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Abstract: In mineral processing, liberation of valuable mineral from gangue minerals is the most
important stage before the concentration process. Comminution, which leads to liberation, includes
two types of random and non-random breakages. The contribution of random and non-random
breakage is very important in modelling the liberation phenomenon. In this paper, a simulator based
on 2D Voronoi tessellation is introduced which can simulate random, preferential and detachment
breakages of binary ores (valuable and gangue mineral). This simulator has been validated by
image analysis of fragmented artificial ores which were made in different grades and comminuted
in different energy levels by a drop weight device. The data obtained from images of comminuted
particles were processed using the codes prepared in MATLAB®. Results showed that for the samples
used in this study, the proportion of the intergranular breakage changes as the grade of the ore
changes, with an agreement between simulations and experiments, independently from the energy
level of comminution.

Keywords: simulation; random breakage; non-random breakage; liberation; Voronoi tessellation;
intergranular; transgranular

1. Introduction

The grade and recovery of concentrates in different mineral processing systems depends on the
extent of liberation of valuable minerals and their separation efficiency from gangue minerals [1].
Liberation of valuable mineral is the most important stage before the concentration process [2,3].
The changes in the distribution of the mineral grade of particles due to breakage, is called liberation [4].
Many researches have focused on reducing the operational costs of grinding, as if the most important
role of grinding, i.e., liberation, is sometimes forgotten [5]. Liberation of valuable minerals from
the gangues occurs due to two types of breakage. If the interfacial area is strong enough and the
resistance to breakage is the same in different phases, random breakage occurs. If the interfacial
area is weak, intergranular (non-random) breakage occurs [6]. Other forms of non-random breakage
include preferential breakage in which crack propagation occurs more frequently in one of the mineral
phases [7]. To model the liberation of minerals, many researchers have assumed the breakage to be
random in order to reduce the complexity of the problem [8–10], since in this case the selection function
will be independent of particle size and the ore texture [11]. Briefly, random breakage can be defined
as the independence of the failure process from both the mineralogical and mechanical characteristics
during the grinding process [12]. The assumption of random breakage leads to the conclusion that
by changing the size of the particles during the grinding process, the average grade does not change
in different size classes, and the grade is equal in all classes to the feed grade [13]. Such unrealistic
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assumptions have limited the application of these models in practical cases [14], as the existence of
non-random breakage has been confirmed in many ores [15,16].

Apart from the complexity of the development of liberation models for non-random breakages,
the quantification of contribution of random and non-random breakages in a real comminuted ore has
been a challenge and many researchers have tried to provide a methodology for estimating such a
contribution. For example, Gaudin (1939) explained that liberation due to detachment or selective
breakage in the grain boundary can be determined by examining the mineral distribution in different
size classes, since a bimodal distribution will be produced due to detachment [8]. However, as this
phenomenon may be produced by other mechanisms too, it does not represent detachment breakage
independently [17]. Laslett et al. (1990) observed that in comminution of chalcopyrite ore, the mineral
grade and interfacial area in different size classes are not constant and therefore the dominance of
random breakage was not approved [18]. Choi et al. (1988) estimated the breakage rate of a real
multi-phase ore from the breakage rates of each component. They suggest that the difference between
these two measurements is due to preferential breakage at the grain boundaries [19]. The measurement
of the phase-specific surface area between special phases before and after the breakage is the main
method for quantifying the proportion of intergranular breakage [20–22]. King (1990) referred to the
conservation of the interfacial surface area in random breakage [23]. Little et al. (2016) proved the
existence of intergranular breakage in an ore according to the conservation of grain shape and by
comparing the degree of liberation and phase-specific interfacial area [24]. Recently, Leiβner et al.
(2016) introduced a quantitative method to determine the proportion of intergranular and transgranular
breakage based on 2D analysis of surface exposure of minerals. The theory of this method is that the
Surface Area (SA) of a mineral is composed of the Interfacial Area (IA) between the different phases of
the minerals and the area of the Free Surface (FS) of the mineral [25].

