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Abstract: Ba-based ion interference with Eu in coal and coal combustion products during 
quadrupole-based inductively coupled plasma mass spectrometry procedures is problematic. Thus, 
this paper proposes machine-learning-based prediction models for determination of the threshold 
value of Ba interference with Eu, which can be used to predict such interference in coal. The models 
are trained for Eu, Ba, Ba/Eu, and Ba interference with Eu. Under different user-defined parameters, 
different prediction models based on the corresponding model tree can be applied to Ba interference 
with Eu. We experimentally show the effectiveness of these different prediction models and find 
that, when the Ba/Eu value is less than 2950, the Ba-Eu interference prediction model is =–0.18419411 + 0.00050737 × , 0 < < 2950. Further, when the Ba/Eu value is between 2950 and 
189,523, the Ba-Eu interference prediction model of 	 = 	0.293982186	 + 	0.00000181729975	 × 	 ,2950	 < 	 	 < 	189,523 yields the best result. Based on the optimal model, a threshold value of 363 
is proposed; i.e., when the Ba/Eu value is less than 363, Ba interference with Eu can be neglected 
during Eu data interpretation. Comparison of this threshold value with a value proposed in earlier 
works reveals that the proposed prediction model better determines the threshold value for Ba 
interference with Eu.  

Keywords: europium; ICP-Q-MS; polyatomic ion inference; coal; machine learning; regression 
 

1. Introduction 

Rare earth elements and yttrium (REY, or REE if Y is excluded) in coal and coal combustion 
products (CCPs), e.g., fly and bottom ash, have attracted much attention in recent years, not only 
because of the high international demand for these technologically important elements, but also 
because of the restrictions on export from China [1,2]. Seredin and Dai [3] and Dai et al. [4] have 
shown that coal has high potential as a REY source, given that the average concentration of REY 
oxides (REO) in world coal ash is 485 μg/g, which is half the cut-off grade of REO in CCPs (1000 
μg/g). In some cases, CCPs contain >1000 μg/g REO; thus, they could constitute an economically 
viable source for REY extraction. Previous investigations have shown that some coals from China [5–
7], Russia [3,8], and the USA contain high concentrations of REY [9–11], comparable to or even higher 
than those of conventional REY deposits [3]. Other studies concerning REY resources [12,13], modes 
of REY occurrence in coal and CCPs [14,15], and extraction technology [16] have also suggested the 
great potential of coal as REY source. 

The REY (including Eu) concentration in coal and CCPs can be determined via several methods, 
including X-ray fluorescence spectrometry (XRF) [17,18], instrumental neutron activation analysis 
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(INAA) [19–21], laser-ablation inductively-coupled plasma mass spectroscopy (La-ICP-MS) [22], 
sector-field inductively-coupled plasma mass spectroscopy ICP-MS [23], laser-induced break-down 
spectrometry [24–26], and quadrupole-based ICP-MS (ICP-Q-MS) [4,27]. Among these techniques, 
ICP-Q-MS has mostly been used for determination of REY concentrations in coal and CCPs. This is 
because of this method’s ability to rapidly, precisely, and accurately measure REY content at very 
low detection limits in liquid and solid samples, with relatively simple spectra and a wide linearity 
range [14,27–29]. However, in some cases, Eu concentrations in coal and CCPs cannot be accurately 
measured by the ICP-Q-MS. This difficulty is attributed to overlapping ion interference (such as those 
from M+, MO+, and/or MOH+ ions) with Eu, which affects interpretation of the ICP-Q-MS spectra [30–
35]. Because Ba concentrations in coal and CCPs are generally much higher than those of Eu [4,36], 
the most significant types of interference encountered for Eu in coal and CCPs are due to 135Ba16O, 
134Ba16OH, 137Ba16O, and/or 136Ba16OH interfering with 151Eu and/or 153Eu. For example, the ratio of Ba 
vs. Eu for world coals is as high as ~882 (with an average concentration of 150 μg/g Ba and 0.47 μg/g 
Eu) [36]. Therefore, as noted by Dai et al. [4], Eu content values in coal and CCPs determined via ICP-
Q-MS should be treated with great caution.  

Recently, Yan et al. [27] described a reliable analytical method to avoid Ba-based ion interference 
with Eu in coal, CCPs, and sedimentary rocks during ICP-Q-MS procedures, which was based on 
AG50W-X8 cation exchangeable chromatography. Yan et al. [27] provided an estimated Ba/Eu 
threshold value of 1000 and demonstrated that the determined Eu concentration should not be used 
if the Ba/Eu ratio exceeds this threshold value and if no effective action has been taken to avoid Ba 
interference with Eu. However, the Ba/Eu threshold value estimated by Yan et al. [27] is an 
approximation. In a different context, Loges et al. [35] also suggested an experience-based threshold 
value, i.e., Ba/Eu > 1000, to exclude interference of Ba with Eu in ICP-Q-MS analyses of Eu content 
values; however, this is not an accurate estimation either. Determination of an accurate Ba/Eu 
threshold value is important not only to determine if coal can potentially be used as a REY source, 
but also to deduce the geological setting of coal formation using Eu as a reliable indicator. 

