic rocks gathered from five areas,
namely: Abu Ziran (Central ED), G. El Maesala (Aswan), Wadi Allaqi, (G. Abu Marw), G. Haymur and
G. Um Shelman (South ED).

In this paper, we attempt to add new radiometric data on granitic rocks from several mountainous
areas not previously investigated, in order to develop a reference scheme for the level of environmental
radioactivity of the Eastern Desert of Egypt. Likewise including, a) the perspective for using these
rocks as building materials, b) the possibility to establish granite quarries in these areas, and c) the
potential radiological hazard to individuals’ health according to United Nations Scientific Committee
on the Effects of Atomic Radiation (UNSCEAR) data.

2. Study Area

The Eastern Desert of Egypt (EDE) constitutes the northern tip of the Arabo-Nubian Shield (ANS),
accumulated following the collision of East and West Gondwana [12,13]. The basement rocks of
Egypt cover about 100,000 km2 (~10% of the total area of Egypt), including most of the EDE and
Southern Sinai. It is divided into northern, central and southern domains [14,15]. The EDE is roofed
fundamentally by ophiolites and gneisses in the Southern part (SED), ophiolitic mélange and island
arc volcano-sedimentary succession in the Central part (CED), and granitoids in the Northern part
(NED). The selected study locations (Figure 1) represent an area of about 25,000 km2.
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Figure 1. Map of total studied locations.

The northern part of the study area (NPSA) is located between latitudes 26◦52′52.8”-27◦54′39.11”
N and longitudes 32◦46′37.3”-33◦44′25.4” E encompassing an area of about 5700 km2 in the Northern
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part of EDE. It includes five locations (Gebel G. El-Qattar, G. El-Risha, G. El-Urs, G. El-Dib and
G. Um Mongul).

The central part of the study area (CPSA) includes five areas; El- Missikat mountain (G. El-Missikat),
G. El-Gidamy, G. Rie El-Garra, G. El-Aradiya, G. Kab Amira.

The southern part of the study area (SPSA) occupied latitudes 24◦40′25.95”-25◦40′25.76” N and
longitudes 33◦39′23.36”-35◦2′31.17” E encompassing an area of about 8718 km2. It includes six localities
(G. Mueilha, G. El-Sella, G. Sheikh Salem, G. Abu Dabbab, G. El Bakreya and G. El Shalul).

3. Geological Setting of the Study Area

3.1. Geological Setting of the Northern Part of the Study Area (NPSA)

The NPSA is characterized by a granitic terrain, various gneissic rocks, a sequence of younger
intracratonic rocks of the Dokhan-type volcanics with Hammamat-molasse sediments besides rare
outcrops of ultramafics [14]. The NPSA involves five locations (G. El-Qattar, G. El-Risha, G. El-Urs, G.
El-Dib and G. Um Mongul).

G. El-Qattar is composed mainly of younger granite, metavolcanics, Hammamat sediments,
and grey granites. The geology of the area was described in previous investigations [16–20]. The
youngest granite cuts all the older cited units. Mineralogically, it consists of orthoclase, quartz,
plagioclase together with minor biotite. The accessory minerals are zircon, monazite, xenotime, fluorite,
apatite, allanite and sphene. Magnetite, ilmenite, pyrite, chalcopyrite and pyrrohtite are the opaque
minerals [16,21]. Uraninite, uranophane and geothite are the associated secondary minerals.

G. Khashm El-Risha (Risha) and El-Urs are situated at about 70 km west of Hurghada city. The
Risha area is wrapped by granophyres comprising quartz and alkali feldspar in characteristic angular
intergrowths. The granophyres outcrops exhibit moderate relief [12]. In contrast, the granites cover
vast areas of El-Urs, forming moderate to high relief, presented by biotite and alkali-feldspar.

G. EL Dib forms a circular ring of 2 km diameter, intruding Dokhan Volcanics and granites. It
consists of trachyte, quartz syenite and granite. Aegirine, albite, arfvedsonite, calcite, fluorite, riebeckite
are the dominant minerals. The volcanic rocks are intruded by the syenites, representing the deeply
eroded remnants of a volcanic cone [22,23]. The syenites have been dated at 551 ± 11 to 558 ± 11 and
578 ± 8 Ma [24].

