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Abstract: A mining complex is composed of mines, mineral processing streams, stockpiles, and waste
facilities, which culminate with generated products that are delivered to customers. The supply
uncertainty and variability of materials extracted from the mines, which flow through a mining
complex to generate products, can be quantified through geostatistical simulations and can be used
as inputs to the simultaneous optimization of mining complexes. A critical aspect to consider is
that mineral deposits are characterized by spatially complex, non-Gaussian geological properties
and multiple-point connectivity of high-grades, features that are not captured by conventional
second-order simulation methods. This paper investigates the benefits of simultaneously optimizing
a mining complex where the simulations of the mineral deposit are generated by a high-order,
direct-block simulation approach. The optimized life-of-mine (LOM) production schedule is
compared to a case in which the same setting is optimized by having the related simulations
generated using a second-order simulation method. The comparison shows that the incorporation
of simulations that reproduce the spatial connectivity of high-grades results in a more informed
LOM production schedule. The sequence of extraction is driven by the spatial connectivity of
high-grades, resulting in a mill throughput with better material quality and reduced waste extraction.
Furthermore, the discounted cash-flow increases by more than 5% as compared to the case in which
the second-order simulations are used.

Keywords: simultaneous optimization of mine complexes; high-order simulation; direct block
support simulation; connectivity of high-grades

1. Introduction

A mining complex can be perceived as a transfer function that entails complex interactions,
starting with the extraction of materials from the mines through to their transformation into saleable
products, passing through different processes in the mineral value chain [1,2]. It can include,
for example, multiple mines, various elements and material types, stockpiles, tailings facilities,
waste dumps, processing plants and transportation systems [3]. The simultaneous stochastic
optimization of a mining complex maximizes the global value of the mining operation by integrating
all of the components in a single framework, while also including the uncertainty and variability of
materials sourced from the mines as a set of stochastically generated realizations [1,2,4–7].

The modeling of large mining operations as an integrated mathematical model has advanced
over the last three decades. Newmont Mining Corporation pioneered the area, proposing a linear
programming approach to the massive gold mining complex in Nevada [8]. BHP also contributed
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significant improvements with the development of the Blasor optimizer, BHP’s in-house software that
was applied to the Yandi mine complex in Australia [9], optimizing the life-of-mine extraction sequence
from multiple pits. Additional applications have extended the software to optimize and assess more
complex requirements [10,11]. Whittle [12] and Whittle [13] describe an industry standard tool to
sequence the extraction of material from multiple deposits in operations with complex blending and
processing requirements. Topal and Ramazan [14] present an approach based on linear network flow
to optimize a mining complex in Western Australia with more than 100 pits and 13 processing facilities.
Khan and Asad [15] propose a mixed integer linear programming model extending the standard
cut-off grade strategy used in the industry for the case of multiple processing streams. Although
the methods mentioned above represent significant efforts to integrate the multiple components of a
mining complex in order to capitalize on synergies, simplifications exist. Conventional approaches
optimize the mining complex by solving each step or component sequentially; thus, they do not benefit
from the interaction and cooperation of different components, which leads to suboptimal solutions for
a value chain as a whole [1,3]. Another limitation in the studies to date is the aggregation of mining
blocks into larger decision variable units, such as panels, which is done to make the optimization
simpler but can misrepresent the mining selectivity. Moreover, the uncertainty in material supply
coming from the mines has been long recognized as the primary cause of technical risk in mining
operations [16] and, if left unmanaged, leads to unexpected deviations in production targets [17–20].

The spatial uncertainty and variability of attributes in geosciences can be quantified via
geostatistical simulations [21–26], which are founded on the concept of random fields. The sequential
simulation approach is an alternative to assess these attributes at each unsampled location of a
three-dimensional orebody model through Monte Carlo sampling from a conditional distribution
function [21–23]. Traditional simulation methods are based on the second-order statistics, namely,
mean and covariance (variogram), where sequential Gaussian simulation (SGS) [23,27,28], sequential
indicator simulation (SIS) [23] and sequential direct block simulation [29,30] are some examples.
However, geological attributes of spatially distributed phenomena are represented by complex
non-Gaussian and non-linear spatial connectivity of low- and high-grades. Using only up to
second-order statistical statistics in spatial simulations is not sufficient to fully describe complex
geological attributes [31]. In addition, Gaussian simulation methods maximize spatial disorder
(maximum entropy) beyond the imposed variogram in the realizations generated [32], thus preventing
a more realistic quantification of the connectivity of high-grades.

