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Abstract: In the Wadi Matulla area, central Sinai, Egypt, an asymmetric baked zone having an
average width of 103 m was formed on both sides of a sub-aerial rift-related Oligocene basaltic
dyke cross-cutting organic matter-bearing chalky limestone of the Upper Cretaceous Sudr Formation.
Advection was the significant heat transfer mechanism. Very narrow metamorphic and metasomatic
zones are developed in the country rock at the immediate contact with the dyke. The change in the
thermal maturation of organic matter is reflected in the differences in values of the total organic carbon
(TOC) within the baked zone. Such differences account for the color variation of the snow-white
limestone from shades of brown, in the mature to barren samples, to black, in the totally carbonized
overmature metamorphic ones. This study presents for the first time the thermal effect of mafic dykes
on some exposed organic matter-bearing rocks in the Gulf of Suez (GOS) region, and turns attention
to the local maturation of source rocks in contact with rift-related intrusives at a relatively greater
burial depth in the rift basin.

Keywords: baked zone; organic matter; carbonization; maturation; source rock; thermal alteration;
Wadi Matulla; Sinai; Egypt

1. Introduction

Transformation of organic matter into oil, gas, or graphite depends upon the conditions of
temperature and pressure to which the organic matter-bearing sediments/rocks are subjected, the
burial rate of the sediments, and the composition and type of the organic matter [1–4]. Among these
factors, the time–temperature burial history of the organic matter-bearing sediments/rocks is of prime
importance. Slow rate of heating for a long duration at a convenient temperature (approximately
60–225 ◦C) favors source rock maturation to produce oil and/or gas [1]. On the other hand, conditions of
fast rate of heating and/or excessive temperature (approximately >300 ◦C), such as the heat emanating
from a nearby magmatic body, may lead directly to the carbonization and/or graphitization of the
organic matter [5,6]. The depth of intrusion, water content, and composition of the magmatic body, and
the petrophysical properties such as porosity, permeability, and thermal conductivity of the country
rock play a significant role in controlling the degree of organic matter transformation.
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The Oligo-Miocene Gulf of Suez (GOS) Rift (Figure 1), Egypt, is associated with widespread
volcanic activity in the form of mafic dykes and sills intruding mainly pre-rift, and less commonly
syn-rift, successions together with a few flows [7–9]. In the Wadi Matulla area, the eastern side of the
GOS, a rift-related basaltic dyke intrudes into the Upper Cretaceous fossiliferous chalky limestone beds
of the Sudr Formation (Figure 2). An asymmetric thermally affected zone is developed on both sides of
the dyke where the snow-white chalky limestone turns into shades of grey or black. The thermally
affected chalky limestone has variable total organic carbon (TOC) contents, some of which, according
to Peters’s classification of source rock (1986), nominate the limestone to have a good to very good
source rock potential [10].
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Figure 1. A general structural map showing the major faults and the dip polarity along the Gulf of
Suez (GOS) Rift. The general stratal dip direction in the northern, southern, and central provinces
change from SW to NE and back to SW, respectively, across the Galala-Abu Zenima and Morgan
accommodation zones (modified after Bosworth, 2015 [11]). Location of the study area is shown by the
small blue rectangle labeled Figure 2.
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stars). (b) A close-up view of the study area (inset (b) in (a)). (c) A geologic map of (b) showing the 
extension of the NNW-trending dyke, the major faults, and the different rock units cropping out in 
the study area. Red circles refer to the number and location of the collected samples. Fm., Formation. 

The intriguing topic that addresses the role of igneous activity in the maturation of the country 
rocks in producing an extractable quantity of hydrocarbons with economic potential has been, and 
still is, the subject of abundant literature for decades [12–36]. Analogue models of rift-related igneous 
activity and its impact on the formation of hydrocarbon deposits at the local scale paved the way and 
were the motive for the present study, which presents, for the first time, the thermal effect of a rift-
related dyke on rocks that possess source rock potentials in the Gulf of Suez region.  

The purpose of this research is the following: (1) study the thermal effect of the basaltic dyke on 
the Upper Cretaceous chalky limestone beds of the Sudr Formation, (2) measure the change in the 
total organic carbon (TOC) in the thermally affected zone on both sides of the dyke, (3) demonstrate 
the color change in the thermally affected zone, and unravel the reason beyond the coloration in the 
baked zone, and (4) shed light on the local maturation potential of source rock prone formations in 
the contact of sills and dykes at a relatively greater burial depth in the Gulf of Suez region. 
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Figure 1), and the distribution of some Tertiary basalt in and outside the study area (marked by red
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extension of the NNW-trending dyke, the major faults, and the different rock units cropping out in the
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The intriguing topic that addresses the role of igneous activity in the maturation of the country
rocks in producing an extractable quantity of hydrocarbons with economic potential has been, and
still is, the subject of abundant literature for decades [12–36]. Analogue models of rift-related igneous
activity and its impact on the formation of hydrocarbon deposits at the local scale paved the way
and were the motive for the present study, which presents, for the first time, the thermal effect of a
rift-related dyke on rocks that possess source rock potentials in the Gulf of Suez region.

The purpose of this research is to: (1) study the thermal effect of the basaltic dyke on the Upper
Cretaceous chalky limestone beds of the Sudr Formation, (2) measure the change in the total organic
carbon (TOC) in the thermally affected zone on both sides of the dyke, (3) demonstrate the color change
in the thermally affected zone, and unravel the reason beyond the coloration in the baked zone, and (4)
shed light on the local maturation potential of source rock prone formations in the contact of sills and
dykes at a relatively greater burial depth in the Gulf of Suez region.
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2. Geologic Setting

The Gulf of Suez (GOS) is an elongated 300 km long intra-continental Neogene rift basin that
represents the extension of the NW–SE-trending Red Sea rift system. The rifting initiated in the
Late Oligocene to Miocene times due to the northeast movement of the Arabian plate relative to the
African plate [37–39]. The GOS displays the classical rift geometry that is delineated on both margins
by extensional fault systems that define classic half-graben style and rotated fault-blocks [37,40–43].
The master and subsidiary faults link up in a characteristic zigzag shape, which resulted from
the interaction between the NNW-, N- and NNE-trending fault segments. The dip polarity of the
block-bounding faults changes along the rift axis, dividing the rift into three dip provinces. The blocks
of the northern and southern provinces are dominated by NE-dipping master faults, and SW-dipping
strata, whereas the strata in the blocks of the central province are tilted due NE, and dragging on the
SW-dipping faults (Figure 1). The boundaries between the three dip provinces are transitional through
two major accommodation zones: the Galala-Abu Zenima in the north and the Morgan in the south
(Figure 1) [37,44–48]. The sedimentary rocks exposed along the GOS Rift’s flanks are classified into
pre-, syn-, and post-rift successions with reference to the regional faulting [7,8,49].

2.1. Rift-Related Volcanic Activity: Sub-Aerial vs. Sub-Aqueous Vulcanicity

Intraplate, rift-related Oligocene volcanic activity, in the form of mafic sills, dykes, and a few flows
(Figure 2a), are widespread along both sides of the GOS Rift. The dykes vary in orientation from N–S,
NNW–SE to NW–SE. On the Sinai side, the Tertiary volcanics intrude pre-rift Precambrian (Gabal Abu
Durba) and Phanerozoic (e.g., in the Wadi Tayiba, Wadi Matulla, and Wadi Nukhul) rocks [7–9,50–52].
The volcanics are basaltic in composition (commonly olivine-bearing) with alkaline and transitional
tholeiitic geochemical characters [9,52].

The surface outcrops of the Oligocene rocks in Egypt are represented mainly by continental clastic
facies ([53], and references therein). In the Wadi Tayiba, about 3–4 km west to west–north–west of the
study area (Figure 2a), the clastic-dominated Tayiba red beds unconformably overly the Late Eocene
Tanka Formation, and are overlain by rift-related basaltic flow. The beds were interpreted to represent
lake deposits that were deposited in areas with low relief [8,53]. In the type locality, the red beds are
differentiated into three units: lower calcareous-dominated; middle clastic-dominated red beds; and
upper volcaniclastic-dominated [7]. They interpreted the middle and upper units to represent the
continental facies that accompanied the initial stage of the Gulf of Suez Rift. A basaltic sill and its
associated pyroclastics have been described between the red beds and the overlying basal Miocene
clastics [7].

2.2. The Study Area

Structural and Stratigraphic Framework

The study area (central part of Wadi Matulla) is located ~7 km east-northeast of Abu Zenima city,
west-central Sinai (Figures 1 and 2a). It is a part of the Hammam Faraun block that is located within
the central dip province of the GOS Rift (Figure 1). The block (Figure 3a), a crustal-scale that is 20 km
wide and 40 km long, half-graben, is bounded to the east and west by the steeply dipping (60–80◦)
Thal and Hammam Faraun faults, respectively [46,54,55]. The block between the two master faults is
broken up by multiple subsidiary NW–SE-oriented extensional faults (Figure 3a). The Thal fault is a
basement-involved rift-bounding fault juxtaposing the basement rocks on the rift shoulder against
the pre- and syn-rift successions in the down faulted block (Figure 3a). On the other hand, Hammam
Faraun is a coastal fault juxtaposing a footwall of pre- and syn-rift rocks against the Gulf of Suez to
the west (Figure 3a). In the study area, rift-related meso- to macroscopic structural elements are very
common. These include extensional faults (Figure 3b), shear fractures (Figure 3c), tension fractures
(Figure 3d), and folds in damage zones.
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showing minor displacements, and well-developed step and graben geometries. Pencil is 12 cm long. 
(d) Black limestone dissected by two perpendicular sets of fractures. The vertical fractures are variably 
sized and filled with calcite. The coin diameter is 2.5 cm. (QU: Quaternary; Mio: Miocene; Eo: Eocene; 
L. Cre: Late Cretaceous; E. Cre: Early Cretaceous; Po. R: Post-Rift; Pr. R: Pre-Rift).  
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Formation (Campanian-Maastrichtian). The upper stratigraphic unit (250–350 m) comprises the Esna 
Formation (Danian-Thanatian) at the bottom and the Waseiyt Formation (Yepresian) at the top.  