SA = IA + FS (1)

The common area of a mineral attached to another is determined by the length of the boundary
line of these two phases in a 2D analysis. According to Figure 1a, the Interfacial Area (IA) for phase
1 is equal to l1 + l2 and its Free Surface (FS) is equal to l3. Each of these amounts transform to a
phase-specific parameter by dividing by phase area [25].

PSSA = PSIA + PSFS =
l1 + l2

A1
+

l3
A1

(2)

where PSSA is the Phase-Specific Surface Area, PSIA is the Phase-Specific Interfacial Area, PSFS is
the Phase-Specific Free Surface, and A1 is the Area of Phase 1. After the breakage, phase-specific
variables for the product particles should be calculated. Suppose that a fracture line which leads to
pure transgranular breakage divides phase 1 into two bodies attached to other phases (as seen in
Figure 1b with areas of A12 and A13, where A12 + A13 = A1). It can be seen that:

BF + FD = l6 + l7 = l3 (3)

DE + EC = l4 + l5 = l1 (4)

PSSA =
SA12 + SA13

A12 + A13
=

l8 + l8 + l7 + l6 + l4 + l5 + l2
A1

=
l2 + l1 + l3 + 2l8

A1
(5)

PSIA =
l4 + l5 + l2
A12 + A13

=
l1 + l2

A1
(6)

PSFS =
l8 + l8 + l7 + l6

A12 + A13
=

l3 + 2l8
A1

(7)
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where SA12 and SA13 are the Surface Areas (not Phase-Specific) of new generated particles with areas
of A12 and A13. Therefore, the change in phase-specific variables after the breakage is calculated as:

|∆PSFS| =
∣∣∣∣∣ l3
A1
−

l3 + 2l8
A1

∣∣∣∣∣ = ∣∣∣∣∣−2l8
A1

∣∣∣∣∣ = 2l8
A1

(8)

|∆PSIA| =
∣∣∣∣∣ l1 + l2

A1
−

l1 + l2
A1

∣∣∣∣∣ = 0 (9)

|∆PSSA| =
∣∣∣∣∣ l1 + l2 + l3

A1
−

l1 + l2 + l3 + 2l8
A1

∣∣∣∣∣ = ∣∣∣∣∣−2l8
A1

∣∣∣∣∣ = 2l8
A1

(10)
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Figure 1. (a) A particle containing three phases with phase 1 as the valuable mineral; (b) transgranular
breakage occurs, dividing the particle and phase 1 into two bodies; (c) intergranular breakage occurs,
detaching phase 1.

As it can be seen, in pure transgranular breakage, PSIA will be constant and the change in PSSA
equals to the produced New Surfaces (NS = l8):

|∆PSSA| = |∆PSFS| (11)

∆PSSA = NS (12)

However, in pure intergranular breakage (Figure 1c), the crack will go through the boundary
between two phases. In this case, phase 1 will detach completely, so the PSFS will be equal to PSSA.
In such a breakage, PSIA will be zero.

PSIA = 0 (13)

PSFA =
l1 + l2 + l3

A1
(14)

PSSA =
l1 + l2 + l3

A1
(15)

|∆PSSA| =
∣∣∣∣∣ l1 + l2 + l3

A1
−

l1 + l2 + l3
A1

∣∣∣∣∣ = 0 (16)
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|∆PSIA| =
∣∣∣∣∣ l1 + l2

A1
− 0
∣∣∣∣∣ = l1 + l2

A1
(17)

|∆PSFS| =
∣∣∣∣∣ l3
A1
−

l1 + l2 + l3
A1

∣∣∣∣∣ = l1 + l2
A1

(18)

Therefore, it is stated that in pure intergranular breakage, the change in PSFS equals to the change
in PSIA. In real fracture phenomenon, both intergranular and transgranular fractures co-exist and
the change in generated free surfaces of broken particles (|∆PSFS|) is the summation of both |∆PSSA|
and |∆PSIA|

|∆PSFS| = |∆PSSA|+ |∆PSIA| (19)

If Equation (19) is divided by the changes of the phase-specific free surface area, the “proportion”
of transgranular and intergranular breakage can be calculated [25].