G. Um Mongul is composed of monzogranite, hornblende gabbro, and dacite. It is intruded
by dykes of variable composition. The monzogranite is fresh containing xenoliths of the Dokhan
Volcanics [25].

3.2. Geological Setting of the Central Part of the Study Area (CPSA)

The CPSA contains younger granites; amphibolite and older granite distributed along five various
areas (G. El-Missikat, G. El-Gidamy, G. El-Aradiya, G. Rie El-Garra and G. Kab Amira). The detailed
geological setting was considered by El-Gamal et al. [26].

3.3. Geological Setting of the Southern Part of the Study Area (SPSA)

The SPSA contains six locations (G. Mueilha, G. El-Sella, G. Sheikh Salem, G. Abu Dabbab,
G. El Bakreya and G. El Shalul).

G. El Mueilha is medium to coarse grained granite. It is commonly pink, turns whitish towards
the external parts and along fault planes [27–29].

G. El-Sella comprises tonalite, two-mica monzogranite and muscovite monzogranite. The
geochemical signatures of the two-mica monzogranites resemble those of continental-collision
granitoids, emplaced during a syn-collision regime, whereas those for the tonalites resemble island-arc
granitoids. Ibrahim et al. [30], Gawad et al. [31] and Ali [32] noted argillization, fluoritization,
hematitization, silicification, carbonization, and sulphidization processes in the area.
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G. Sheikh Salem hosts younger granite, volcaniclastic metasediments, metagabbro-diorite,
metavolcanics, and syenogranite. The area around Sheikh Salem is traversed by many NE trending
dykes extending for hundreds of meters to a few kilometers. These dykes cut the island arc metavolcanics
and metagabbros, and are older than Sheikh Salem younger granite. Most of these dykes are basalts,
basaltic andesites, andesites, dacites, and rhyolites [33–35].

G. Abu Dabbab is 0.4 km2, composed of albite granite intruding the ophiolitic mélange (exotic
blocks of serpentinites, metavolcanics and metasediments) [36]. The area is cross-cut by faults and shear
zones trending N-NE to S-SW, and dissected by quartz, amazonite veins and basic dykes. The granites
under investigation have been collected from different surface outcrops, and across shear zones.

G. El Bakreya rises 553 m above sea level, flanked by low hills of older gabbroid rocks. The
late orogenic plutonites at El Bakriya are represented by alkali granite, pegmatites, aplites, felsites,
and quartz veins. The granite shows sharp intrusive contacts, frequently contains xenoliths and roof
pendants of the country rocks. Mineralogically, the granites are characterized by the predominance of
microcline-orthoclase over plagioclase and rare biotite. Accessory minerals are zircon and apatite.

G. El Shalul represents one of the most deformed plutons in the Eastern Desert forming a NW-SE
trending antiform. The core is dominated by monzogranite, and granitic gneisses. The deformed
granites show enclaves of monzogranite [37,38]. El Shalul granite consists of two large plutons
(El Shalul and El Hassanawia plutons) contains quartz, perthitic K-feldspar, plagioclase, and biotite.
The border and age relationship between the two plutons is vague [37,39].

4. Experimental Techniques

4.1. Sample Preparation

A total of 125 granitic rock samples were sampled from the investigated areas (41 samples from
NPSA, 44 samples from CPSA and 40 samples from SPSA). The samples were crushed by a jaw crusher
to a downy powder, sifted through 200 µm mesh and dehydrated at 110 ◦C for at least 3h to expel
moisture. Each sample was weighted and placed into a hermetically sealed cylindrical plastic canister
of 82 mm height, 95.2 mm diameter, and 0.51mm thickness. Each canister was closed tightly with vinyl
tape around its neck to prevent the escape of the radon gas. The samples were stored for at least 30 d
to achieve secular equilibrium between 226Ra, 222Rn and the short-lived progeny.