The Matulla Formation comprises a clastic-dominated lower part that is composed mainly of 
sandstones and shales with a few limestone intercalations, a middle part that is composed of 
intercalatins of sandstone and oolitic limestone, and a carbonate-dominated upper part composed of 
dolomitic limestone and shale with thin sandstone interbeds. The Sudr Formation is composed of a 
succession of thinly to thickly bedded snow-white chalky limestone intercalated with yellowish-
white marly limestone, and contains brownish-black continuous and discontinuous chert bands, 
which are very common in the upper part of the succession (Figure 4a). Together with the lower 
Matulla Formation, it is intensively fractured, dissected by variably oriented calcite and gypsum 
veinlets (Figure 3c,d), and contains iron concretions that are concentrated along the bedding planes 
(Figure 4b). Faults cutting through the Sudr Formation are also recorded. The limestone beds are 
fossiliferous with a few macro fossils (e.g., Pecten farafarensis, Pycnodonte vesicularis). The Esna 
Formation, which rests paraconformably on the Sudr Formation, is predominantly made up of a thick 
section of well-bedded, fissile, olive-green to grey, slope-forming shales with thin ledges of carbonate 
intercalations in the middle part. The shales are intensively dissected by secondary gypsum, and 
show ferruginous mudstone concretions. The Waseiyt Formation conformably overlies the Esna 

Figure 3. (a) A generalized structural map of the Hammam Faraun Fault Block (modified after Bastesen
et al., 2015 [56]). (b) N70W-trending flat and ramp listric fault cut through the Matulla Formation. Note
the ramp and flat segments of the fault, the rollover anticline and the hangingwall deformation and
the footwall duplex. View is to the NW. (c) Conjugate calcite-filled shear fractures showing minor
displacements, and well-developed step and graben geometries. Pencil is 12 cm long. (d) Black
limestone dissected by two perpendicular sets of fractures. The vertical fractures are variably sized and
filled with calcite. The coin diameter is 2.5 cm. (Qu: Quaternary; Mio: Miocene; Eo: Eocene; L. Cre:
Late Cretaceous; E. Cre: Early Cretaceous; Po. R: Post-Rift; Pr. R: Pre-Rift).

Stratigraphically, the area exposes two lithostratigraphic units of the pre-rift period separated by
an unconformity. The lower stratigraphic unit (270–300 m) is represented by a Late Cretaceous
succession comprising an older Matulla Formation (Coniacian-Santonian) and a younger Sudr
Formation (Campanian-Maastrichtian). The upper stratigraphic unit (250–350 m) comprises the
Esna Formation (Danian-Thanatian) at the bottom and the Waseiyt Formation (Yepresian) at the top.

The Matulla Formation comprises a clastic-dominated lower part that is composed mainly
of sandstones and shales with a few limestone intercalations, a middle part that is composed of
intercalatins of sandstone and oolitic limestone, and a carbonate-dominated upper part composed of
dolomitic limestone and shale with thin sandstone interbeds. The Sudr Formation is composed of a
succession of thinly- to thickly-bedded snow-white chalky limestone intercalated with yellowish-white
marly limestone, and contains brownish-black continuous and discontinuous chert bands, which
are very common in the upper part of the succession (Figure 4a). Together with the lower Matulla
Formation, it is intensively fractured, dissected by variably oriented calcite and gypsum veinlets
(Figure 3c,d), and contains iron concretions that are concentrated along the bedding planes (Figure 4b).
Faults cutting through the Sudr Formation are also recorded. The limestone beds are fossiliferous with
a few macro fossils (e.g., Pecten farafarensis, Pycnodonte vesicularis). The Esna Formation, which rests
paraconformably on the Sudr Formation, is predominantly made up of a thick section of well-bedded,
fissile, olive-green to grey, slope-forming shales with thin ledges of carbonate intercalations in the
middle part. The shales are intensively dissected by secondary gypsum, and show ferruginous



Minerals 2019, 9, 279 6 of 26

mudstone concretions. The Waseiyt Formation conformably overlies the Esna Formation. It is made
up of hard fossiliferous limestone with characteristic thin chert bands and nodules in the lower part,
dolomitic and chalky limestone in the middle part, and conglomeratic and fossiliferous limestone beds
in the upper part. A generalized stratigrahic section of the study area is shown in Figure 5.
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Figure 4. (a) Thinly laminated marly limestone with discontinuous chert bands. Pencil is 15 cm long.
(b) Iron concretion developed along the bedding plane of black limestone in the baked zone. Coin
diameter is 2 cm.

For a detailed bio- and lithostratigraphy of the study area, the reader is referred to Barakat et al.,
(1988), Abu Khadra et al., (1990), Abdelhamid (1997), Abdel-Gawad (1999), Kora et al., (2002), Shahin
(2005), Farouk (2014) [57–63].



Minerals 2019, 9, 279 7 of 26

Minerals 2018, 8, x FOR PEER REVIEW  7 of 27 

 
Figure 5. A generalized lithostratigraphic section of the study area. (OBS: Oligocene basaltic sill). 

In the Wadi Matulla area, a NNW-trending basaltic dyke having an average outcrop width of 
~35 m cuts across the Upper Cretaceous Sudr Formation (Figure 2). It extends for about 1.3 km within 
the study area, and continues north-and southwards, for a considerable distance, outside the study 
area where it cuts through the Sudr and Matulla Formations, respectively. Geochronological data, 
based on K/Ar age dating, yielded 24 ± 1 Ma for the dyke [64]. At the entrance of the Wadi Matulla, 
a ~2 m thick Oligocene basaltic sill having a well-developed columnar jointing intrudes the 
horizontally bedded Matulla Formation (Figure 6a,b), and confirms the sub-aerial nature of the 
Oligocene basaltic dyke.  

Apart from the rift-related Tertiary volcanics, in and outside the study area, the only recorded 
igneous rocks are located about 40 km east-southeast from the study area, and belong to the 
Precambrian basement (Figures 1 and 3). Similarly, the only exposed metamorphic rocks belong to 
the Precambrian massif of Sinai (Figure 1).  
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In the Wadi Matulla area, a NNW-trending basaltic dyke having an average outcrop width of
~35 m cuts across the Upper Cretaceous Sudr Formation (Figure 2). It extends for about 1.3 km within
the study area, and continues north-and southwards, for a considerable distance, outside the study area
where it cuts through the Sudr and Matulla Formations, respectively. Geochronological data, based on
K/Ar age dating, yielded 24 ± 1 Ma for the dyke [64]. At the entrance of the Wadi Matulla, a ~2 m thick
Oligocene basaltic sill having a well-developed columnar jointing intrudes the horizontally bedded
Matulla Formation (Figure 6a,b), and confirms the sub-aerial nature of the Oligocene basaltic dyke.

Apart from the rift-related Tertiary volcanics, in and outside the study area, the only recorded
igneous rocks are located about 40 km east-southeast from the study area, and belong to the Precambrian
basement (Figures 1 and 3). Similarly, the only exposed metamorphic rocks belong to the Precambrian
massif of Sinai (Figure 1).
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Figure 6. (a) General view of the horizontally bedded, clastic-dominated Matulla Formation (Mt Fm.)
intruded by a 2 m thick basaltic sill (BS) at the entrance of Wadi Matulla. The man’s height is 175 cm.
(b) A close-up view of inset (b) in (a) showing a well-developed columnar jointing in the basaltic sill.

3. Methodology

3.1. Total Organic Carbon (TOC)

TOC measurements were carried out on six samples that were collected from the Sudr Chalk at
different distances from, and in a direction perpendicular to, the dyke (Table 1). The location of the
samples with respect to the dyke and the country rock is shown in Figure 1.
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Table 1. Total organic carbon (TOC) values, average temperatures, and colors of the samples from the
Wadi Matulla area. (D: distance in meters from the dyke, see Figure 2c, TOC: Total Organic Carbon,
T ◦C: Temperature in celsius).

Formation Name Sample No. Color D (m) TOC (wt %) T (◦C)

Sudr

1 White 3 0.1 450–500
2 Black 5 2.71 >300
3 Brownish grey 15 0.52 200–300
4 Light brown 150 0.43 120–200
5 Dark brown 160 1.57 120–200
6 Greyish brown 180 0.32 120–200

3.2. Sample Preparation and TOC Measurement

The samples were mechanically pulverized to fine-grained (0.125–0.0625 mm) particles using
the particle size analysis procedure. Applying the coning and quartering technique, a representative
weight (50 g) of each sample was soaked in hydrochloric acid for 24 h to eliminate the carbonate
fractions. To remove the resistant iron and magnesium carbonate, the samples were heated for two
hours at 70 ◦C. The samples were then washed several times in distilled water to remove the remaining
acid. To eliminate the chloride, the samples were washed in distilled water at 100 ◦C. The samples were
filtered and the insoluble residue (IR), the sample fraction that was not eliminated by the acid treatment,
was dried in an oven at 65 ◦C for three hours. The IR was weighed and ready for TOC measurements.