1 =

∣∣∣∣∣∆PSSA
∆PSFS

∣∣∣∣∣+ ∣∣∣∣∣∆PSIA
∆PSFS

∣∣∣∣∣ (20)

This equation can be rewritten as [25]:

Intergranular breakage + Transgranular breakage = 100% (21)

The contribution of random and non-random breakages in the resulted simulated fragments of this
paper (2D simulations) and in the images (2D) of laboratory-crushed particles was determined according
to Leiβner’s method, using codes developed in Matlab (R2017b, MathWorks, Natick, MA, USA).

In this paper, a 2D simulator has been developed based on the Voronoi tessellation method
capable of simulating the liberation spectrum resulting from random and non-random breakages.
Voronoi tessellation is a way of dividing space into a number of areas, called Voronoi cells or
polygons [26]. Voronoi tessellation has been used in the study of mineral liberation. Leite et al. (1992)
produced an artificial texture by Voronoi polygons in order to investigate the effect of liberation on
the flotation kinetic [27]. Vassiliev et al. (2008) proposed a combined stochastic geometry model
for the prediction of liberation of two-phase ores where the ore texture was modeled by Voronoi
diagrams [28]. Khalesi et al. (2009) developed a simulator for partial and complete detachment of gold
grains during the comminution to predict the liberation spectrum [29,30]. Rozenbaum et al. (2015)
developed a numerical method to determine the liberation of the ore and used the Voronoi diagram as
a comminution tool [31]. Van der Wielen et al. (2016) applied the Voronoi diagram as the breakage
pattern of ore texture in order to predict the ore liberation [32]. In another paper by Ueda et al. (2018),
the Voronoi diagram was used to model the mineral structure to examine the stereological bias of 2D
cross sections [33]. Existence of such bias implies that the proportion of phases in the perimeter of
a section is different from that in the surface area of a particle. However, the application of Voronoi
diagrams in predicting the liberation has been limited to extreme cases of random or detachment
breakages, and development of non-random breakages by this method has not been reported before.

2. Materials and Methods

2.1. Simulation

The simulator was developed by MATLAB® codes. The ore before the breakage was simulated
as a space (matrix or first phase) in which some squares (mineral grains or second phase) were
emplaced. Then the Voronoi diagrams were generated and the Voronoi polygons were considered as
the propagated cracks (as shown in Figure 2a). The seeds (centers of Voronoi polygons) were randomly
distributed in random regions of a two-dimensional space. Different Particle Size Distributions
(PSDs) were produced by changing the number of seeds and it mimicked different levels of grinding
energy. After the breakage, the relation between the cracks and all produced particles (phase one
and two; mineral and the gangue) was investigated and the contribution of each type of breakage
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was measured based on the method developed by Leiβner [25]. The simulator was able to produce
different proportions of each type of breakage in a single run, by changing a manipulated geometrical
criterion in the simulator. However, the criterion itself did not replicate the targeted proportion of
inter/transgranular breakage, as the criterion defined when a phase boundary was considered as a
fracture and how the density of cracks changed in different regions. Then the criterion was manually
changed (it could be done by an optimization algorithm) in order to approximate the average value
of the simulated proportion of inter/transgranular breakage to such a value obtained from images of
crushed particles. Therefore, the calculation of such a proportion was based on the same methodology
and in 2D for both simulations and images of crushed artificial stones. Another criterion was also
considered in these simulations; i.e., the d80 of simulated particles falls in the range of ±10% of
d80 of laboratory samples. Therefore, it was tried to reproduce the particle size distribution too.
If random breakage was targeted, all the cracks were considered to propagate independently from
the composition (no matter whether it was in phase one or two), but when preferential breakage was
considered, some cracks inside a phase were removed to produce different crack densities in different
phases. For pure detachment, cracks were obliged to change their path through the phase boundaries,
i.e., the boundary between two phases was assumed as a crack. Therefore, in the first step of simulation,
the crack propagation was random (Figure 2b), and then by using the preferential algorithm, the
crack propagation pattern changed (Figure 2c). Such algorithms led to different liberation spectrums
and PSDs based on the targeted type of breakage, as shown in Figures 3 and 4 [34]. In Figure 2b,c,
the colored (other than red) particles represent mixed particles (in this text, mixed particle refers to a
two-phase particle that some part of the surface of its valuable phase is free and exposed, while the
locked particles have no free surfaces).
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As it can be observed in Figures 2–4, the application of each of the random and preferential
breakage algorithms generates different shapes of mixed particles and ultimately different PSDs and
liberation spectrums. The simulator is able to combine different breakage patterns (transgranular,
intergranular, preferential and detachment) on one simulated matrix.