4.2. Radioactivity Measurement

All samples were investigated in the Nuclear Physics Laboratory of the Physics Department,
Faculty of Sciences, Assiut University (Assiut, Egypt), using a gamma-ray spectrometer with an
HPGe GR4020 model and a multichannel analyzer containing 16,384 channels. The identifier had
closed coaxial gamma-ray detectors (type p) made out of high purity germanium (HPGe) in a vertical
arrangement cooled by liquid nitrogen. The detector had a relative efficiency of 40%, and an energy
resolution of 2 keV (FWHM) for the 1.332 MeV gamma-ray transition of 60Co. The germanium detector
was placed inside a lead shield (Model 747E, Canberra) to minimize the environmental background
with the accompanying details: 9.5 mm (3/8 in) external jacket, thick, coarse carbon steel guard of 10 cm
(4 in), low thickness background, slow coating of 1 mm (0.040 inches) of tin and 1.6 mm (0.062 inches)
of copper.

The system was calibrated for both energy and efficiency. The energy calibration for the measuring
system was performed by point sources of (133Ba, 60Co, 137Cs, 54Mn, 22Na, and 65Zn) using LabSOCS
(Laboratory Sourceless Calibration Software) mathematical calibration software based on Monte Carlo
simulation. Primary calibration measurements were carried out at the factory where results were
utilized to build the detector’s characterization file. For the calibration of the efficiency, calibration files
were created by Geometry Composer Tool in the software for each sample. For the latter, all variables
linked to the measurements such as dimensions of the counting geometry, container properties, the
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density of each sample, physical and chemical compositions; in addition to the distance between the
radioactive source and detector end-cap, attenuation and absorption were taken into consideration.

The efficiency data obtained by LabSOCS was validated and verified through the measurements
performed in our laboratory using a set of calibrated point sources (133Ba, 60Co and 137Cs) put at a
distance that ranged from 0 to 15 cm from the detector end-cap. The computed results gave a great
agreement between mathematical and empirical peak efficiencies with differences of less than 10%,
(Figures 2 and 3).
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The concentration of any radioisotope of interest in samples was determined in Bq kg−1 using the
count spectrum obtained for each sample. This count spectrum was obtained using the PC program
Canberra’s Genie 2000 [40] utilized for the acquisition of the detector signals. The measuring time was
between 8 to 24 h for samples and 48 h for background.
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The 238U activity of the samples was resolved via its daughter 234mPa using the γ-ray line
(photopeak) with an energy of 1001.03 keV. The radioactivity concentration of 226Ra was determined
from the photopeaks of 214Pb (295.22, 351.93 keV) and 214Bi (609.31, 1120.29, 1764.49 keV). The 232Th
concentration was calculated from the photopeaks of 228Ac (911.2, 968.97 keV), 212Pb (238.63 keV) and
208Tl (583.19, 2614 keV), while 40K was resolved from the 1460.8 keV photopeak.

The activity concentrations, computed from the intensity of gamma rays resulting from the
radioactive nuclides of the samples, were calculated to give an average activity per radioisotope.

The activity concentration (AC) is the activity in Bq kg−1 for the granitic samples and was obtained
as follows:

AC =
Ncps

ms × I × ε
(1)

where Ncps is the net count per second, equal to (Ncps) Sample minus (Ncps) background, I is the gamma
decay transition probability in a radioisotope, ε is the absolute efficiency for each gamma-line and ms

is the sample mass in kg.
The uncertainty of activity, UAC, was computed in terms of component uncertainties in Ncps, I, ε

and ms using the following Equation:

UAC = AC

√[UNcps

Ncps

]2

+
[Uε
ε

]2
+

[UI

I

]2
+

[
Ums

ms

]2

(2)

where UNcps, Uε, UI and Ums are respective uncertainties for the net count per second, the detector
efficiency, the gamma decay transition probability and the sample mass.

4.3. Radiological Hazard Indices and Dose Parameters

Many indicators were utilized to evaluate the gamma radiation hazards emitted from the natural
radioisotopes of the granitic rocks. These include: the radium equivalent activity indicator (Raeq),
proposed for evaluating the radiation risks emitted from the examined radionuclides and estimating
their actual activity levels in the granite products; external and internal hazard indicators (Hex and
Hin) (it is essential that Hex should not go beyond unity which is equivalent to 370 Bq kg−1 (the upper
limit of Raeq criterion)), while Hin was used to quantify the internal exposure due to radon and its
progeny); alpha and gamma indicators (Iα and Iγ) are used only as screening mechanisms to identify
building materials of concern; absorbed dose and annual effective dosage rates (ADR and AEDR);
annual gonadal dosage equivalent (AGDE); and excess lifetime cancer risk (ELCR). These parameters
can be determined using the following Equations:

Raeq
(
Bq kg−1

)
= ACRa + 1.43ACTh + 0.077ACK (3)

AHex =
ACRa

370
+

ACTh

259
+

ACK

4810
≤ 1 (4)

Hin =
ACRa

185
+

ACTh

259
+

ACK

4810
≤ 1 (5)

Iα =
ACRa

200Bq kg−1
(6)

Iγ =
ACRa

300
+

ACTh

200
+

ACK

3000
(7)

ADR
[
nGyh−1

]
= 0.462ACRa + 0.604ACTh + 0.042ACK (8)

AEDR
[
mSvy−1

]
= ADR

(
nGy h−1

)
× 8766 h× 0.2× 0.7SvGy−1

× 10−6 (9)

AGDE
(
µSv y−1

)
= 3.09ACRa + 4.18ACTh + 0.314ACK (10)



Minerals 2019, 9, 386 7 of 15

where, ACRa, ACTh and ACK are the specific activity concentrations of 226Ra, 232Th and 40K in
Bq kg−1, respectively.

Finally, the excess lifetime cancer risk can be calculated using the Equation presented by
Agbalagba et al. [1].

ELCR = AEDR×DL×RF (11)

where (DL) is life expectancy, considered to be 70 years, and (RF) is the risk factor referred to as cancer
risk per sievert (for stochastic effects, RF value is 0.05 for the public (ICRP [41])). All of these parameters
were discussed in detail by El-Gamal et al. [26,27].

5. Results and Discussion

5.1. Activity Concentration

Table 1 summarizes ranges and mean values of the specific activity concentrations of 238U,
226Ra, 232Th, and 40K in the studied rocks. Figure 4 compares the average estimates for radionuclide
concentrations in the studied areas with the corresponding worldwide average.
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(compared to the worldwide averages).

It is clear that the calculated concentrations and radioactive mineral content for each area are
different and function of their respective geological, geochemical, and tectonic characteristics. The
average estimates of the activity concentrations of 238U, 226Ra, 232Th and 40K in the granite of the NPSA
were 117.9, 109.1, 92.6 and 1005.8 Bq kg−1, respectively. The central part granites had concentrations of
282.5, 284.6, 105.1 and 881.1 Bq kg−1, respectively, while the southern part granites were recorded as
72.6, 68.1, 59.1 and 850.6 Bq kg−1, respectively.

It is clear from Table 1 and Figure 4 that the average activity concentrations of 238U, 226Ra, 232Th
and 40K in all areas were higher than the overall typical values for these radioisotopes in standard
soil, (35, 35, 30 and 400 Bq kg−1 for 238U, 226Ra, 232Th and 40K, respectively [42]). They were above
the allowable values in building materials, (50, 50, 50 and 500 Bq kg−1 for 238U, 226Ra, 232Th and 40K,
respectively [43]). Furthermore, it can be seen from Table 1 and Figure 4 that the highest average values
for 238U, 226Ra and 232Th were in granites of the CPSA, whereas 40K recorded the highest average
values in the NPSA.
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Table 1. Of the activity concentrations among the studied localities (activities (Bq kg−1) of 226Ra, 232Th, and 40K, range and average values) and with worldwide average.

Location of the
Study Area Localities Sample

Size

Activity Concentration in (Bq kg−1)

U-238 Ra-226 Th-232 K-40

NPSA

El-Qattar 13
(24.9 ± 11.9 to 673.5 ± 109.5) (38.1 ± 3.7 to 459.4 ± 42.1) (28.9 ± 3.1 to 122.7 ± 12.6) (777.9 ± 43.6 to 963.1 ± 53.8)

131.5 ± 50.6 104.4 ± 30.6 78.8 ± 5.9 892.9 ± 16.3

El-Risha 4
(30 ± 14.2 to 68.7 ± 24.4) (35 ± 3.5 to 63.1 ± 5.9) (43.2 ± 4.5 to 77.2 ± 7.9) (926.9 ± 52.2 to 990.1 ± 55.7)