The TOCs were measured using the LECO analyzer SC-144 DR housed in the Egyptian Petroleum
Research Institute (EPRI). The apparatus used is an oven that supplies a temperature of up to 1350 ◦C
in an oxygen atmosphere to achieve a super dry condition. The technique depends on measuring the
concentration of the carbon (CO2) expressed in weight percent. Assuming a complete elimination of
the carbonates during the acid treatment, the IR is calculated in percent following the equation below:

IR = (DM/TM) × 100 (1)

where DM is the weight of the decarbonated sample and TM is the total weight of the sample before
the acid treatment.

4. Results

4.1. The Petrography

4.1.1. The Sudr Formation

Petrographically, five limestone microfacies were recognized: foraminiferal wackestone,
foraminiferal packstone, chertified limestone with iron concretions, ferruginous mudstone, and
dolostone [65–68]. They are very rich in allochems of benthic and planktonic foraminifera (Figure 7a–c),
together with a few green algae (charophytes) and calcispheres. The benthic outnumbers the planktonic
foraminifera, and includes essentially miliolids, whereas the globigerinids were the typical planktonic
foraminifera encountered. Other skeletal allochems such as ostracods and echinoid spines were
recognized. All the allochems were tightly packed and cemented by a mosaic of spary calcite. Detrital
components such as glauconitic grains were not uncommon. The biodiversity of deep planktonic and
shallow benthic foraminifera together with the other skeletal allochems and glauconitic grains suggest
mid- to outer-shelf setting [69]. Moreover, the calcispheres were typical of off-shelf water where
turbulence is minimal, allowing the pelagic settling and accumulation of planktonic foraminifera-rich
ooze ([70], and references therein).
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Figure 7. (a,b) Photomicrographs of organic matter-rich ferruginated mud hosting biserial calcareous
benthic foraminifera and a few Ostracode carapaces, some of which terminate with a fishhook-like valve.
(c) Wackestone (biomicrite) with planktonic (globigerinid) and multiple-chambered benthic foraminifera.

4.1.2. The Basalt

The basaltic dyke is vitrophyric composed of subhedral to euhedral phenocrysts of sericitized
plagioclase, fresh to partially altered olivine, and a few clinopyroxene crystals floating in a
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cryptocrystalline to glassy groundmass (Figure 8a–c). Accessory phases include Fe-oxides and
apatite. The rocks in general show porphyritic texture (Figure 8c). The vitrophyric texture (Figure 8)
indicates the rapid cooling. The basalt shows Fe-enrichment, is silica oversaturated, enriched in the
incompatible elements and depleted in the compatible elements [9,52]. For a detailed geochemical
analysis of the dyke, the reader is referred to Shallaly et al., (2013) and El-Bialy et al., (2017) [9,52].
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showing olivine (Ol), pyroxene (Pyx) and plagioclase (Pl) phenocrysts floating in a vitrophyric
groundmass. (c) Olivine basalt preserving ophitic and subophitic textures.
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4.2. The Thermal Effect of the Dyke

The heat transferred from the hot lava caused a pronounced thermal effect on the Sudr Chalk.
The thermal effect decreases dramatically away from the igneous body, and is traceable at the
macroscopic, mesoscopic, and microscopic scales.

4.2.1. The Baked Zone

A baked zone (BZ) of thermally affected Sudr Chalk is developed macroscopically on both sides
of the dyke (Figures 2b,c, 9 and 10). The BZ has an irregular outline (Figures 2, 9a and 10) with an
asymmetrical outcrop width ranging from 45 m to 160 m and from 10 m to 30 m along the western
and the eastern sides of the dyke, respectively (Figure 2b,c). The Sudr Chalk in the baked zone shows,
in general, a considerable variation in color ranging from black, in the close vicinity to the dyke
(Figure 3d), to grey and brown, away from the dyke (Figures 9 and 10). However, heterogeneity at the
mesoscopic scale in the close vicinity to the dyke is also recorded. Compositional and textural zonation
within a one-meter-wide exposure of the Sudr Chalk is shown by the alternation of fine-grained black,
coarse-grained grey and coarser-grained white zones (Figure 9c). The width of the baked zone implies
high porosity and permeability of the rock. Apart from the primary porosity, the intense faulting
and fracture systems (Figure 3b–d) that accompanied the rifting events of the GOS may have played
a significant role in increasing the secondary porosity of the rock. However, detailed petrophysical
analysis and microfacies study of the Sudr chalk, in the study area, are beyond the scope of this research.
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Figure 9. (a) Field photograph showing the dyke (DY) cutting through and having offshoots into the
Sudr Chalk forming a baked zone (BZ) on both sides. (b) Close-up view of inset (b) in (a), showing an
offshoot cutting across the country rock. (c) Close-up view of inset (c) in (a) showing compositional
variation of the baked zone in the close vicinity of the dyke.



Minerals 2019, 9, 279 13 of 26

Minerals 2018, 8, x FOR PEER REVIEW  13 of 27 

 
Figure 10. Panoramic view showing a N–S-trending grey-colored baked zone formed on the eastern 
side of the dyke cutting through the snow white-colored Sudr Chalk. (BZ: baked zone; DY: dyke, 
SUD: Sudr Chalk; UDZ: undisturbed zone). 

4.2.2. The Thermal Aureole 

Mesoscopically, offshoots and veins of the dyke cut across the Sudr Chalk (Figure 9a,b). At the 
microscopic scale, veins and veinlets of the dyke cut through and engulf parts of the host rock 
(Figures 11a and 12a). Relics of the latter are present as isolated patches within the dyke. A very 
narrow, <10 centimeters wide, contact aureole is developed in the Sudr Chalk at its immediate contact 
with the dyke. The aureole contains the assemblage talc + tremolite + calcite + quartz + dolomite 
(Figures 10 and 11), that formed following the equations below:  

4Qz + 3Dolomite + H2O → Talc + 3Calcite + 3CO2, (2) 

8Qz + 5Dolomite + H2O → Tremolite + 3Calcite + 7CO2, (3) 

2Talc + 3Calcite → Tremolite + Dolomite + CO2 + H2O (4) 

The assemblage defines the lower and upper limits of tremolite and talc, respectively. The latter 
two phases coexist at a metamorphic temperature of about 500 °C marking the lower hornblende 
hornfels facies [71].  

The intrusion of the dyke most likely occurred at very shallow levels. Figure 7 shows well-
preserved microfossils in a very fine groundmass with a weakly defined preferred orientation, which 
suggests that the sediments experienced some compaction prior to the intrusion of the dyke. 
However, the fact that many microfossils preserve their spherical shape (Figure 7c) suggests that the 
amount of compaction was minimal. Moreover, the organic matter away from the dyke is immature 
and very well preserved, suggesting that the ambient temperature at the time of the dyke 
emplacement was very low (<100 °C). These observations suggest that the main controls on the 
mineral assemblage in the thermal aureole were the temperature of intrusion and the activity of H2O 
and CO2. At low pressure (≤ 1 kbar), the appearance of talc by Reaction (1) occurs at approximately 
300 ± 50 °C, whereas the first appearance of tremolite occurs at approximately 350 ± 50 °C. Under 
these conditions, tremolite is replaced by diopside between 450 and 500 °C [71–74]. The lack of 
diopside in the mineral assemblage suggests that the maximum temperature at the dyke contact was 
~500 °C.  

Consequently, the temperature of the dyke at the time of intrusion can be inferred from the 
metamorphic mineral assemblage developed in the contact aureole. Outside the aureole, the thermal 
effect is restricted only to the recrystallization and coarsening of calcite crystals having typical 
polygonal texture with straight grain boundaries approaching equilibrium texture (Figure 11a). 
However, even at the microscopic scale, the latter texture is not homogenously developed.  

Figure 10. Panoramic view showing a N–S-trending grey-colored baked zone formed on the eastern
side of the dyke cutting through the snow white-colored Sudr Chalk. (BZ: baked zone; DY: dyke, SUD:
Sudr Chalk; UDZ: undisturbed zone).

4.2.2. The Thermal Aureole

Mesoscopically, offshoots and veins of the dyke cut across the Sudr Chalk (Figure 9a,b). At
the microscopic scale, veins and veinlets of the dyke cut through and engulf parts of the host rock
(Figures 11a and 12a). Relics of the latter are present as isolated patches within the dyke. A very
narrow, <10 centimeters wide, contact aureole is developed in the Sudr Chalk at its immediate contact
with the dyke. The aureole contains the assemblage talc + tremolite + calcite + quartz + dolomite
(Figures 10 and 11), that formed following the equations below:

4Qz + 3Dolomite + H2O→ Talc + 3Calcite + 3CO2, (2)

8Qz + 5Dolomite + H2O→ Tremolite + 3Calcite + 7CO2, (3)

2Talc + 3Calcite→ Tremolite + Dolomite + CO2 + H2O (4)

The assemblage defines the lower and upper limits of tremolite and talc, respectively. The latter
two phases coexist at a metamorphic temperature of about 500 ◦C marking the lower hornblende
hornfels facies [71].

The intrusion of the dyke most likely occurred at very shallow levels. Figure 7 shows well-preserved
microfossils in a very fine groundmass with a weakly defined preferred orientation, which suggests
that the sediments experienced some compaction prior to the intrusion of the dyke. However, the
fact that many microfossils preserve their spherical shape (Figure 7c) suggests that the amount of
compaction was minimal. Moreover, the organic matter away from the dyke is immature and very
well preserved, suggesting that the ambient temperature at the time of the dyke emplacement was very
low (<100 ◦C). These observations suggest that the main controls on the mineral assemblage in the
thermal aureole were the temperature of intrusion and the activity of H2O and CO2. At low pressure
(≤ 1 kbar), the appearance of talc by Reaction (1) occurs at approximately 300 ± 50 ◦C, whereas the
first appearance of tremolite occurs at approximately 350 ± 50 ◦C. Under these conditions, tremolite is
replaced by diopside between 450 and 500 ◦C [71–74]. The lack of diopside in the mineral assemblage
suggests that the maximum temperature at the dyke contact was ~500 ◦C.