2.2. Validation

Artificial two-phase stones were used to validate the simulator’s performance, as it has been
practiced in the field of mineral liberation studies before [9,35–38] to overcome the variability and
uncertainty in liberation behavior of the real ores. These stones included cubes of size 3 × 3 × 3 cm
in red color which were emplaced in a gangue matrix of 7 × 7 × 7 cm of yellow color with a special
pattern (Figure 5a,b). In all samples, the matrix was made of dental plaster, while the mineral grains
were made of cement or dental plaster. Preliminary results showed that bonding of plaster grains to
the plaster matrix is weak compared to the adhesion of cement grains to the plaster matrix. Therefore,
the choice of such materials could result in different proportions of intergranular breakages.
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These stones were made in three volumetric grades of 18, 36 and 55 percent. To obtain suitable
resistance, it took 10 days to dry the grains and then they were emplaced in the matrix. Later,
each specimen was brought out of the mold and crushed by a simple drop weight device designed and
made for this research (Figure 6) in two levels of energy (117.2 and 102 kJ). This device consisted of
two vertical bars which controlled the path of the crushing media and did not permit it to deviate from
a straight-line path.
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In the next stage, all crushed particles were placed on a black background (Figure 7), and using a
digital camera, some images were taken. Crushed particles were manually rotated several times to
expose their different sides to enhance the image analysis. Codes have been developed in Matlab in
order to analyze the images taken from crushed samples. After initial image-enhancement techniques,
these images were stored as binary entities for each phase (valuable and gangue). Then the boundaries
of these objects were detected using edge-detection functions. In the next step, neighboring objects with
common borders were detected and the size of the interfacial area (IA) between them was determined,
as explained in the introduction, based on the methodology developed by Leiβner. By dividing this
variable to the known area of the valuable phase, PSIA was determined. This was done for all particles.
Two other variables including PSFS and PSSA were also calculated by codes implemented on images.
More details about the procedure and validation of the image processing methodology is reported
somewhere else [39].Minerals 2019, 9, x FOR PEER REVIEW 8 of 12 
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To avoid the generation of completely locked grains that cannot be captured on images, the size of
the grains within the artificial stone and the energy level of crushing and therefore the size of crushed
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particles were chosen carefully so that no grain was completely locked and covered and missed in
the images. It is notable that since the two-dimensional data are compared with the two-dimensional
simulator’s result and no dimensional change has been made in the data, no stereological corrections
were made, while such serological biases are well studied by researchers [33,38,40,41].