53.4 ± 8.5 49.8 ± 7.4 56.1 ± 8.2 958.8 ± 13.9

El-Urs 4
(37.2 ± 19.3 to 1114.2 ± 170.9) (46 ± 4.4 to 1083.7 ± 98.6) (65.8 ± 6.9 to 274.5 ± 28) (820.9 ± 46.3 to 980.9 ± 55.5)

373.6 ± 250.6 352.1 ± 247.4 173.2 ± 53.6 908.4 ± 33.9

El-Dib 17
(5 ± 2.4 to 374.6 ± 71.9) (18.5 ± 1.8 to 304.2 ± 32.2) (23.8 ± 2.5 to 281.2 ± 30.3) (696.8 ± 46 to 1512.9 ± 84)

76.9 ± 23.4 74.9 ± 18.6 94.3 ± 20.6 1144.1 ± 45.5

Mongul 3
(21.5 ± 11.2 to 158.4 ± 52.5) (42.5 ± 4 to 134.7 ± 12.7) (55.7 ± 5.7 to 114.4 ± 11.8) (789.64 ± 44.19 to 969.51 ± 54.68)

80.9 ± 40.6 78.4 ± 28.5 84.4 ± 16.9 903 ± 57

AV. 117.9 109.1 92.6 1005.8

CPSA

El-Missikat 16
(99.7 ± 33.5 to 4513.7 ± 2911.2) (104.2 ± 12 to 4536.9 ± 542.3) (71 ± 12.4 to 163.05 ± 28) (17.5 ± 3.3 to 1039.7 ± 70.2)

567.8 ± 280.6 572.3 ± 279.4 114.5 ± 6.5 764.1 ± 78.8

Rie El-Garra 6
(49 ± 21.1 to 79.1 ± 27.3) (64.7 ± 7.4 to 99.8 ± 11.5) (56.9 ± 9.7 to 93.2 ± 16.1) (73.1 ± 5.4 to 1110.4 ± 74)

67.8 ± 4.7 77.5 ± 5.2 74.1 ± 6.4 865.27 ± 160.1

El-Gidamy 7
(102.3 ± 33.5 to 333.8 ± 88.3) (77.7 ± 8.9 to 254.6 ± 29) (80.1 ± 13.8 to 170.8 ± 29.8) (902.6 ± 60.7 to 1021.2 ± 68.7)

197 ± 32.3 169.3 ± 24.5 134.1 ± 14.1 951.5 ± 15.9

Kab Amira 10
(11.9 ± 8.3 to 211.9 ± 53.7 (22.7 ± 2.7 to 188.1 ± 21.4 (36.1 ± 6.3 to 264.9 ± 45.4 (877.4 ± 58.5 to 1066.5 ± 71.4

62.1 ± 21.5 82 ± 18 94.2 ± 21.6 974.7 ± 16.7

El-Aradiya 5
(68.7 ± 21.7 to 374.8 ± 92.5) (65 ± 7.3 to 397.3 ± 47.2) (50 ± 9.1 to 125.4 ± 21.6) (761.9 ± 54.1 to 1110.3 ± 71.1)

187.6 ± 53.2 178.6 ± 58.9 93.2 ± 14.2 988.7 ± 62

AV. 282.5 284.6 105.1 881.1



Minerals 2019, 9, 386 9 of 15

Table 1. Cont.

Location of the
Study Area Localities Sample

Size

Activity Concentration in (Bq kg−1)

U-238 Ra-226 Th-232 K-40

SPSA

Mueilha 13
(40 ± 8.4 to 216.7 ± 38.9) (44.8 ± 4.7 to 175.4 ± 17.8) (29.4 ± 4.2 to 111.4 ± 14) (525.2 ± 32.1 to 1045.2 ± 66)

127.1 ± 14.1 121.3 ± 11.7 82.2 ± 7.4 840 ± 41.2

El-Sella 4
(8 ± 5 to 100.8 ± 34.4) (15 ± 1.6 to 93.1 ± 8.8) (24.1 ± 2.6 to 79.5 ± 8.1) (824.4 ± 46.9 to 1000.8 ± 56)