Consequently, the temperature of the dyke at the time of intrusion can be inferred from the
metamorphic mineral assemblage developed in the contact aureole. Outside the aureole, the thermal
effect is restricted only to the recrystallization and coarsening of calcite crystals having typical polygonal
texture with straight grain boundaries approaching equilibrium texture (Figure 11a). However, even at
the microscopic scale, the latter texture is not homogenously developed.



Minerals 2019, 9, 279 14 of 26

Minerals 2018, 8, x FOR PEER REVIEW  14 of 27 

 
Figure 11. (a) Photomicrograph showing the development of metasomatized and metamorphic zones 
(zones B and C, respectively) in contact with the vitrophyric basalt (zone A). (b) Plane Polarized Light 
(PPL) and (c) Crossed Polarized Light (XPL) of inset (b,c) in (a) showing the growth of the 
metamorphic assemblage tremolite (Tre) and talc (Tlc), and the metasomatic garnet (Gnt) in zone C.  

Figure 11. (a) Photomicrograph showing the development of metasomatized and metamorphic zones
(zones B and C, respectively) in contact with the vitrophyric basalt (zone A). (b) Plane Polarized Light
(PPL) and (c) Crossed Polarized Light (XPL) of inset (b,c) in (a) showing the growth of the metamorphic
assemblage tremolite (Tre) and talc (Tlc), and the metasomatic garnet (Gnt) in zone C.
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Figure 12. (a) Photomicrograph showing the metasomatic (zone B) and metamorphic (zone C) zones
developed in contact with the vitrophyric basalt (zone A). (b) Close-up view of inset (b) in (a) showing
the growth of the metamorphic assemblage tremolite and talc, and the metasomatic garnet in zone C.
(c) Photomicrograph of a recrystallized limestone exhibiting an equilibrium texture.
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4.2.3. The Metasomatic Effect

Metasomatism, the transfer of elements via circulating fluids between the lava and the host rock,
is evidenced at the microscopic scale by the growth of new phases and the alteration of old ones.
The former situation is evidenced by the very localized (at the scale of the thin section) growth of
fine-grained garnet porphyroblasts (Figures 11 and 12). Close to the contact, the garnet crystals are
generally coarser in grain size and idioblastic to sub-idioblastic, whereas further away from the contact
they are generally represented by xenoblastic finer-grained crystals and aggregates. However, due to
the unequal distribution of heat within the host rock, some coarser-grained idioblastic porphyroblasts
are recorded away from the contact as well.

The garnets crystals are spatially related to the metamorphic assemblage tremolite + talc. However,
the lack of the essential components for the garnet to grow (e.g., alumina) from the host carbonate rock
implies a transfer of such component(s) from an external source, the dyke in our case. Consequently,
we advocate for the metasomatic origin of the garnet. If this is accepted, the skarn-like garnets that
are locally grown within a chalky limestone host rock are most probably grossular/hydrogrossular
in composition. Furthermore, since the garnet coexists with and is in a very close spatial relation to
the above-mentioned metamorphic assemblage, it is reasonable to suggest that the garnet has grown
contemporaneously with, and in the stability field of, the metamorphic assemblage (~500 ◦C). Contact
metasomatically grown garnets are well-documented in the literature [75–77].

Coarse-grained calcite filling veins and veinlets that cut through the dyke is another example
of growth of new phases. Some of the veins contain a few garnet crystals, implying formation in the
stability field of garnet. Iron supplied by the basic lava is another form of the metasomatic process.
It was carried in the hydrothermal solution that invaded the host rock through a net of veins and
veinlets (Figure 13a,b). The iron filled the available spaces in the shells of the different fauna, and
partially to completely replaced the shells and shell fragments (Figure 13b–d). Corona-like texture
where Fe-carbonate is formed at the contact of the newly crystallized garnet with the carbonate country
rock (calcite and/or dolomite) is also common.
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Calcisphere partially replaced by iron that is spatially related to veinlets cutting through chalky 
limestone (wackestone to packstone). Iron-rich carbonized chalky limestone showing calcareous algae 
(c) and skeletal fragment (d) in advanced stages of iron replacement. (e) Corona-like texture 
developed in marble. Iron-rich carbonate zone developed at the contact between the garnet and 
carbonate. (Cal: calcite, Gnt: garnet, Car: carbonate, Fe-Car: iron-rich carbonate). 

Alteration of some existing phases is recognized in a few millimeter-thick zones of 
metasomatized basalt (Figures 11, 12, and 14). In contrast to the original basalt where the plagioclase 
phenocrysts are fresh to partially altered (Figure 14a, zone A), the phenocrysts in the hybrid zone are 
intensively saussuritized (Figure 14, zone B) implying the interaction of plagioclase with a 
hydrothermal solution with a significant mass transfer between the two neighboring systems. 
Interaction of the plagioclase phenocrysts with the calcium released from the carbonate rock into the 
hydrothermal solution cannot be ruled out. The latter conclusion is supported by the fact that the 
ground mass in the metasomatized zone is relatively coarser in grain size than the vitrophyric ground 
mass of the basaltic dyke, and is composed of indistinguishable calcareous constituents (Figure 14, 
zone B). 

Figure 13. (a) Iron-rich carbonized chalky limestone (wackestone to packstone) with abundant
calcispheres. The iron is spatially related to the veinlets that cut through the rock. (b) Calcisphere
partially replaced by iron that is spatially related to veinlets cutting through the chalky limestone
(wackestone to packstone). Iron-rich carbonized chalky limestone showing calcareous algae (c) and
skeletal fragment (d) in advanced stages of iron replacement. (e) Corona-like texture developed in
marble. Iron-rich carbonate zone developed at the contact between the garnet and carbonate. (Cal:
calcite, Gnt: garnet, Car: carbonate, Fe-Car: iron-rich carbonate).

Alteration of some existing phases is recognized in a few millimeter-wide zones of metasomatized
basalt (Figures 11, 12 and 14). In contrast to the original basalt where the plagioclase phenocrysts
are fresh to partially altered (Figure 14a, zone A), the phenocrysts in the hybrid zone are intensively
saussuritized (Figure 14, zone B) implying the interaction of plagioclase with a hydrothermal solution
with a significant mass transfer between the two neighboring systems. Interaction of the plagioclase
phenocrysts with the calcium released from the carbonate rock into the hydrothermal solution cannot
be ruled out. The latter conclusion is supported by the fact that the groundmass in the metasomatized
zone is relatively coarser in grain size than the vitrophyric groundmass of the basaltic dyke, and is
composed of indistinguishable calcareous constituents (Figure 14, zone B).
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properties of the pore-filling fluids [78]. Carbonate rocks, in general, have a good thermal 
conductivity compared to other rock types [79–82]. However, the thermal conductivity of a formation 
is inversely proportional to its porosity [83]. In the study area, faulting and the fracture systems that 
accompanied the rifting (Figure 3b–d) could have increased the secondary porosity of the chalky 
limestone and hence reduced its thermal conductivity (e.g., [83]). The disproportionality of the width 
of the baked zone (see Section 4.2.1) to that of the dyke and the reduced thermal conductivity of the 
host carbonate rocks imply the insignificant contribution of conduction in heat transfer. Similarly, 
due to the absence of a high-grade assemblage indicative of temperature greater than 600 °C, heat 
transfer by radiation is also excluded [82]. Consequently, we suggest advection was the most 
significant mechanism whereby heat transferred from the dyke to the host rock. Given that, a 
compelling question arises regarding the source of water that transferred the heat. Was it hot water 
expelled out of the dyke or cold pore-water within a water-saturated country rock, or both?  

5.2. The Source of H2O 

Primary mantle-derived basic magmas are generally anhydrous. In the study area, fractionated 
mantle sources with a significant and a minor crustal contribution have been interpreted for the 
parental lava of the basaltic rocks ([9] and [52], respectively). Partial melting at the garnet–spinel 

Figure 14. (a) Metasomatized basalt (zone B) preserving the porphyritic textures, and developed at
the contact of the porphyritic, vitrophyric basalt (zone A) with the carbonate-rich country rock (zone
C). (b) PPL and (c) XPL showing a close-up view of saussuritized plagioclase phenocrysts in the
metasomatic zone B.

5. Discussion

5.1. The Source of Heat and Heat Transfer Mechanism

The dyke was the sole source of heat that caused the thermal effect. Heat transfer from a hot
igneous body to the cold host rock can occur through three mechanisms: radiation, advection, and
conduction. The latter depends largely on the thermal conductivity of the formation, which in
turn depends on the temperature, pressure, porosity, composition, anisotropy of the formation, and
properties of the pore-filling fluids [78]. Carbonate rocks, in general, have a good thermal conductivity
compared to other rock types [79–82]. However, the thermal conductivity of a formation is inversely
proportional to its porosity [83]. In the study area, faulting and the fracture systems that accompanied
the rifting (Figure 3b–d) could have increased the secondary porosity of the chalky limestone and
hence reduced its thermal conductivity (e.g., [83]). The disproportionality of the width of the baked
zone (see Section 4.2.1) to that of the dyke and the reduced thermal conductivity of the host carbonate
rocks imply the insignificant contribution of conduction in heat transfer. Similarly, due to the absence
of a high-grade assemblage indicative of temperature greater than 600 ◦C, heat transfer by radiation is
also excluded [82]. Consequently, we suggest advection was the most significant mechanism whereby
heat transferred from the dyke to the host rock. Given that, a compelling question arises regarding the
source of water that transferred the heat. Was it hot water expelled out of the dyke or cold pore-water
within a water-saturated country rock, or both?