In this paper, we propose a threshold value at which Ba interference with Eu has a meaningful 
effect on ICP-Q-MS results, which is determined via prediction models created using machine 
learning algorithms. All Eu and Ba training data employed in this study are from Yan et al. [27]. Yan’s 
work [27] has significantly diminished the inference of 137Ba16O, 136Ba17O, 135Ba18O, and 134Ba18OH on 
153Eu in related samples. They used a Bio-Rad AG50W-x8 cation exchange resin to effectively separate 
Ba from digested solutions of related coal and CCP samples. The results as presented by Yan et al. 
[27] showed that the determination of Ba and Eu in the National Institute of Standards Technology 
(NIST) standard references of coal and fly ash samples using this method is quite reliable. Also, Yan 
et al. [27] showed that the detection limits for Ba and Eu are very low, 0.030 μg/L and 0.006 μg/L, 
respectively, and the determination coefficient of their calibration curves is >0.9999. Unlike other ICP-
Q-MS data which were obtained based on non-separation between Ba and Eu in solutions digested 
from solid samples (e.g., coal samples in the U.S. Geological Survey’s WoCQI database, Palmer et al. 
[37], and in other numerous published papers, for example but not limited to references [38–46]), the 
data by Yan et al. [27] provided a good opportunity for determining the threshold value using 
machine learning algorithms for Ba interference with Eu in coal and coal combustion products by 
ICP-Q-MS. However, there have been some studies to assess the interference of 135Ba16O, 134Ba16OH, 
137Ba16O, and/or 136Ba16OH on 151Eu and/or 153Eu, e.g., determining the yield of Ba-based oxide and 
hydroxide ions using a single-element solution of Ba (e.g., 500 ng/mL Ba in BaCl2 solution) and 
compare the yield of potential interfering irons (e.g., 135Ba16O) with the Eu ions (151Eu) that has the 
same mass number in a single-element solution of Eu [47–49]. A study by Dulski [48] shows that that 
1000 ng/g Ba could cause 0.22 ng/g Eu. Another approach to evaluating the degree of the interference 
is to analyze the correlation relation between Ba and Eu in the related samples, i.e., a linear Ba-Eu 
correlation indicating distinct interference of Ba with Eu [50–56]. 

Classification and regression are two typical algorithms in machine learning [57], with the 
difference between them being that their target variables are discrete and continuous, respectively 
[58]. Here, we employ a model tree [57] based on linear regression and a regression tree to construct 
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prediction models for this interference. Based on analysis of Ba, Eu, and Ba/Eu, the target variables 
for Ba interference with Eu are found to be continuous. Thus, we adopt the regression method for 
prediction of Ba interference with Eu. Empirically, we find that it is difficult to precisely construct a 
global prediction model using linear regression because of the element data complexity. To overcome 
this problem, the models are adjusted to split the element data according to many partitions. In the 
case of the regression tree, classification and regression tree (CART) algorithms [59] are then applied. 

2. Proposed Machine Learning Models for Prediction of Ba Interference with Eu  

In this study, machine learning algorithms were used to develop models of Ba interference with 
Eu in coal. Note that, when a pair of element datasets (e.g., , … ,   and , … ,  for Ba 
and Eu, respectively) is established, the interference between them is difficult to determine. Effective 
Ba-Eu interference prediction depends on various factors including the element concentration, 
element interference, and samples.  

Here, three machine learning models were used to predict Ba interference with Eu, incorporating 
linear regression, regression trees, and model trees. The problem of threshold value identification can 
be represented as the problem of constructing a prediction model between a Ba interference with Eu 
dataset / , … , /  and Ba, Eu, and Ba/Eu ratio datasets , … ,  , , … ,  
and / ,… , /  respectively. 

2.1. Linear Regression Model for Prediction of Ba Interference with Eu  

2.1.1. Linear Regression Model 

The , … ,  and , … ,  datasets used in this study were based on a number of coal 
and ash samples. Furthermore, based on experiments by Yan et al. [27], we calculated / ,… , / . The linear regression prediction model for Ba−Eu interference is: / = ( / ) . (1) 

Specifically, the target variable of Ba−Eu interference /  is related to the different 
element concentrations, i.e., , … , , , … ,  and / ,… , / . Linear regression 
for Ba−Eu interference predicts target interference values. In the model given in Equation (1), the 
vector  is the regression weight. Regression is used to find  and hence, the 
Ba−Eu interference values are predicted.  