Multiple-point statistics (MPS) simulation methods have been introduced in an attempt to address
the above limitations [33–42]. MPS methods replace the random field model with a geological analogue
or training image (TI) and facilitate the reproduction of complex curvilinear and other geologic features
in the realizations generated, while avoiding distributional assumptions. A consequence of extracting
patterns from a TI is that generated realizations are TI-driven and their spatial statistics may be
different from those of the available data, particularly when relatively dense drillhole data sets
are available [43,44]. As a natural extension of second-order methods, the high-order simulation
framework [45–50] can reproduce very complex non-linear geometries and spatial statistics from data
by explicitly calculating high-order spatial cumulants. The generated realizations present a more
realistic and structured connectivity of high-grades (lower entropy) compared to traditional methods,
as shown in the example in Figure 1.

The appropriate characterization of spatial connectivity and its impact in flow modelling are
well-studied subjects in the context of reservoirs and aquifers [32,51–53]. In the mining context,
some studies have shown that the use of different simulation frameworks impacts the output of transfer
functions [54,55]. Geostatistical simulations have been effectively incorporated into state-of-the-art
simultaneous stochastic optimization of mining complex frameworks [1,2,4–6,56,57]. The next step is
to investigate the effects of high-order simulation models in this optimization framework.
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Figure 1. Connectivity of high-grades along X (a) and Y (b) direction, calculated for the 99th percentile 
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This paper presents an application of the high-order direct block-support simulation method [48]
used as an input to the simultaneous stochastic optimization of a simplified mine complex, using the
framework proposed by Goodfellow and Dimitrakopoulos [6]. As a means of comparison, the same
mine complex is optimized using simulations obtained with a second-order method. The differences
in life-of-mine production schedules and related production forecasts, optimized for each case,
are analyzed and discussed. The following sections provide a brief description of the high-order direct
block simulation framework and the optimization model. This is followed by a comprehensive analysis
of the different outcomes from the two approaches, and finally, a conclusion section is presented.

2. Materials and Methods

2.1. Modeling a Mineral Deposit Using Geostatistical Simulations

Considering a random function (RF) ZP(xi), xi ∈ Rd, where xi represents the location of the point
support grid to be simulated in the domain D ∈ Rd and zP

i a realization of ZP(xi). The set of initial
data is given by dn = {zp(xk), k = 1, . . . , n} and represents the values obtained from the exploration
data. Now consider the set Λi with the data and previously simulated nodes, i.e., Λ0 = {dn} and
Λi = {Λi−1 ∪ Z(xi)}. Thus, under the sequential simulation framework [23,27,52,58,59] the global
conditional distribution can be decomposed in the multiplication of the univariate distributions

f
(

x1, . . . , xn; zP
1 , . . . , zP

n |Λ0

)
= f

(
x1; zP

1 |Λ0

)
∗ . . . ∗ f

(
xn; zP

n |Λn−1

)
(1)

2.1.1. High-Order Direct Block-Support Simulation

Instead of simulating the entire deposit at the point support discretization, the work by de
Carvalho et al. [48] presents an alternative method that allows the generation of high-order simulations
directly at the block scale. Assume zv

i is a realization of the RF Zv(vi) at the block support scale,
defined in the same domain D ∈ Rd, where vi represents the centroid of the block in consideration.
Additionally, the conditional distribution, f

(
vi; zv

i |Λ0, Λv
i−1
)
, is derived directly at the block support

scale, where Λv
j = {zv(vm), m = 1, . . . , j} is the set of previously simulated blocks.