5.2. The Source of H2O

Primary mantle-derived basic magmas are generally anhydrous. In the study area, fractionated
mantle sources with a significant and a minor crustal contribution have been interpreted for the
parental lava of the basaltic rocks ([9] and [52], respectively). Partial melting at the garnet–spinel
transition zone at a depth of 80–90 km has been interpreted [9]. El-Bialy et al., (2017), on the other



Minerals 2019, 9, 279 19 of 26

hand, suggested partial melting of asthenospheric amphibole-bearing garnet peridotite at a depth >70
km [52].

In the present study, the fresh character of, and the absence of any hydrous phases in the
mantle-derived basaltic dyke imply its anhydrous nature (this study, [9,52]). Furthermore, similar
interpretation has been approached geochemically by the significantly low values of the loss on ignition
(LOI), 0.1–2.56, of the dyke [9]. However, implication of the intrusion of the dyke in a relatively
hydrous state has been interpreted [52]. If the latter situation is accepted, however, it is very difficult
to know exactly the water content in the dyke at the time of intrusion. Despite the contradictory
interpretations [9,52], and assuming that the dyke was intruded in a hydrous state, we exclude the
possibility that the dyke was the source of water that produced the thermal effect in the country rock
for the following reasons: 1) the width of the baked zone is not proportional to that of the dyke,
2) volumetrically, the water content of a mantle-derived ~35 m wide (on average) basaltic dyke would
be insignificant, and 3) high-grade metamorphic assemblages are absent at the immediate contact with
the dyke. The latter reason can be further assisted by the cooling history of the dyke.

We, therefore, conclude that the pore-water in the water-saturated Sudr Chalk could have
played a significant role in the heat transfer. However, groundwater upwelling cannot be ruled out.
The groundwater could have been heated up by the dyke and found its way up into the Sudr Chalk
through a system of rift-related faults and fractures.

5.3. Organic Matter, Organic Carbon (OC), and Total Organic Carbon (TOC)

Sources of organic matter in submarine sediments include marine phytoplankton, phytobentos,
bacteria, and land-derived allochthonous materials [84–87]. The organic carbon (OC) concentration
in the sediments varies from 0.1% to 5% depending on factors such as: (1) oxygen supply to the
system, (2) preservation of the organic compounds, (3) mineral adsorption to certain compounds, (4)
supply of terrigenous organic compounds, and (5) the rate of deposition of the sediments organic
matter. The biogenic origin of coal and graphite has been the subject of wealthy literature [88–91].
In petroleum geology, TOC is an indirect measure of the quality of source rocks [10]. Source rock
potential in the GOS Rift, based on the TOC and pyrolysis results (S2), has been the subject of many
studies [92–96]. An average TOC of 1.7% that reaches a maximum of 16% places the Sudr and Duwi
formations (collectively known as the brown limestone) on top of the list of the richest source rocks
in the northern and central provinces in the GOS [49,95,96]. In the study area, the Sudr Chalk with
its prolific faunal content is the source of organic matter [90,91]. The measured TOCs of the samples
(Table 1) cover the whole spectra of Peters’s classification of source rock [10]. The samples range in
color from black, dark brown, brownish grey, light brown, to greyish brown in a descending order of
the TOC contents (Table 1 and Figure 13).

5.4. TOC, Thermal Maturation, and the Origin of the Baked Zone

Together with the other factors that affect the organic matter maturation (see Section 2),
the time–temperature burial history of the organic matter-bearing sediments is of a prime
importance [10]. For example, a slow rate of heating for a long duration at a convenient temperature
favors source rock maturation to produce oil and/or gas. On the other hand, conditions of fast rate
of heating and/or excessive temperature lead to the transformation of the organic matter directly
into graphite. Detailed maturation indices of the source rock have not been carried out in this study.
However, an evaluation of the thermal maturity of the organic matter and the temperature of maturation
of the source rock in the study area can be inferred by correlating the colors of the isolated amorphous
organic matter (AOM) and the phytoclasts (PhC) with the standard pollen/spore color chart of Pearson
(1984) (Figure 15) [97]. The kerogens isolated from samples Mt4, Mt5, and Mt6 (TOC = 0.43, 1.57,
and 0.32, respectively) range in color from light- to deep-brown. They are classified according to
the thermal maturity of organic matter into mature samples with a maturation temperature in the
range of 120–200 ◦C (Figure 15). Sample Mt3 has a TOC content of 0.52, and a deep-brown color
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suggesting a mature to barren type of the thermal maturity standard, with a maturation temperature of
200–300 ◦C (Figure 15) Sample Mt2 (TOC = 2.71) is dark brown to black in color suggesting a dry type
with a maturation temperature exceeding 300 ◦C (Figure 15) Sample Mt1 has the lowest TOC (0.1), is
white in color, and barren in terms of organic matter (Figures 9c and 13). It represents an overmature
metamorphic rock that is composed of the assemblage calcite, dolomite, chlorite, tremolite, and talc
indicative of a high-grade metamorphic condition with a temperature in the range of 450–500 ◦C
(Figure 15). The low TOC content and the white color of the sample, compared to the other samples,
are attributed to the excessive metamorphic temperature that was high enough to completely burn the
residual carbon.
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The change in the thermal maturation of organic matter and hence the difference in the TOC
values within the baked zone can be attributed to the following: (1) the unequal dissipation of heat
through the intruded rock, at the exposure scale, (2) the unequal distribution of the organic matter in
the original rock, (3) certain anomalously hot spots in the rock, compared to the surroundings, and
(4) the difference in the petrophysical properties, perhaps spot-by-spot, of the rock, and hence the
efficiency of the heat transfer mechanism/mechanisms.

The different degrees of thermal maturation of the organic matter in the Sudr Chalk adjacent to
the dyke turned the snow-white color of the chalk into shades of brown, grey, and black, and accounts
for the formation of the baked zone in the Wadi Matulla area.

6. Implications of the Present Study

Local Maturation of Source Rock-Prone Formations in the GOS Region

Compared to the hydrocarbons produced during maturation in normal subsiding basins, the
extractable hydrocarbons, although from a localized source, are in some cases of economic value
sufficient for commercial use [36]. The GOS Rift is considered to be the most oil-producing province
in Africa and the Middle East [49]. Offshore oil fields produce more than 80% of the hydrocarbons.
The sedimentary basins at great burial depths in the down-faulted blocks and downthrown sides of the
rift-border faults were subjected to geothermal gradients high enough for the thermal maturation of the
oil-prone source rocks to take place. However, at shallower burial depths in the upthrown sides of the
major faults, the geothermal gradients decrease significantly to the point that thermal maturation of the
source rocks cannot take place. The widespread syn-rift mafic sills, dykes, and small intrusive masses
cutting through pre- and syn-rift source rocks in the upthrown blocks of the rift-border and -shoulder
faults provide reasonable heat sources to compensate for the drastic decrease in the geothermal
gradients. Consequently, these mafic intrusions at relatively shallow depths may either provide the
thermal conditions favorable for maturation of the source rocks or get the latter into pre-maturation
stages that would require, in the near future, minimal treatment for a reasonable maturation. Hence,
hydrocarbons can be produced from relatively shallow, oil-prone, type I kerogen-rich source rocks, as
in the case of the present study, with greatly reduced costs provided that the subsurface configuration
of the dyke is known through detailed subsurface and seismic data.

7. Conclusions

In the Wadi Matulla area, central Sinai, Egypt, a very high geothermal gradient accompanied a
rift-related Oligocene basaltic dyke, and resulted in the carbonization of the kerogene-bearing Upper
Cretaceous Sudr Chalk over a 100 m wide baked zone. The Sudr Chalk varies in color (from brown,
greyish-brown, grey, to black) and consequently in TOC contents. The heat from the hot dyke was
transferred through the water-saturated chalky limestone via advection. Transfer via upwelling of
groundwater could be another possibility. Hornblende hornfels facies contact metamorphism, a few
centimeters wide, as well as microscopic scale metasomatism were developed at the immediate contact
with the dyke. The result of this research turns attention to the role of the mafic intrusions in the local
maturation potential of source rocks at relatively shallow burial depths in the Gulf of Suez region.
Therefore, it may open new channels, in the near future, to hydrocarbon extraction from shallower
depths from around the rift-related intrusions.

Author Contributions: Conceptualization, A.S.A.A.A.S. and A.Q.S.; methodology, A.S.A.A.A.S., A.Q.S., M.M.A.F.,
S.M.H. and I.V.S.; validation, A.S.A.A.A.S., A.Q.S., and I.V.S.; investigation, A.S.A.A.A.S., A.Q.S., S.M.H.; data
curation, A.S.A.A.A.S.; writing—original draft preparation, A.S.A.A.A.S., and S.M.H.; writing—review and
editing, A.S.A.A.A.S., S.M.H., and M.M.A.F.; visualization, A.S.A.A.A.S., and A.Q.S.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank A. Maky, Egyptian Petroleum Research Institute, for the
facilities offered for the TOC measurements and palynomorph analysis, and for the comments, suggestions and



Minerals 2019, 9, 279 22 of 26

invaluable discussions. Thanks go to Z. Abdullah, M. Selim and A. Zayed, Geology Department, Beni-Suef
University, Egypt, and A. Maurice, Geology Department, Helwan University, Egypt, for the fruitful discussions.
I. Abdel Gayed and Y. Salam, Geology Department, Beni-Suef University, Egypt, are greatly acknowledged for
helping in the identification of some benthic and planktonic foraminifera. Thanks go to M. Abdel-Wahab, Geology
Department, Beni-Suef University, Egypt, for helping during the field trip. We would like to thank anonymous
reviewers for critical comments and suggestions that greatly improved the manuscript. Heather Wu is greatly
acknowledged for editorial handling.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Palumbo, F.; Main, I.G.; Zito, G. The thermal evolution of sedimentary basins and its effect on the maturation
of hydrocarbons. Geophys. J. Int. 1999, 139, 248–260. [CrossRef]

2. Roberts, L.N.R.; Lewan, M.D.; Finn, T.M. Burial History, Thermal Maturity, and Oil and Gas Generation
History of Petroleum Systems in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah.
In Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming,
Colorado, and Utah, 1st ed.; USGS: Denver, CO, USA, 2005.