2.1.2. Ba−Eu Interference Prediction Error  

The error is defined as the difference between the actual Ba interference with Eu /  and / ; i.e.: ∑ (( / ) − / ) . (2) 

2.1.3. Machine Learning Process for Ba−Eu Interference Prediction  

Training: First, all input concentrations of Ba, Eu, and the Ba/Eu ratio values (i.e., , … , , , … ,  and / ,… , / ), and the interference values of Ba with Eu / … /  are entered. All the input training element data values are prepared and converted 
into matrices. The interference error of the above elements can also be expressed in matrix notation, 
as: = ((x / ) ( / )) ( / ) /  (3) 

This equation is solved using the ordinary least squares method. Hence,  is predicted 
according to the best estimate based on the training element data values. 
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Prediction: Based on the training process described above, the prediction for Ba−Eu interference 
can be estimated from the formula: / = ( / ) . (4) 

2.2. Regression Tree Model for Prediction of Ba Interference with Eu  

2.2.1. Regression Tree Model 

The elements have many features, i.e., , , /  and / , and samples 	and 
. The linear regression model cannot achieve good fitting of … , …  and / ,… , /  with / , … , / , as shown in Figure 1; thus, a nonlinear model 

emerges. The nonlinear model partitions the element concentrations and Ba−Eu interference. Every 
partition can be constructed with linear regression models. Note that in Figure 1, the x-axis is the ratio 
of Ba vs. Eu in digested solutions derived from solid samples before Ba is separated from Eu in the 
solutions; and y-axis is the Eu concentration contributed from Ba ions.  

 
Figure 1. Training data (from Yan et al. [27]). 

The steps of the CART algorithm for constructing the regression tree model for prediction of Ba 
interference with Eu are as follows. The extracted feature is Ba/Eu, i.e., ( / ), … , / . The 
extracted feature value is the interference of Ba with Eu, i.e., / , … , / . For every ( / ), … , / , binary splits are executed to yield two parts ( / ), … , / <, / ,… , / > . Then, for every feature in the two different parts, / , … , / is calculated based on Equation (5). The process surveys every feature and 
value to find the best split that minimizes the error: min{min ( / − )/ + min( ( / − )/ )}; 

 = ∑ // , = ∑ // ,  
(5) 

where	  and  are the feature value numbers in the different parts.  
Based on the binary split process described above, for every feature ( / ), … , / , if 

the feature value / , … , /  is greater than the best split value, we traverse the left side 
of the regression tree, i.e., the left subtree . If the feature value is lower than the best split 
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value, we traverse the right side of the regression tree, i.e., . For  and , we 
survey every feature and feature value to find the best split until the minimum error is achieved (cf. 
Equation (5)). The binary split process is recursive for many iterations until the feature cannot be 
split; then, its feature value is the leaf node. Hence, the Ba interference with the Eu regression trees 
can be determined. 

2.3. Model Tree 

The model tree for prediction of Ba interference with Eu is based on the linear regression and 
regression tree models described above. The steps of the CART algorithm for this model tree are 
similar to those for the regression tree. 

The feature and feature values extracted here are ( / ), … , /  and / , … , / , 
respectively. For every ( / ), … , / , we execute binary splits that yield two parts ( / ), … , / < , / ,… , / > . Then, for every feature in the two different 
parts, we calculate / , … , /  based on Equation (6). We repeat the process for every 
feature and every value to find the best split that minimizes the error; i.e.: min{min∑ (( / ) − )/ + min(∑ (( //) − ) )}  = 1 // ; 										 = 1 //  

 / = ( / ) .  

(6) 

Based on the binary split process above, for every feature ( / ), … , / , if the feature 
value {( / ) , … , ( / ) }  is greater than the best split value, we 
traverse . If the feature value is lower than the best split value, we traverse . For 

 and , we survey every feature and feature value to find the best split until the 
minimum error is achieved (cf. Equation (6)). The binary split process is recursive for many iterations 
until the feature cannot be split; then, its feature value is the leaf node. Hence, model trees for Ba 
interference with Eu can be formed. The difference between the regression tree and model tree is that 
the leaf nodes of the regression tree are constant sets with / , … , / , but the leaf nodes 
of the model tree are linear model sets with{( / ) , … , ( / ) }. 
2.4. Machine Learning Process for Ba−Eu Interference Prediction 

Based on the constructed regression tree and model tree for Ba−Eu interference prediction, the 
proposed machine learning process is implemented as follows.  

Training: All , … , , , … , , / ,… , / , and / … /  are 
entered. 

Regression tree for prediction: After regression tree training, we perform binary splits to obtain 
 parts recursively, and obtain a prediction of the Ba−Eu interference / = ∑ / ∈  

based on determination of the best split that minimizes the error:  ∑ {min{min∑ ( / − )/ + min(∑ ( / − )/ )}, = ∑ // ,	 = ∑ // .  
(7) 

Model tree for prediction: After the Ba−Eu interference model tree training, we execute binary 
splits to obtain  parts recursively, and obtain / = ∑ / ∈  based on 
determination of the best split that minimizes the error:  ∑ {min{min∑ (( / ) − )/ + min(∑ (( / ) − )/ )}, (8) 
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/ = ( / ) . 

From the above analysis, the model tree for prediction of Ba interference with Eu is selected. 