40.5 ± 16.5 42.5 ± 13.3 60.1 ± 9.5 918.2 ± 29.8

Sheikh Salem 4
(42.5 ± 23.3 to 135.1 ± 50.1) (45.1 ± 4.6 to 74.8 ± 7.2) (65 ± 8.2 to 95.5 ± 11.9) (959.8 ± 54.4 to 1032.7 ± 58.3)

76.7 ± 20.3 58.6 ± 6.8 76.8 ± 6.8 982.5 ± 16.9

Bakreya 4
(14.2 ± 7.9 to 114.3 ± 36.3) (41.2 ± 3.9 to 126.3 ± 11.7) (40 ± 4.4 to 112.9 ± 11.4) (752.3 ± 42.1 to 909.9 ± 50.9)

86.8 ± 24.3 75 ± 19.5 64.4 ± 16.8 860.8 ± 36.5

Abu Dabbab 10
(7.6 ± 3.3 to 111.6 ± 29.4) (11.1 ± 1.1 to 110.8 ± 10.3) (8.5 ± 0.9 to 128.4 ± 13) (532.5 ± 30 to 967.2 ± 54.7)

38.1 ± 13 29.3 ± 9.3 34.3 ± 10.9 776.9 ± 43.7

Shalul 4
14.9 ± 7.8 to 39.7 ± 14.1 24.5 ± 2.3 to 44.8 ± 4.2 22.4 ± 2.3 to 37 ± 3.8 748.8 ± 42 to 903.5 ± 50.5

31.8 ± 5.8 31.9 ± 4.5 29 ± 3.2 842.3 ± 35.8

AV. 72.6 68.6 59.8 850.6

Worldwide AV. (Regular Soil (UNSCEAR
2000)) 35 35 30 400

Worldwide AV. (Building Materials
(UNSCEAR 1993)) 50 50 50 500
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Hierarchical cluster analysis illustrates the similarity between the locations from the three regions
in relation to their radionuclide concentrations. The results of the hierarchical cluster analysis are
illustrated as a dendrogram in Figure 5; 16 locations from the three regions can be divided into six,
five, four, three, and two groups (clusters) depending on the mean concentrations of 238U, 226Ra, 232Th
and 40K. In this analysis, we see that the locations having the same mean values of radionuclide
concentrations are within a homogeneous group. As shown from the dendrogram (Figure 5), the
number of clusters is eventually reduced from six to two statistically significant different clusters
(Cluster I and Cluster II). Cluster I contains 14 locations (Rie El Garra, EL Bakreya, Um Mongul, Qattar,
Mueilha, Kab Amira, Sheikh Salem, Risha, El Sella, Abu Dabbab, Shalul, Gidamy, Aradiya and ElDib
areas) with high similarity. Cluster II contains the two remaining locations (El Urs and Missikat areas)
with less similarity.
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Figure 5. Similarity among the locations of the three parts depending on the radionuclide concentrations
in term of cluster analysis.

5.2. Radiological Hazard Indicators

The mean values of radiation hazards parameters are plotted on Figures 6 and 7. Table 2 lists the
average values of Raeq, ADR, AEDR, Hex, Hin, AGDE, ELCR, Iα and Iγ for the granites of the NPSA,
CPSA and SPSA. It is quite evident (Table 2 and Figure 6) that the highest average values for these
parameters are in the granites of CPSA, whereas the lowest e values in the SPSA. This is a reflection for
the highest average values of 238U, 226Ra and 232Th concentrations for the granites from the two parts.