The cross-support f
(
vi; zv

i |Λ0, Λv
i−1
)

distribution is simplified according to Bayes rule as

f
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)
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(2)
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where λ0 and λv
i−1 are the set of locations of Λ0 and Λv

i−1, respectively. For simplicity,

f
(

vi, λ0, λb
i−1; zv

i , Λ0, Λb
i−1

)
is referred to herein as

f
(
vi, λ0, λv

i−1; zv
i , Λ0, Λv

i−1
)

= f
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i ,
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zp
1 , . . . , zp

n

}
︸ ︷︷ ︸
exploration data

,
{

zv
1, . . . , zv

i−1
}︸ ︷︷ ︸

previously simulated blocks


= f
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1 , . . . , zp
n

) (3)

Thus, the above is approximated as
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(
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where ϕm(·) belongs to the set of Legendre-like orthogonal splines [49,60], and the coefficient Li...jk...l
is approximated experimentally by

Li...jk...l ≈ E
[

ϕi(zv
1) . . . ϕj

(
zv

nv

)
ϕk

(
zp

1

)
. . . ϕl

(
zp

np

)]
(5)

The method utilizes a TI represented in both support sizes, point and block. Thus, having a spatial
template obtained with the block to be simulated and neighboring values, both at the block and point
support, this TI is scanned searching for replicates of the template in consideration. The algorithm for
block support high-order simulation can be summarized as:

1. Upscale the TI inputted at point support to block support.
2. According to the sequential simulation framework, define a random path to visit all the

unsampled block locations.
3. At each block location:

a. Find the closest point and block support values for conditioning.
b. Obtain a spatial template configuration formed by the block to be simulated and related

conditioning values.
c. Scan the TI searching for replicates of the above template.
d. Calculate the spatial cross-support coefficients Li...jk...l using Equation (5).

e. Derive the conditional cross-support joint probability density function f
(
vi; zv

i |Λ0, Λv
i−1
)

by first calculating the joint distribution in Equation (4), then normalizing the distribution
in Equation (2).

f. Draw a uniform value from [0, 1] to sample zv
i from the conditional cumulative distribution

derived from the above.
g. Add zv

i to the simulation grid at block support at location vi to be used as conditioning
value to the simulation of a subsequent block.

4. Repeat steps 2 and 3 to generate additional realizations.

2.1.2. Sequential Gaussian Simulation

The case study in Section 3 also applies the sequential Gaussian simulation (SGS) [23,27,61].
The method assumes that the conditional distribution f

(
xi; zp

i |Λi−1

)
is Gaussian, which facilitates the

simulation process, since its approximation only requires the definition of two parameters, namely,
mean and variance. For this reason, the original data is transformed into the Gaussian space typically
by a graphical transformation; and at every node, the method solves a kriging system to obtain the
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posterior mean and variance. The simulation is performed at the point support scale with a subsequent
re-blocking procedure to generate block-support models.

2.2. Mathematical Formulation of the Simultaneous Optimization of Mining Complexes

The current study uses the simultaneous optimization of mining complexes model proposed
in [1,6], which is summarized as follows. In this setting, the mine is discretized into mining blocks
indexed in b ∈ B. The framework considers that each block has simulated attributes, such as grades
and material types, which will denote a stochastic scenario s ∈ S. The extraction of each block b in
period t ∈ T incurs a mining cost MCb,t, but its extraction can only happen if the set of predecessors
O(b) has already been extracted. Once extracted, the material can flow from the mine to a stockpile
or a destination, such as waste pile, leach pad or mill (processors i ∈ P). The cost associated with
material transportation is given by TCi,a,t. The amount of property a in location i, period t and scenario
s is quantified in va,i,t,s. Material that flows from the mine to a location, for example, ore tonnage,
is indexed in p ∈ P, whereas transformations, potentially non-linear ones such as recovery, are indexed
in h ∈ H. Thus, ph,t,s denotes the unitary value of selling the material property h, in period t and
scenario s. PCi,p,t is the processing cost of treating material property p, in location i at the period
t. The set of production targets is represented by Pc, where deviations are quantified in d±i,a,t,s and
penalized by the cost c±i,a,t. The model also incorporates smoothing and sink constraints [62,63], where
deviations of these targets are quantified in and penalized by dsmooth

b,t , dsink
b,t,v and csmooth

b,t , csink
b,t , respectively.