3. Results and Performance Evaluation 

3.1. Simulation Setup 

To implement the Ba−Eu interference prediction models and calculate the Ba/Eu threshold value, 
the Python programming language [60] was used. The prediction models for the Ba interference with 
Eu were constructed as follows: 

(1) All relevant element data were collected, as detailed in Tables 1 and 2.  
(2) All input element data were prepared. Note that all Ba, Eu and Ba/Eu concentrations were 

prepared in a standard Python format list.  
(3) The element data were analyzed. Note that all input element data could be analyzed for 

feature selection. These features included , ,  / , / , and , . 
(4) The algorithm was trained. To achieve the target variable, i.e., the Ba interference with Eu, 

and the threshold points of the element, i.e., Ba/Eu, we implemented the model tree based on linear 
regression and the regression tree in Python. 

(5) The algorithm was tested. That is, the performance of the interference prediction model 
obtained in the above step was tested. 

Table 1. Description for Ba/Eu in related samples used by Yan et al. [27]. 

Sample Ba/Eu Type Description 
SRM2682b 2247 Coal 

National Institute of Standards and Technology (NIST) 
standard reference samples 

SRM2685b 292 Bituminous Coal 
SRM2690 2900 

Fly ash 
SRM2691 2950 

WLTG C6-2 18,598 Low-rank Coal 
No. 6 coal of Wulantuga Deposit (Shengli Coalfield, Inner 

Mongolia [61]) 

ZJ-4-6 3813 
Low-rank Coal 

No. 4 coal of Zhoujing Mine, Baise Coalfield, Guangxi 
Province 

ZJ-5-12 2083 
No. 5 coal from Zhoujing Mine, Baise Coalfield, Guangxi 

Province  
X1-1R 202,200 Carbonate 

metasomatites Dazhai Mine, Lincang Ge ore deposit, Yunnan Province 
[62,63] 

X1-2R 42,236 
Z2-15F 51,027 Quartz-carbonate 

metasomatites Z2-16F 33,816 
LL5-K3-8 13.18 

Semi-anthracite 
No. K3 coal from the La-Lang 5 Mine, Yishan Coalfield, 

Guangxi Province [55] LL5-K3-13 10.69 
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Table 2. Certified (Cer), Before separation (BS) and after separation (Steps 1−4) values of Eu and Ba (μg/g) in coal and coal-related samples [27] (BDL: below detection 
limit). 

Elements 
SRM2690 (Ba/Eu = 2900) X1-1R (Ba/Eu = 202,200) X1-2R (Ba/Eu = 42,236) 

Cer BS Step 1  Step 2  Step 3 Step 4  BS Step 1  Step 2  Step 3 Step 4  BS Step 1  Step 2 Step 3 Step 4  
153Eu 2.00  4.01  BDL 0.00  1.87  2.00  0.52  BDL 0.00  0.62  0.01  0.25  BDL BDL 0.25  0.02  

137Ba 5800.00  6390 1.06  0.34  5852.23  112.10  1895.23  0.45  0.07  2022.00  22.03  814.53  4.02  0.09  844.67  12.66  

Elements 
SRM2691 (Ba/Eu = 2950) Z2-15F (Ba/Eu = 51,027) Z2-16F (Ba/Eu = 33,816) 

Cer BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 
153Eu 2.00  4.08  BDL BDL 1.88  1.93  0.44  BDL BDL 0.45  0.03  0.38  BDL BDL 0.42  0.05  

137Ba 5900.00  6109.00  0.88  0.52  6392.00  193.00  1493.23  0.79  0.03  1530.89  32.79  1357.23  2.85  0.26  1690.89  22.93  

Elements 
SRM2682b (Ba/Eu = 2247) ZJ-4-6 (Ba/Eu = 3813) ZJ-5-12 (Ba/Eu = 2083) 

Cer BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 
153Eu 0.17  0.23  BDL BDL 0.07  0.16  0.18  BDL 0.00  0.08  0.10  0.24  BDL BDL 0.08  0.17  

137Ba 382.00  368.77  BDL 0.54  407.21  0.83  350.47  BDL 0.42  381.32  BDL 329.47  1.80  0.60  353.99  BDL 

Elements 
SRM2685b (Ba/Eu = 292) WTGC6-2 (Ba/Eu = 18,598) LL5-K3-8 (Ba/Eu = 13.18) 

Cer BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 BS Step 1 Step 2 Step 3 Step 4 
153Eu 0.36  0.33  BDL BDL 0.02  0.34  0.61  BDL BDL 0.54  0.14 2.59  BDL BDL 0.03  2.41 

137Ba 105.00  97.60  BDL 0.40  113.10  BDL 2428.27  0.40  0.40  2603.77  BDL 26.23  3.43  0.68 31.77 3.72 

Elements 
LL5-K3-13(Ba/Eu = 10.69)            

BS Step 1 Step 2 Step 3 Step 4            
153Eu 2.23  BDL 0.01 BDL  2.24               
137Ba 19.00 BDL BDL 23.94  2.15            
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3.2. Model Tree for Prediction of Ba Interference with Eu  

The input element data sets were prepared as detailed in Table 3. For execution of the model 
tree for element interference prediction in Python, two variables were necessary: tolS and tolN, the 
tolerance of the Ba−Eu interference error reduction and the minimum Ba related to Eu data instances 
in a split, respectively. Note that the model tree was sensitive to the tolS and tolN settings. and 
different settings yielded different prediction models.  