The highest average values of Raeq, ADR, AEDR, Hex, Hin, AGDE, ELCR, Iα and Iγ (669.73 Bq Kg−1,
305.44 nGy h−1, 0.37 mSv y−1, 1.81, 2.76, 2097.23 µSv y−1, 1.31, 1.76 and 2.34, respectively) are from
El-Urs, whereas the lowest values (203.87 Bq Kg−1, 97.17 nGy h−1, 0.12 mSv y−1, 0.55, 0.69, 689.5 µSv y−1,
0.42, 0.25 and 0.77, respectively) were observed within El-Risha from the northern part. Within the
areas of the CPSA, the highest average values of Raeq, ADR, AEDR, Hex, Hin, AGDE, ELCR, Iα and
Iγ (794.93 Bq Kg−1, 365.68 nGy h−1, 0.45 mSv y−1, 2.15, 3.69, 2487.12 µSv y−1, 1.57, 2.86 and 2.74,
respectively) were at El-Missikat, and the lowest values (250.05 Bq Kg−1, 116.88 nGy h−1, 0.14 mSv y−1,
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0.68, 0.88,820.78 µSv y−1, 0.5, 0.39 and 0.92, respectively) were observed at Rie El-Garra. As for
the areas of the SPSA, the highest average values of Raeq, ADR, AEDR, Hex, Hin, AGDE, ELCR, Iα
and Iγ (303.49 Bqkg−1, 140.96 nGy h−1, 0.17 mSv y−1, 0.82, 1.15, 982.07 µSv y−1, 0.61, 0.61 and 1.1,
respectively) were at Mueilha, and the lowest values (138.1 Bqkg−1, 66.86 nGy h−1, 0.08 mSv y−1,
0.37, 0.45, 477.66 µSv y−1, 0.29, 0.15 and 0.53, respectively) were observed at Abu Dabbab. It can be
concluded that El-Missikat area located in the Central part is characterized by the highest values for all
radiological hazards. It is clear that the calculated parameters for the granites from the NPSA and
CPSA exceeded the recommended referenced values for radiological hazards (Table 2, Figures 6 and 7).
In contrast, the granites from the SPSA did not exceed the recommended referenced values for most of
these parameters (Table 2, Figures 6 and 7). These variations demonstrate the difficulty of utilizing
the majority of these granitic rocks as decorative stone in bulk amount. Nonetheless, they point to
the probability of utilizing these rocks as superficial building materials or building materials with
limited use.
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Figure 7. The average absorbed dose rate (ADR), annual effective dose rate (AEDR), annual gonadal
dosage equivalent (AGDE) and excess lifetime cancer risk (ELCR) in the three parts of the study area
(compared to the worldwide average).
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Table 2. Range and mean values for the radiological parameters of the studied granitic samples from
the 3 parts of the Eastern Desert.

Locations Ra(eq) (Bq
Kg−1)

ADR (nGy
h−1)

AEDR
[mSv y-1] Hex Hin

AGDE (µSv
y−1)

ELCR ×
10−3 Iα Iγ

NPSA

El-Qattar 147.17–663.12 72–307.36 0.09–0.38 0.4–1.79 0.5–3.03 514.72–2100.15 0.31–1.32 0.19–2.3 0.56–2.3

285.85 133.34 0.16 0.77 1.05 932.38 0.57 0.52 1.04

El-Risha
168.1–249.65 81.17–117.33 0.1–0.14 0.45–0.67 0.55–0.84 579.64–828.33 0.35–0.5 0.17–0.32 0.64–0.93

203.87 97.17 0.12 0.55 0.69 689.5 0.42 0.25 0.77

El-Urs
203.23–1521.47 95.44–694.44 0.12–0.85 0.55–4.11 0.67–7.04 674.73–4711.46 0.41–2.98 0.23–5.42 0.76–5.2

669.73 305.44 0.37 1.81 2.76 2097.23 1.31 1.76 2.34

El-Dib
146.06–747.27 72.51–335.63 0.09–0.41 0.39–2.02 0.45–2.84 523.71–2309.66 0.31–1.44 0.09–1.52 0.57–2.62

297.9 139.64 0.17 0.8 1.01 985.03 0.6 0.37 1.1

Um
Mongul

182.94–371.41 86.43–171.22 0.11–0.21 0.49–1 0.61–1.37 612.05–1192.61 0.37–0.74 0.21–0.67 0.68–1.34

268.59 125.11 0.15 0.73 0.94 878.49 0.54 0.39 0.98

AV 319.03 148.61 0.18 0.86 1.16 1040.22 0.64 0.55 1.16

CPSA

El-Missikat
308.93–4758.54 142.34–2196.25 0.17–2.7 0.83–12.86 1.12–25.12 968.68–14728.72 0.61–9.43 0.52–22.68 1.1–15.94

794.93 365.68 0.45 2.15 3.69 2487.12 1.57 2.86 2.74

El-Gidamy 266.26–559.15 124.64–255.26 0.15–0.31 0.72–1.51 0.93–2.2 876.7–1761.4 0.54–1.1 0.39–1.27 0.98–1.97