3. Grobe, A.; Littke, R.; Sachse, V.; Leythaeuser, D. Burial history and thermal maturity of Mesozoic rocks of the
Dolomites, Northern Italy. Swiss J. Geosci. 2015, 108, 253–271. [CrossRef]

4. Simandl, G.J.; Paradis, S.; Akam, C. Graphite deposit types, their origin, and economic significance. In Symposium
on Strategic and Critical Materials; British Columbia Geological Survey: Victoria, BC, Canada, 2015.

5. Beyssac, O.; Brunet, F.; Petitet, J.P.; Goffe, B.; Rouzaud, J.N. Experimental study of the microtextural and
structural transformation of carbonaceous material under pressure and temperature. Eur. J. Min. 2003, 15,
937–951. [CrossRef]

6. Buseck, P.R.; Beyssac, O. From organic matter to graphite: graphitization. Elements 2014, 10, 421–426.
[CrossRef]

7. El-Barkooky, A.N.; El-Araby, A. The Tertiary Red Beds of Abu Zenima area, West Central Sinai, Egypt: Their
Stratigraphy and Sedimentology. In Proceedings of the 4th Geology of the Arab World, Cairo University,
Cairo, Egypt, 1998; pp. 621–642.

8. El-Barkooky, A.N.; El-Araby, A.; Gaupp, R. Early Syn-Rift Deposition of alluvial-lacustrine facies in Wadi
Nukhul, West Central Sinai. Egypt. Egypt. J. Geol. 2006, 50, 141–169.

9. Shallaly, N.A.; Beier, C.; Haase, K.M.; Hammed, M.S. Petrology and geochemistry of the Tertiary Suez rift
volcanism, Sinai, Egypt. J. Volcan. Geother. Res. 2013, 267, 119–137. [CrossRef]

10. Peters, K.E. Guidelines for Evaluating Petroleum Source Rocks using Programmed Pyrolysis. Aapg Bull.
1986, 70, 318–329.

11. Bosworth, W. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. In The Red
Sea; Rasul, N.M.A., Stewart, I.C.F., Eds.; Springer Earth System Sciences: Berlin/Heidelberg, Germany, 2015;
pp. 45–78. [CrossRef]

12. Simoneit, B.R.T.; Brenner, S.; Peters, K.E.; Kaplan, I.R. Thermal alteration of Cretaceous black shale by diabase
intrusions in the eastern Atlantic. Part II. Effects on bitumen and kerogen. Geochim. Cosmochim. Acta 1981,
45, 1581–1602. [CrossRef]

13. Akiyama, M.; Hirata, S.; Ujiie, Y. Thermal alteration of kerogen by basalt dykes intruded in the Oligocene
Poronai Formation, Hokkaido, Japan. J. Fac. Sci. 1979, 19, 149–156.

14. Schiener, E.J.; Perregaard, J. Thermal maturation of organic matter by a thick basaltic sill in Upper Cretaceous
shales, Svartenhuk Halve, Central West. Greenland. Greenl. Geol. Surv. 1981, 102, 16.

15. Clayton, J.L.; Bostick, N.H. Temperature effects on kerogen and on molecular and isotopic composition of
organic matter in Pierre Shale near an igneous dike. Org. Geochem. 1986, 10, 135–143. [CrossRef]

16. Bishop, A.N.; Abbott, C.D. Vitrinite reflectance and molecular geochemistry of Jurassic sediments: The
influence of heating by Tertiary dyke (northwest Scotland). Org. Geochem. 1995, 22, 165–177. [CrossRef]

17. Galushkin, Y.I. Thermal effects of igneous intrusions on maturity of organic matter: A possible mechanism
of intrusion. Org. Geochem. 1997, 26, 645–658. [CrossRef]

18. Worden, R.H.; Smalley, P.C.; Cross, M.M. The influence of rock fabric and mineralogy on thermochemical
sulfate reduction: Khuff Formation. Abu Dhabi. J. Sed. Res. 2000, 70, 1210–1221. [CrossRef]

http://dx.doi.org/10.1046/j.1365-246X.1999.00877.x
http://dx.doi.org/10.1007/s00015-015-0191-2
http://dx.doi.org/10.1127/0935-1221/2003/0015-0937
http://dx.doi.org/10.2113/gselements.10.6.421
http://dx.doi.org/10.1016/j.jvolgeores.2013.10.005
http://dx.doi.org/10.1007/978-3-662-45201-1_3
http://dx.doi.org/10.1016/0016-7037(81)90287-8
http://dx.doi.org/10.1016/0146-6380(86)90017-3
http://dx.doi.org/10.1016/0146-6380(95)90015-2
http://dx.doi.org/10.1016/S0146-6380(97)00030-2
http://dx.doi.org/10.1306/110499701210


Minerals 2019, 9, 279 23 of 26

19. Worden, R.H.; Smalley, P.C.; Barclay, S.A. H2S and diagenetic pyrite in North Sea sandstones: due to TSR or
organic sulphur compound cracking? J. Geochem. Explor. 2003, 78–79, 487–491. [CrossRef]

20. Stewart, A.K.; Massey, M.; Padgett, P.L.; Rimmer, S.M.; Hower, J.C. Influence of a basic intrusion on the
vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois. Int. J. Coal Geol. 2005,
63, 58–67. [CrossRef]

21. Wang, D.; Lu, X.; Zhang, X.; Xu, S.; Hu, W.; Wang, L. Heat-model analysis of wall rocks below a diabase sill
in Huimin Sag, China compared with thermal alteration of mudstone to carbargilite and hornfels and with
increase of vitrinite reflectance. Geophys. Res. Lett. 2007, 34, L16312. [CrossRef]

22. Mastalerz, M.; Drobniak, A.; Schimmelmann, A. Changes in optical properties, chemistry, and micropore
and mesopore characteristics of bituminous coal at the contact with dikes in the Illinois Basin. Int. J. Coal
Geol. 2009, 77, 310–319. [CrossRef]

23. Schimmelmann, A.; Mastalerz, M.; Gao, L.; Sauer, P.E.; Topalov, K. Dike intrusions into bituminous coal,
Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating. Geochim. Cosmochim. Acta 2009, 73,
6264–6281. [CrossRef]

24. Aarnes, I.; Svensen, H.; Connolly, J.A.D.; Podladchikov, Y.Y. How contact metamorphism can trigger global
climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim.
Acta 2010, 74, 7179–7195. [CrossRef]

25. Aarnes, I.; Svensen, H.; Polteau, S.; Planke, S. Contact metamorphic devolatilization of shales in the Karoo
Basin, South Africa, and the effects of multiple sill intrusions. Chem. Geol. 2011, 281, 181–194. [CrossRef]

26. Cao, X.; Chappell, M.; Schimmelmann, A.; Mastalerz, M.; Li, Y.; Hu, W.; Mao, J. Chemical structure changes
in kerogen from bituminous coal in response to dike intrusions as investigated by advanced solid-state 13C
NMR spectroscopy. Int. J. Coal Geol. 2013, 108, 53–64. [CrossRef]

27. Brekke, T.; Krajewski, K.P.; Hubred, J.H. Organic geochemistry and petrography of thermally altered sections
of the Middle Triassic Botneheia Formation on south-western Edgeøya, Svalbard. Nor. Pet. Dir. Bull. 2014,
11, 111–128.

28. Agirrezabala, L.M.; Permanyer, A.; Surez-Ruiz, I.; Dorronsoro, C. Contact metamorphism of organic-rich
mudstones and carbon release around a magmatic sill in the Basque-Cantabrian Basin, western Pyrenees.
Org. Geochem. 2014, 69, 26–35. [CrossRef]

29. Schofield, N.; Holford, S.; Millett, J.; Brown, D.; Jolley, D.R.; Passey, S.; Muirhead, D.; Grove, C.; Magee, C.;
Murray, J.; et al. Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland Sill
Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Res.
2015, 29, 41–63. [CrossRef]

30. Wang, D.; Manga, M. Organic matter maturation in the contact aureole of an igneous sill as a tracer of
hydrothermal convection. J. Geophys. Res. Solid Earth 2015, 120, 4102–4112. [CrossRef]

31. Muirhead, D.K.; Bowden, S.A.; Parnell, J.; Schofield, N. Source rock maturation due to igneous intrusion in
rifted margin petroleum systems. J. Geol. Soc. Lond. 2017, 174, 979. [CrossRef]

32. Reeckmann, S.A.; Mebberson, A.J. Igneous intrusions in the north-west Canning Basin and their impact on oil
exploration. In The Canning Basin; Purcell, P.G., Ed.; Geological Society of Australia-Petroleum Exploration
Society of Australia: Perth, Australia, 1984; pp. 389–399.