Table 3. Training data [27]. 

Sample Group No Ba/Eu Ba Interference with Eu 
SRM2682b 1 8.48 0.01 
SRM2685b 2 10.88 0.03 
SRM2690 3 291.67 0.02 
SRM2691 4 1938.06 0.08 

WLTGC6-2 5 2247.06 0.07 
ZJ-4-6 6 2900 1.87 
ZJ-5-12 7 2950 1.88 
X1-1R 8 3504.7 0.08 
X1-2R 9 17,344.79 0.54 
Z2-15F 10 27,144.6 0.42 
Z2-16F 11 40,726.5 0.25 

LL5-K3-8 12 49,774.33 0.45 
LL5-K3-13 13 189,523 0.62 

We performed model tree experiments for element interference prediction by inputting rare 
earth element data sets. All prediction models are detailed in Table 4. For (tolS,tolN) = (0,1) and (0,2), 
the prediction model for Ba interference with Eu is shown in Figure 2a. There are six split values: (1) 
when the Ba/Eu value is greater than 40,726.5, the Ba−Eu interference prediction model is a linear 
regression, where = 0.389451044 + 0.00000121646954 × , > 40,726.5;  (2) when the Ba/Eu 
value is less than 40,726.5 and greater than 17,344.79, the interference prediction model is a linear 
regression, with = 0.759759680 − 0.0000125166582 × , 17,344.79 < < 40,726.5; (3) when the 
Ba/Eu value is less than 17,344.79 and greater than 2950, the interference prediction model is a linear 
regression, where = −0.0364849362 + 0.0000332367781 × , 2950 < < 17,344.79; (4) when the 
Ba/Eu value is less than 2950 and greater than 2247.06, the interference prediction model is a linear 
regression, with = 1.29 + 0.0002 × , 2247.06 < < 2950; (5) when the Ba/Eu value is less than 
2247.06 and greater than 10.88, the interference prediction model is a linear regression, with =0.0131201121 + 0.0000291815483 × , 10.88 < < 2247.06; and (6) when the Ba/Eu value is less 
than 10.88, the interference prediction model is a linear regression, where = −0.06066667 +0.00833333 × , < 10.88.  

Table 4. Prediction models for Ba interference with Eu based on model tree. 

Variables  
(tolS, tolN) 

Prediction Models for Ba Interference with Eu Based on Model Tree 

(0,1), (0,2) 

= 0.389451044 + 0.00000121646954 × , > 40,726.5; = 0.759759680 − 0.0000125166582 × , 17,344.79 < < 40,726.5; = −0.0364849362 + 0.0000332367781 × , 2950 < < 17,344.79; = 1.29 + 0.0002 × , 2247.06 < < 2950; = 0.0131201121 + 0.0000291815483 × , 10.88 < < 2247.06; = −0.06066667 + 0.00833333 × , < 10.88 

(0,3) 

= 0.259761293 + 0.00000193096467 × , > 27,144.6 = 0.0966488103 + 0.0000156280402 × , 2950.0 < < 27,144.6 = −5.88574265 + 0.00265247237 × , 1938.06 < < 2950.0 = 0.0169820389 + 0.0000320448913 × , < 1938.06 
(0,4), (0,5), (0,6), 

(1,4), (1,5), (1,6), (2,4), (2,5), (2,6) 
= −0.18419411 + 0.00050737 × , 0 < < 2950 = 0.293982186 + 0.00000181729975 × , 2950 < < 189,523 

(0,7,…,∞), (1,7,…,∞), (2,7,…,∞),  
(3,…,∞, 1,…,∞) 

= 0.471722528 + 5.54453477× 10 ×  
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(1,1), (1,2), (2,1), (2,2) 
= 0.293982186 + 0.00000181729975 × , > 2950 = 1.29 + 0.0002 × , 2247.06 < < 2950 = 0.017931963 + 0.0000267651624 × , < 2247.06 

(1,3) (2,3) 
= 0.293982186 + 0.00000181729975 × , > 2950 =	−5.88574265 + 0.00265247237 × , 1938.06 < < 2950 = 0.0169820389 + 0.0000320448913 × , < 1938.06 

 
Figure 2. Prediction models with variables (tolS, tolN) of (a) (0,1), (0,2); (b) (0,3); (c) (0,4), (0,5), (0,6), 
(1,4), (1,5), (1,6), (2,4), (2,5), (2,6); (d) (0,7,…,∞), (1,7,…,∞), (2,7,…,∞), (3,…,∞, 1,…,∞); (e) (1,1), (1,2), 
(2,1), (2,2); (f) (1,3) (2,3). 