3. Results

For specimens whose grains and matrix were plaster (weak adhesion of phases), and therefore it
was supposed that the intergranular breakage would be dominant, different scenarios were simulated
and validated by the experiments. The proportions of intergranular breakage measured by Leiβner’s
method both on the simulated fragmented particles and also on images taken from crushed artificial
ore were compared for validation purposes. As shown in Figure 8, as the grade of the ore is increasing,
the proportion of the intergranular breakage is changing with an agreement between both simulations
and experiments.
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Simulations were also carried out for specimens whose grains were made from cement.
The comparison between simulation and experimental results is shown in Figure 9.
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grains; (a) energy level of 117.2 (kJ), (b) energy level of 102 (kJ).

The process of generation of seeds and then the Voronoi polygons around the seeds is random.
Therefore, 10 simulation runs were simulated and the proportion of inter/transgranular breakages were
measured on every simulated graph based on the Leiβner’s methodology and then an average value
along with a standard deviation was obtained, which was used to draw the error bars. Error bars in the
highest grade (55%) of Figure 8 show more variation compared to other grades, but the average values
from simulations are very similar to real results, and also the trends are similar. Results of Figure 9 are
more robust, as all the experimental results fall in the range of error bars and no aggressive fluctuations
were observed in 10 repetitive simulations.
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After the validation of the simulator, the effect of the ratio of grain size (dg) to particle size (dp) on
the contribution of intergranular breakage was investigated. Five ores with different dg to dp were
simulated and the results showed that by increasing the grain size to particle size ratio, the percentage
of intergranular fracture increases (Figure 10).
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4. Discussion

Such a dependency between the contribution of intergranular breakage and the grade of the
ore (as shown in Figure 8) has not been reported before. It seems that in low and high grades,
more transgranular breakage occurs, as in the first case most of the cracks are in the matrix with random
breakage patterns; and in the second case, due to the high number of valuable grains, cracks have
a higher chance of entering a grain and, therefore, again the contribution of transgranular breakage
increases. However, in a certain grade, the contribution of intergranular breakage is maximum,
which leads to better liberation of grains. Interestingly, this trend is independent of the size of particles
(energy level) and the maximum proportion of intergranular breakage has occurred in the same grade
in different levels of grinding. Measurements confirm that the simulations are better in middle and
high-grade cases, while the simulator’s prediction is deviated for the low-grade case. In low-grade ores,
the simulator proposes more intergranular breakages while experimental results show less. However,
the trend of changes is comparable in simulations and experiments.

For specimens whose grains were made from cement, it can be seen that the simulator has
succeeded in predicting the trend and the measured values of intergranular breakage’s contribution
(Figure 9a,b). Besides, the contribution of intergranular breakage is less than the case of plaster grains
(maximum value around 0.3 of this case compared to 0.5 of the previous case). In this case, the grain
and the matrix material are different, and more preferential breakage is expected, but it is observed
that less preferential breakages have occurred. It seems that better bonding of grains to the matrix
resulted in less intergranular breakage in this case compared to the case in which the matrix and the
grains were the same, but the bonding was weak.

As can be seen in Figure 9, at low grades, the simulator predicts the proportion of intergranular
breakage to be less than what it is in reality. It is noteworthy that in low-grade samples, some cases of
complete detachment of red grains were observed in experimental results (Figure 11).
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5. Conclusions

In this research, a two-dimensional simulator of fragmentation was developed based on the
Voronoi tessellation method in the MATLAB environment to simulate random and non-random
breakages and the resulting liberation. The simulations were validated using artificial ore samples
made in the laboratory in different grades and crushed in different levels of energy. It was observed that
the simulator could well predict the changes in the proportion of the intergranular breakage, while the
grade and particle size of fragmented material changes. It was observed experimentally that in a certain
artificial ore with certain materials of grains and matrix, the proportion of intergranular breakage is
dependent on the grade of the ore, but independent of the size of the fragmented particles. This was
confirmed by simulations too. In order to be able to verify the simulations, simple textures were used
in this paper; however, any texture could be fed to the simulator as a processed image, showing the
boundary of minerals. The developed simulator overcomes the complexity of models of non-random
breakages and liberation using direct geometric predictions instead of mathematical modeling.
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