33. Hubred, J.H. Thermal Effects of Basaltic Sill Emplacement in Source Rocks on Maturation and Hydrocarbon
Generation, Cand. Scient. Master’s Thesis, University of Oslo, Oslo, Norway, 2006.

34. Vasquez, M.; Altenberger, U.; Romer, R.L. Neogene magmatism and its possible causal relationship with
hydrocarbon generation in SW Colombia. Int. J. Earth Sci. 2009, 98, 1053–1062. [CrossRef]

35. Mark, N.J.; Schofield, N.; Pugliese, S.; Watson, D.; Holford, S.; Muirhead, D.; Brown, R.; Healy, D. Igneous
intrusions in the Faroe Shetland basin and their implications for hydrocarbon exploration: New insights
from well and seismic data. Mar. Petro. Geol. 2018, 92, 733–753. [CrossRef]

36. Muirhead, D.K.; Duffy, M.; Schofield, N.; Mark, N.; Rowe, M.D. Making Oil from Magma; Geological Society,
London, Special Publications: London, UK, 2018; Volume 484.

37. Patton, T.L.; Moustafa, A.R.; Nelson, R.A.; Abdine, S.A. Tectonic evolution and structural setting of the Suez
Rift. In Interior Rift Basins; Landon, S.M., Ed.; AAPG Memoir; American Association of Petroleum Geologists:
Tulsa, OK, USA, 1994; Volume 59, pp. 7–55.

38. Khalil, S.M.; McClay, K.R. Tectonic evolution of the NW Red Sea–Gulf of Suez rift system. In Non-Volcanic
Rifting of Continental Margins: A Comparison of Evidence from Land and Sea; Wilson, R.C.L., Whitmarsh, R.B.,

http://dx.doi.org/10.1016/S0375-6742(03)00072-4
http://dx.doi.org/10.1016/j.coal.2005.02.005
http://dx.doi.org/10.1029/2007GL030314
http://dx.doi.org/10.1016/j.coal.2008.05.014
http://dx.doi.org/10.1016/j.gca.2009.07.027
http://dx.doi.org/10.1016/j.gca.2010.09.011
http://dx.doi.org/10.1016/j.chemgeo.2010.12.007
http://dx.doi.org/10.1016/j.coal.2012.05.002
http://dx.doi.org/10.1016/j.orggeochem.2014.01.014
http://dx.doi.org/10.1111/bre.12164
http://dx.doi.org/10.1002/2015JB011877
http://dx.doi.org/10.1144/jgs2017-011
http://dx.doi.org/10.1007/s00531-008-0303-6
http://dx.doi.org/10.1016/j.marpetgeo.2017.12.005


Minerals 2019, 9, 279 24 of 26

TAylor, B., Froitzheim, N., Eds.; Geological Society, London, Special Publications: London, UK, 2001;
Volume 187, pp. 453–473.

39. Bosworth, W.; Huchon, P.; McClay, K. The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci. 2005, 43,
334–378. [CrossRef]

40. Moustafa, A.R. Structural characteristics and tectonic evolution of the east-margin blocks of the Suez rift.
Tectonophysics 1993, 223, 381–399. [CrossRef]

41. Bosworth, W. A high-strain rift model for the southern Gulf of Suez (Egypt). In Hydrocarbon Habitat in Rift
Basins; Lambiase, J.J., Ed.; Geological Society, London, Special Publications: London, UK, 1995; Volume 80,
pp. 75–102.

42. Gawthorpe, R.L.; Jackson, C.A.L.; Young, M.J.; Sharp, I.R.; Moustafa, A.R.; Leppard, C.W. Normal fault
growth, displacement localisation and the evolution of normal fault populations: The Hammam Faraun
fault block, Suez rift, Egypt. J. Struc. Geol. 2003, 25, 883–895. [CrossRef]

43. Jackson, C.A.L.; Gawthorpe, R.L.; Leppard, C.W.; Sharp, I.R. Riftinitiation development of normal fault
blocks: insights from the Hammam Faraun fault block, Suez Rift, Egypt. J. Geol. Soc. 2006, 163, 165–183.
[CrossRef]

44. Moustafa, A.M. Block faulting of the Gulf of Suez. In Proceedings of the 5th Exploration Seminar, Egyptian
General Petroleum Company, Cairo, Egypt, 1976; p. 19.

45. Faulds, J.E.; Varga, R.J. The role of accommodation zones and transfer zones in the regional segmentation
of extended terranes. In Accommodation Zones and Transfer Zones: The Regional Segmentation of the Basin and
Range Province; Faulds, J.E., Stewart, J.H., Eds.; Geological Society of America: Boulder, CO, USA, 1998;
Volume 323, pp. 1–45.

46. Moustafa, A.R. Structural setting and tectonic evolution of the northern Hammam Faraun block (Wadi Wasit
Wadi Wardan area), eastern side of the Suez rift. J. Univ. Kuwait-Sci. 1996, 23, 105–132.

47. Moustafa, A.R. Controls on the Geometry of Transfer Zones in the Suez Rift and Northwest Red Sea:
Implications for the Structural Geometry of Rift Systems. AAPG Bull. 2002, 86, 979–1002.

48. Younes, A.I.; McClay, K.R. Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt.
Am. Assoc. Pet. Geol. Bull. 2002, 86, 1003–1026.

49. Alsharhan, A.S. Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt.
Aapg Bull. 2003, 87, 143–180.

50. Kazmin, V.G.; Byakov, A.F. Magmatism and crustal accretion in continental rifts. J. Afr. Earth Sci. 2000, 30,
555–568. [CrossRef]

51. Bosworth, W.; McClay, K. Structural and stratigraphic evolution of the Gulf of Suez rift, Egypt: A synthesis.
In Peri-Tethys Memoir 6: Peri-Tethyan Rift/wrench Basins and Passive Margins; Ziegler, P.A., Cavazza, W.,
Robertson, A.H.F., Crasquin-Soleau, S., Eds.; Mémoires du Muséum National d’Histoire Naturelle de Paris:
Paris, France, 2001; Volume 186, pp. 567–606.

52. El-Bialy, M.Z.; Khalifa, I.H.; Omar, M.M. Continental intraplate volcanism in the Sinai subplate:
The Oligo-Miocene basalts of the Gulf of Suez rift. J. Afr. Earth Sci. 2017, 146, 158–179. [CrossRef]

53. Said, R. Cenozoic. In The Geology of Egypt; Said, R., Ed.; CRC Press: Boca Raton, FL, USA, 1990; pp. 451–486.
54. Moustafa, A.R.; Abdeen, M.M. Structural setting of the Hammam Faraun block, eastern side of the Suez rift.

J. Univ., Kuwait Sci. 1992, 19, 291–309.
55. Sharp, I.R.; Gawthorpe, R.L.; Underhill, J.R.; Gupta, S. Fault propagation folding in extensional settings:

Examples of structural style and syn-rift sedimentary response from the Suez Rift, Egypt. Geol. Soc. Amer.
Bull. 2000, 112, 1877–1899. [CrossRef]

56. Bastesen, E.; Braathen, A.; Skar, T. Comparison of scaling relationships of extensional fault cores in tight
carbonate and porous sandstone reservoirs. Pet. Geosci. 2015, 19, 385–398. [CrossRef]

57. Barakat, M.G.; Darwish, M.; El Outefi, N.S. Eocene tectonostratigraphy and basin evaluation in the Gulf of
Suez petroliferous province. In Proceedings of the 9th Egyptian General Petroleum Corporation, Petroleum
Exploration and Production Conference, Cairo, Egypt, 1988; Volume 1, pp. 1–22.

58. Abu Khadra, A.M.; Youssef, E.A.A.; Refaat, A. Depositional environments and diagenesis of the Matulla
Formation, Abu Zenima area, West-Central Sinai, Egypt. Bull. Fac. Sci. 1990, 58, 493–513.

59. Abdelhamid, M.A.M. Turonian-Santonian echinoids from Wadi Sudr and Wadi Matulla, west central Sinai.
Middle East Res. Cent. Ain Shams Univ. Earth Sci. Ser. 1997, 11, 136–158.

http://dx.doi.org/10.1016/j.jafrearsci.2005.07.020
http://dx.doi.org/10.1016/0040-1951(93)90146-B
http://dx.doi.org/10.1016/S0191-8141(02)00088-3
http://dx.doi.org/10.1144/0016-764904-164
http://dx.doi.org/10.1016/S0899-5362(00)00038-5
http://dx.doi.org/10.1016/j.jafrearsci.2017.03.004
http://dx.doi.org/10.1130/0016-7606(2000)112&lt;1877:FPFIES&gt;2.0.CO;2
http://dx.doi.org/10.1144/petgeo2011-020


Minerals 2019, 9, 279 25 of 26

60. Abdel-Gawad, G.I. Biostratigraphy and macrofossil assemblages of the Matulla Formation
(Coniacian–Santonian), west central Sinai, Egypt. Middle East Res. Cent. Ain Shams Univ. Earth Sci.
Ser. 1999, 13, 187–202.

61. Kora, M.; Hamama, H.; Sallam, H. Senonian macrofauna from West-Central Sinai: Biostratigraphy and
Paleobiogeography. Egypt. J. Paleontol. 2002, 2, 235–258.

62. Shahin, A.M. Maastrichtian to Middle Eocene ostracodes from Sinai, Egypt: Systematics, biostratigraphy
and paleobiogeography. Rev. De PaléobiologieGenève 2005, 24, 749–779.

63. Farouk, S. Maastrichtian carbon cycle changes and planktonic foraminiferal bioevents at Gebel Matulla,
west-central Sinai, Egypt. Cretac. Res. 2014, 50, 238–251. [CrossRef]

64. Meneisy, M.Y. Vulcanicity. In The Geology of Egypt; Said, R., Ed.; Balkema, A.A.: Rotterdam, The Netherlands,
1990; pp. 157–172.