For (tolS, tolN) = (0,3), the model trees for prediction of Ba interference with Eu are shown in 
Figure 2b, having four split values: (1) when the Ba/Eu value is greater than 27,144.6, the interference 
prediction model is a linear regression, with = 0.259761293 + 0.00000193096467 × , >27,144.6; (2) when the Ba/Eu value is greater than 2950 and less than 27,144.6, the interference 
prediction model is a linear regression, with = 0.0966488103 + 0.0000156280402 × , 2950.0 << 27,144.6; (3) when the Ba/Eu value is less than 2950 and greater than 1938.06, the interference 
prediction model is a linear regression, where = −5.88574265 + 0.00265247237 × , 1938.06 << 2950.0; and (4) when the Ba/Eu value is less than 1938.06, the interference prediction model is a 
linear regression, where = 0.0169820389 + 0.0000320448913 × , < 1938.06.  

For (tolS, tolN) = (0,4), (0,5), (0,6), (1,4), (1,5), (1,6), (2,4), (2,5), (2,6), the model trees for interference 
prediction of Ba on Eu are shown in Figure 2c. (1) When the Ba/Eu value is less than 2950, the Ba 
interference with Eu prediction model is a linear regression, with = −0.18419411 + 0.00050737 ×
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, 0 < < 2950; (2) when the Ba/Eu value is greater than 2950 and less than 189,523, the interference 
prediction model is a linear regression, where = 0.293982186 + 0.00000181729975 × , 2950 << 189,523. 

For (tolS, tolN) = (0,7,…,∞), (1,7,…,∞), (2,7,…,∞), (3,…,∞,1…,∞), the model trees for prediction of 
Ba interference with Eu are shown in Figure 2d.  

For (tolS, tolN) = (1,1), (1,2), (2,1), and (2,2), the model trees for prediction of Ba interference with 
Eu are shown in Figure 2e. (1) When the Ba/Eu value is greater than 2950, the interference prediction 
model is a linear regression, with = 0.293982186 + 0.00000181729975 × , > 2950; (2) when the 
Ba/Eu value is less than 2950 and greater than 2247.06, the interference prediction model is a linear 
regression, where = 1.29 + 0.0002 × , 2247.06 < < 2950; and (3) when the Ba/Eu value is less 
than 2247.06, the interference prediction model is a linear regression, with = 0.017931963 +0.0000267651624 × , < 2247.06. 

For (tolS, tolN) = (1,3), (2,3), the model trees for prediction of Ba interference with Eu are shown 
in Figure 2f. (1) When the Ba/Eu value is greater than 2950, the interference prediction model is a 
linear regression, with = 0.293982186 + 0.00000181729975 × , > 2950 ; (2) when the Ba/Eu 
value is less than 2950 and greater than 1938.06, the interference prediction model is a linear 
regression, where = −5.88574265 + 0.00265247237 × , 1938.06 < < 2950; and (3) when the 
Ba/Eu value is less than 1938.06, the interference prediction model is a linear regression, with =0.0169820389 + 0.0000320448913 × , < 1938.06. 

3.3. Results 

For all the model trees of the Ba−Eu interference prediction model illustrated in Figure 2, the 
training data sets of the Ba/Eu ratio and the Ba interference with Eu were scattered, as shown in 
Figure 1. The points (2900,1.87) and (2950,1.88) were outliers from the other Ba/Eu ratio and Ba 
interference with Eu data points.  

All prediction models with (tolS, tolN) = (0,1), (0,2), (0,3), (1,1), (1,2), (2,1), (2,2), (1,3), and (2,3) 
contained outlier points of (2950,1.88) and (2900,1.87). The prediction models with (tolS,tolN) = 
(0,7,…,∞), (1,7,…,∞), (2,7…,∞), (3,…,∞,1,…,∞) yielded lower prediction accuracy; thus, these models 
were imprecise.  

The optimal values of (tolS, tolN) for the prediction model of Ba interference with Eu were found 
to be (0,4), (0,5), (0,6), (1,4), (1,5), (1,6), (2,4), (2,5), and (2,6). When the Ba/Eu value was less than 2950, 
a linear regression was obtained for the interference prediction model, where = −0.18419411 +0.00050737 × , 0 < < 2950. Further, when the Ba/Eu value was greater than 2950 and less than 
189,523, the interference prediction model was found to be a linear regression, with =0.293982186 + 0.00000181729975 × , 2950 < < 189,523. From the optimal models, a threshold 
point value of 363.0370538 could be determined. Note that, when the Ba/Eu value is 363.0370538, it is 
not necessary to consider the Ba interference with Eu; thus, the Eu values can be interpreted from the 
data for the investigated samples. 