434.36 199.19 0.24 1.17 1.63 1382.55 0.86 0.85 1.55

Ria
El-Garra

154.05–312.06 68.32–145.48 0.08–0.18 0.42–0.84 0.59–1.11 467.59–1020.01 0.29–0.62 0.32–0.5 0.53–1.14

250.05 116.88 0.14 0.68 0.88 820.78 0.5 0.39 0.92

El-Aradiya 241.14–527.46 113.56–245.75 0.14–0.3 0.65–1.43 0.83–2.5 801.41–1675.87 0.49–1.06 0.32–1.99 0.89–1.83

387.9 180.29 0.22 1.05 1.53 1251.59 0.77 0.89 1.39

Kab Amira
141.93–641.68 69.16–287.69 0.08–0.35 0.38–1.73 0.44–2.24 496.69–1993.4 0.3–1.24 0.11–0.94 0.55–2.28

291.7 135.7 0.17 0.79 1.01 953.03 0.58 0.41 1.07

Av 502.64 231.93 0.28 1.36 2.13 1595.11 1 1.42 1.77

SPSA

Mueilha
128.08–390.44 60.96–179.89 0.07–0.22 0.35–1.05 0.47–1.53 429.56–1245.88 0.26–0.77 0.22–0.88 0.47–1.39

303.49 140.96 0.17 0.82 1.15 982.07 0.61 0.61 1.1

El-Sella
112.97–275.39 56.12–128.45 0.07–0.16 0.31–0.74 0.35–1 406.03–899.77 0.24–0.55 0.08–0.47 0.45–1

199.19 94.52 0.12 0.54 0.65 670.99 0.41 0.21 0.75

Sheikh
Salem

211.95–290.89 100.4–135.62 0.12–0.17 0.57–0.79 0.69–0.99 712.4–954.61 0.43–0.58 0.23–0.37 0.8–1.07

244.11 114.74 0.14 0.66 0.82 810.71 0.49 0.29 0.91

El Bakreya 173.77–345.69 83.65–158.14 0.1–0.19 0.47–0.93 0.58–1.27 595.73–1098.45 0.36–0.68 0.21–0.63 0.66–1.24

233.35 109.69 0.13 0.63 0.83 771.16 0.47 0.37 0.86

Abu
Dabbab

80.39–342.39 41.42–154.92 0.05–0.19 0.22–0.92 0.25–1.22 302.79–1074.81 0.18–0.67 0.06–0.55 0.33–1.22

138.1 66.86 0.08 0.37 0.45 477.66 0.29 0.15 0.53

El Shalul
114.21–167.35 56.31–81.02 0.07–0.1 0.31–0.45 0.37–0.57 404.53–577 0.24–0.35 0.12–0.22 0.44–0.64

138.18 67.61 0.08 0.37 0.46 484.15 0.29 0.16 0.53

Av 219.62 103.54 0.13 0.59 0.78 729.06 0.44 0.34 0.81

Recommended
values 370 59 0.07 1 1 300 0.29 ≤1 ≤2

6. Conclusions

The natural radioactivity of the granitic rocks in a vast mountainous region from the northern,
central and southern parts of the Eastern Desert of Egypt (EDE) has been measured. The measured
activity concentrations of the examined radioisotopes (238U, 226Ra, 232Th and 40K) in the granitic
samples are highly variable and depend upon their radioactive mineral content. The average activity
concentrations for 238U, 226Ra, 232Th, and 40K in all studied localities are above the worldwide reference
for standard soil and building materials except for G. El-Shalul and G. Abu Dabbab, which are slightly
less than the worldwide average in 238U and 232Th content.

The radiological risk parameters (radium equivalent (Raeq), external hazard index (Hex), internal
hazard index (Hin), absorbed dose rate outdoors (ADR), annual effective dose rate outdoors (AEDR),
annual gonadal dosage equivalent (AGDE), excess lifetime cancer risks (ELCR), alpha index (Iα)
and gamma index (Iγ) all indicate that these granitic rocks can be used as solely superficial building
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materials or as ornamental materials with limited use. Most of the granites from the northern and
central parts have radiological parameters exceeding the recommended reference values.
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