65. Folk, R.L. Practical petrographic classification of limestones. AAPG Bull. 1959, 43, 1–38.
66. Dunham, R.J. Classification of carbonate rocks according to depositional of texture 1. In Classification of

Carbonate Rocks—A Symposium; Ham, W.E., Ed.; American Association of Petroleum Geologists: Tulsa, OK,
USA, 1962; Volume 1, pp. 108–121.

67. Embry, A.F.; Klovan, E.J. Absolute water depth limits of Late Devonian paleoecological zones. Geol. Rdsch.
1972, 61, 672–686. [CrossRef]

68. Wilson, J.L. Carbonate Facies in Geological History; Springer: Berlin, Germany, 1975; p. 471.
69. Scholle, P.A.; Ulmer-Scholle, D.S. A Color Guide to Petrography of Carbonate Rocks: Grains, Textures, Porosity,

Diagenesis, AAPG Memoir 77; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2003.
70. Khalifa, M.A.; Farouk, S.; Hassan, A.M. Carbonate platform facies development of the Turonian Wata

Formation in Central and Eastern Sinai. Egypt. J. Afr. Earth Sci. 2016, 124, 126–138. [CrossRef]
71. Bucher, K.; Frey, M. Petrogensis of Metamorphic Rocks, 7th ed.; Springer: Berlin, Germany, 2002; p. 341.
72. Rice, J.M. Contact metamorphism of impure dolomitic limestone in the Boulder Aureole, Montana. Contrib.

Mineral. Petrol. 1977, 59, 237–259. [CrossRef]
73. Holness, M.B. Fluid flow path and mechanisms of fluid infiltration in carbonates during contact

metamorphism: The Beinn an Dubhaich aureole, Skye. J. Meta. Geol. 1997, 15, 59–70. [CrossRef]
74. Jamtveit, B.; Dahlgren, S.; Austrheim, H. High grade contact metamorphism of calcareous rocks from the

Oslo Rift, Southern Norway. Am. Mineral. 1997, 82, 1241–1254. [CrossRef]
75. Stowell, H.H.; Menard, T.; Ridgway, C.K. Ca-metasomatism and chemical zonation of garnet in

contact-metamorphic aureoles, Juneau Gold Belt, southeastern Alaska. Can. Mineral. 1996, 34, 1195–1209.
76. Kent, A.J.R.; Ashley, P.M.; Fanning, C.M. Metasomatic alteration associated with regional metamorphism:

An example from the Willyama Supergroup, South Australia. Lithos 2000, 54, 33–62. [CrossRef]
77. Ranjbar, S.; Tabatabaei Manesh, S.M.; Mackizadeh, M.A.; Tabatabaei, S.H.; Parfenova, O.V. Geochemistry of

major and rare earth elements in garnet of the Kal-e Kafi skarn, Anarak Area, Central Iran: Constraints on
processes in a hydrothermal system. Geochem. Inter. 2016, 54, 423–438. [CrossRef]

78. Hurtig, E.; Brugger, H. Heat conductivity measurements under uniaxial pressure. Tectonophysics 1970, 10,
67–77. [CrossRef]

79. Lubimova, E.A.; Smirnova, E.V. Heat physical properties of rocks at high temperatures. In Physical Properties
of Rocks under High Pressure and Temperature; Trans. of IV All-Union Congress: Tbilisi, Georgia, 1974;
pp. 171–172. (In Russian)

80. Robertson, E.C. Thermal Conductivity of Rocks. U.S. Geological Survey Open File Report; USGS: Denver, CO,
USA, 1979; pp. 79–356.

81. Kelemen, P.B.; Kikawa, E.; Miller, D.J. Drills into mantle peridotite along the mid-Atlantic ridge from 14◦N to
16◦N. In Proceedings of the Ocean Drilling Program, Rio de Janeiro, Brazil, 6 May–7 July 2004; Volume 30,
pp. 14–19.

82. Clauser, C.E. Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations: A Handbook of
Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 3,
pp. 105–126.

83. Poelchau, H.S.; Baker, D.R.; Hantschel, T.; Horsfield, B.; Wygrala, B. Basin simulation and the design of
the conceptual basin model. In Petroleum and Basin Evaluation; Welte, D.H., Horsfield, B., Baker, D.R., Eds.;
Springer: Berlin, Germany, 1997; pp. 36–41.

84. Emeis, K.C.; Kvenvolden, K.A. Shipboard organic geochemistry on Joides Resolution. ODP Tech. Notes 1986, 7.

http://dx.doi.org/10.1016/j.cretres.2014.02.021
http://dx.doi.org/10.1007/BF01896340
http://dx.doi.org/10.1016/j.jafrearsci.2016.09.011
http://dx.doi.org/10.1007/BF00374555
http://dx.doi.org/10.1111/j.1525-1314.1997.00005.x
http://dx.doi.org/10.2138/am-1997-11-1219
http://dx.doi.org/10.1016/S0024-4937(00)00021-9
http://dx.doi.org/10.1134/S0016702916050098
http://dx.doi.org/10.1016/0040-1951(70)90098-3


Minerals 2019, 9, 279 26 of 26

85. Lampitt, R.S.; Bett, B.J.; Kiriakoulakis, K.; Popova, E.E.; Ragueneau, O.; Vangriesheim, A.; Wolff, G.A. Material
supply to the abyssal seafloor in the northeast Atlantic. Prog. Oceanogr. 2001, 50, 27–63. [CrossRef]

86. Goni, M.A.; O’Connor, A.E.; Kuzyk, Z.Z.; Yunker, M.B.; Gobeil, C.; Macdonald, R.W. Distribution and sources
of organic matter in surface marine sediments across the North American Arctic margin. J. Geophy. Res.
Ocean. 2013, 118, 4017–4035. [CrossRef]

87. Hunter, W.R.; Jamieson, A.; Huvenne, V.A.I.; Witte, U. Sediment community responses to marine vs.
terrigenous organic matter in a submarine canyon. Biogeosciences 2013, 10, 67–80. [CrossRef]

88. Mancsuo, J.T.; Seavoy, R.E. Precambrian coal or anthraxolite: A source for graphite in high-grade schists and
gneisses. Econ. Geol. 1981, 65, 273–298. [CrossRef]

89. Hollister, V.F. Origin of graphite in the Duluth Complex. Econ. Geol. 1980, 75, 764–766. [CrossRef]
90. Disssanayake, C.B. The Origin of graphite of Sri Lanka. Org. Geochem. 1981, 3, 1–7. [CrossRef]
91. Soman, K.; Lobzova, R.V.; Sivadas, K.M. Geology, genetic types, and origin of graphite in South Kerala, India.

Econ. Geol. 1986, 81, 997–1002. [CrossRef]
92. Shaheen, A.N.; Shehab, M. Petroleum generation, migration and occurrence in the Gulf of Suez offshore,

south Sinai. In Proceedings of the 17th Egyptian General Petroleum Corporation, Petroleum Exploration
and Production, Cairo, Egypt, 1984; Volume 1, pp. 126–152.

93. Atef, A. Source rock evaluation of the Brown Limestone (upper Senonian), Gulf of Suez. In Proceedings of
the 9th Egyptian General Petroleum Corporation; Petroleum Exploration and Production, Cairo, Egypt, 1988;
Volume 1, pp. 256–275.

94. Moustafa, A.R.; Klitzsch, E.; Matheis, G.; Ganz, H. Origin and evaluation of hydrocarbons in the Gulf of Suez
Basin, Egypt. In Geoscientific Research in North East Africa; Thorweihe, U., Schandelmeier, H., Eds.; CRC Press:
Boca Raton, FL, USA, 1993; pp. 267–275.

95. Alsharhan, A.S.; Salah, M.G. Geology and hydrocarbon habitat in rift setting: Southern Gulf of Suez, Egypt.
Bull. Can. Petro. Geol. 1994, 42, 312–331.

96. Alsharhan, A.S.; Salah, M.G. Geology and hydrocarbon habitat in rift setting: Northern and central Gulf of
Suez, Egypt. Bull. Canad. Pet. Geol. 1995, 43, 156–176.

97. Pearson, D.L. Pollen/Spore Colour “Standard”; Version 2, Phillips Petroleum Company Exploration Projects
Section; Phillips Petroleum Company, Privately distributed: Bartlesville, OK, USA, 1984.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0079-6611(01)00047-7
http://dx.doi.org/10.1002/jgrc.20286
http://dx.doi.org/10.5194/bg-10-67-2013
http://dx.doi.org/10.2113/gsecongeo.76.4.951
http://dx.doi.org/10.2113/gsecongeo.75.5.764
http://dx.doi.org/10.1016/0146-6380(81)90006-1
http://dx.doi.org/10.2113/gsecongeo.81.4.997
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Geologic Setting 
	Rift-Related Volcanic Activity: Sub-Aerial vs. Sub-Aqueous Vulcanicity 
	The Study Area 

	Methodology 
	Total Organic Carbon (TOC) 
	Sample Preparation and TOC Measurement 

	Results 
	The Petrography 
	The Sudr Formation 
	The Basalt 

	The Thermal Effect of the Dyke 
	The Baked Zone 
	The Thermal Aureole 
	The Metasomatic Effect 


	Discussion 
	The Source of Heat and Heat Transfer Mechanism 
	The Source of H2O 
	Organic Matter, Organic Carbon (OC), and Total Organic Carbon (TOC) 
	TOC, Thermal Maturation, and the Origin of the Baked Zone 

	Implications of the Present Study 
	Conclusions 
	References