3.4. Performance Evaluation 

To verify the threshold value for Ba interference with Eu proposed in this paper, a wide dataset 
of Ba/Eu values covering 2−361 through 379−938 to 1042−3305 from previously published literature 
was used (Tables 5 and 6) [62,64,65]. The data for the testing were selected from Dai et al. [62,64] and 
Duan et al. [65], because these data points were all obtained via ICP-Q-MS. Thus, the Ba 
concentrations were expected to interfere with the Eu concentrations in the samples if the Ba/Eu 
values exceeded the threshold value, either at 1000 (as proposed in previous works) or at 363 (as 
proposed in this study). A total of 41 coal bench samples from a boehmite-rich 36.37-m-thick 
Pennsylvanian coal seam in Inner Mongolia, northern China, were considered, which were reported 
by Dai et al. [64]. A total of 60 coal bench samples from three Ge-rich Neogene coals from Lincang, 
Yunnan Province, southwestern China, were considered, which were reported by Dai et al. [62]. 
Further, a total of 27 coal bench samples from Reshuihe, Zhenxiong, Yunnan Province, China, were 
considered, which were reported by Duan et al. [65]. The test datasets presented in Tables 5 and 6 
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could be classified into three groups: Ba/Eu < 363, Ba/Eu = 363−1000, and Ba/Eu > 1000. We compared 
the threshold value of 363 determined from our proposed model with the value of 1000 proposed by 
others (e.g., [4,27,35]). Based on Table 5, the correlation coefficient of Ba and Eu was 0.1326 and 0.9659 
when Ba/Eu was < 363 and >1000, respectively. When Ba/Eu varied from 363 to 1000, the Ba and Eu 
correlation coefficient remained as high as 0.9545, as illustrated in Figure 3A. Based on Table 6, the 
correlation coefficient of Ba and Eu was 0.231 and 0.9318 when Ba/Eu was < 363 and >1000, 
respectively. When Ba/Eu varied from 363 to 1000, the Ba and Eu correlation coefficient remained as 
high as 0.9317, as illustrated in Figure 3B. The distinctively different correlation coefficients for Ba 
and Eu in the different Ba/Eu ranges show that the threshold value of 363 is more accurate for 
determination of Ba interference with Eu than the previously proposed value of 1000.  

 
Figure 3. Performance comparison with test data of (A) Table 5; (B) Table 6. 

Table 5. Ba, Eu, and Ba/Eu data for test (Data from Dai et al. [62,64]). 

Sample Ba Eu Ba/Eu 
S3-1R 434 0.61 711.4754098 
S3-2R 315 1.63 193.2515337 
S3-4 81.3 0.12 677.5 
S3-5 87.3 0.14 623.5714286 
S3-6 85.9 0.16 536.875 
S3-7 93.0 0.10 930 
S3-8 113 0.09 1255.555556 

S3-9F 213 0.59 361.0169492 
S3-10F 536 0.79 678.4810127 
S3-11F 561 0.79 710.1265823 
WA-S3 90.6 0.13 696.9230769 
Z2-1R 466 0.60 776.6666667 
Z2-2 103 0.14 735.7142857 
Z2-3 111 0.10 1110 

Z2-4P 448 0.17 2635.294118 
Z2-5P 94.6 0.07 1351.428571 

Z2-5LP 156 0.12 1300 
Z2-6P 285 0.51 558.8235294 
Z2-7 101 0.09 1122.222222 
Z2-8 97.0 0.09 1077.777778 
Z2-9 79.4 0.11 721.8181818 

Z2-10 171 0.31 551.6129032 
Z2-11P 213 0.26 819.2307692 
Z2-12 126 0.09 1400 
Z2-13 107 0.13 823.0769231 
Z2-14 226 0.21 1076.190476 

Z2-15F 1398 0.43 3251.162791 
Z2-16F 1305 0.41 3182.926829 
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WA-Z2 122 0.13 938.4615385 
X1-1R 1818 0.55 3305.454545 
X1-2R 739 0.25 2956 
X1-3R 843 0.34 2479.411765 
X1-4 84.2 0.13 647.6923077 
X1-5 77.7 0.12 647.5 
X1-6 86.1 0.12 717.5 
X1-7 67.8 0.12 565 
X1-8 99.3 0.11 902.7272727 
X1-9 146 0.14 1042.857143 

X1-10 87.0 0.16 543.75 
X1-11 82.5 0.14 589.2857143 
X1-12 75.7 0.22 344.0909091 
X1-13 86.9 0.13 668.4615385 
X1-14 70.6 0.10 706 
X1-15 143 0.28 510.7142857 

X1-16F 276 1.39 198.5611511 
X1-17F 247 1.16 212.9310345 
X1-18F 582 0.80 727.5 
WA-X1 91 0.14 650 
1418-1 58 0.18 322.2222222 
1418-2 54 0.13 415.3846154 
1418-3 148 0.39 379.4871795 
H-15 25 0.5 50 
H-16 28 0.8 35 
H-17 24 0.46 52.17391304 
H-18 16 0.21 76.19047619 
H-19 23 0.42 54.76190476 
H-20 26 0.22 118.1818182 
H-21 18 0.39 46.15384615 
H-22 21 0.39 53.84615385 

H-22-23-P 25 0.14 178.5714286 
H-23 18 0.38 47.36842105 
H-24 20 0.30 66.66666667 

H-24-25-P 24 0.17 141.1764706 
H-25 34 0.9 37.77777778 
H-26 16 0.5 32 
H-27 24 0.49 48.97959184 
H-28 30 0.9 33.33333333 
H-29 28 0.9 31.11111111 
H-B1 17 0.32 53.125 
H-B2 28 1.1 25.45454545 
H-B3 118 1.7 69.41176471 
WG-1 176 0.21 838.0952381 
CS-1 68 0.16 425 

1104/1 50.6 0.1 506 
H-T 1029 1.0 1029 
H-1 25 0.5 50 

H-1-2-P 45 3.2 14.0625 
H-4 74 1.4 52.85714286 
H-5 32 0.9 35.55555556 

H-5-6-P1 57 1.1 51.81818182 
H-5-6-P2 25 0.4 62.5 

H-6 35 0.9 38.88888889 
H-7 46 1.1 41.81818182 
H-8 30 0.6 50 

H-8-9-P 23 0.09 255.5555556 
H-9 15 1.6 9.375 
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H-10 28 0.7 40 
H-11 22 0.44 50 
H-12 26 0.42 61.9047619 
H-13 21 0.41 51.2195122 
H-14 22 0.5 44 
S3-4 81.3 0.12 677.5 

1418-4 73 0.08 912.5 

Table 6. Ba, Eu, and Ba/Eu data for test (Data from Duan et al. [65]). 

Sample Ba Eu Ba/Eu 
1 41.37 0.43 96.2093023 
2 37.07 0.36 102.972222 
3 57.96 0.41 141.365854 
4 102.69 0.44 233.386364 
5 142.94 0.44 324.863636 
6 223.67 0.33 678 
7 34.81 0.38 91.6052632 
8 30.59 0.38 80.5 
9 33.97 0.37 91.8108108 
10 52.04 0.42 123.904762 
11 110.63 0.41 269.829268 
12 158.85 0.44 361.022727 
13 240.5 0.4 601 
14 32.9 0.39 84.3589744 
15 45.71 0.26 175.807692 
16 67.95 0.32 212.34375 
17 132.77 0.38 349.394737 
18 231.42 0.35 661 
19 364.43 0.42 868 
20 546.4 0.62 881 
21 25.16 0.27 93.1851852 
22 28.98 0.39 74.3076923 
23 749.07 0.46 1628.41304 
24 1304.88 0.58 2249.7931 
25 1648.57 0.72 2289.68056 
26 2296.27 0.94 2442.84043 
27 3086.02 1.59 1940.89308 
28 28.98 0.39 74.30769231 

1–7, Size (mm): 6–13, Density (kg/L): <1.4, 1.4–1.5, 1.5–1.6, 1.6–1.7, 1.7–1.8, >1.8, Feed coal; 8–14, Size 
(mm): 3–6 mm, Density (kg/L): <1.4, 1.4–1.5, 1.5–1.6, 1.6–1.7, 1.7–1.8, >1.8, Feed coal; 15–21, Size (mm): 
0.5–3 mm; Density (kg/L): <1.4, 1.4–1.5, 1.5–1.6, 1.6–1.7, 1.7–1.8, >1.8, Feed coal; 22–28, Size (mm): <0.5 
mm , Density (kg/L): <1.4, 1.4–1.5, 1.5–1.6, 1.6–1.8, >1.8, Feed coal. 

4. Conclusions  

In conclusion, to determine the threshold value of Ba interference with Eu in the context of ICP-
Q-MS data analysis, three machine learning techniques—namely, the linear regression, regression 
tree, and model tree methods—were used to construct prediction models of Ba interference with Eu 
in coal and coal-related samples. The CART algorithm was applied to the tree regression. To apply 
the models for prediction of Ba interference with Eu, all related data, including that on Ba, Eu, Ba/Eu, 
and Eu interference, were collected and prepared. A Ba−Eu interference linear regression model, 
regression tree, and model tree were implemented in Python for prediction. The results showed that 
the model tree is far superior to the regression tree for determination of Ba/Eu threshold points. The 
extracted feature was Ba/Eu and the extracted feature value was the interference of Ba with Eu. From 
all obtained prediction models, an optimal threshold point value of 363 was determined. This 
indicates that, when the Ba/Eu value is <363, the Ba interference with Eu can be neglected; thus, the 
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Eu concentrations in samples can be determined based on ICP-Q-MS data. Based on the results of 
simulations in which the threshold value of 363 proposed in this study and that of 1000 proposed in 
other works (e.g., [4,27,35]) were compared, the former is more accurate for determining whether Ba 
interferes with Eu in investigated samples. In the future, we will use deep learning techniques [66–
68] to determine the threshold value of Ba interference with Eu. 
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