Additional sets of constraints such as slope, reserve, capacities, destination policy and processing
stream constraints are detailed in [6].

There are three types of decision variables in the described model. Extraction sequence
(xb,t ∈ {0, 1}) returns 1 if the block b is extracted at the period t, 0 otherwise. Destination decisions(

zg,j,t ∈ {0, 1}
)

define where to send a group of material g to the destination j at the period t.
These groups are defined in a similar manner to what is described in [11], where pre-defined grade
bins are inputted, and the optimizer decides the single element optimal cut-off grade boundaries.
Processing stream decisions

(
yi,j,t,s ∈ [0, 1]

)
define the proportion of material that flows from location i

to destination j, in period t and scenario s.
The objective function in Equation (6) maximizes the value of selling the products in the mineral

value chain, while minimizing deviation from production targets.

max
1
‖S‖

∑
s∈S

∑
t∈T

∑
i∈P

∑
h∈H

ph,t,s ∗ vh,i,t,s︸ ︷︷ ︸
Part I

−∑
i∈P

∑
p∈P

(
PCi,p,t + TCi,p,t

)
∗ vp,i,t︸ ︷︷ ︸

Part I I

− ∑
i∈P

∑
p∈Pc

(
c+i,p,t ∗ d+i,p,t,s + c−i,p,t ∗ d−i,p,t,s

)
︸ ︷︷ ︸

Part I I I



− ∑
t∈T

∑
b∈B

(
MCb,t ∗ xb,t + csmooth

b,t ∗ dsmooth
b,t

)
︸ ︷︷ ︸

Part IV

−∑
t∈T

∑
b∈B

∑
v∈Vb

(
csink

b,t ∗ dsink
b,t,v

)
︸ ︷︷ ︸

Part V

(6)

Part I of Equation (6) considers the discounted cash flow obtained by selling the products in the
value chain. Part II minimizes the processing cost at each processing facility and the transportation
costs involved. The third Part is related to the cost of deviating from processing and mining
capacities, respectively. Part IV minimizes the deviation from schedule smoothness and mining
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costs, while Part V aims to reduce deviations from sink rate constraints, respectively. Note that
geological risk discounting [62] is applied to all penalty costs associated with production target, i.e.,

c±i,a,t =
c±i,a

(1 + r)t (7)

where r is the geological discount rate.
The simultaneous optimization of a mining complex framework presented above is very general

and allows for the integration of different sources of uncertainty; in addition, it addresses the
non-linearity related to materials blending and stockpiling, as well as transformations that are due
to refining materials to output products. The above optimization approach leads to instances with
multi-million binary decision variables that cannot be solved with commercial solvers, such as CPLEX.
Metaheuristic algorithms offer a practical alternative and have proven to be an efficient solving
approach for the stochastic optimization of mines and mining complexes [6,56,64–66]. The solution
approach used in the current paper is from Goodfellow and Dimitrakopoulos [1,6].

3. Results and Discussion

The first part of the case study relates to the simulation of the grades of a gold mine. The deposit
covers an area of approximately 4.5 km2 and extends to a depth of 400 m. The three-dimensional
orebody model is composed of 510,800, 10 × 10 × 10 m3 mining blocks. The available data come from
2344 drillholes that are spaced at about 35 m apart and include 40,762, 10 m long gold composites.
A set of 15 high-order simulations are generated directly at the scale of mining blocks using a training
image generated from blasthole data obtained at a 5 m spacing. Each high-order simulation required
approximately 6 h on an Intel® CoreTM i7-7700 CPU with 3.60 GHz and 16GB of RAM, running
on Windows 7. For comparison, a set of simulations based on the second-order statistics is also
generated using traditional sequential Gaussian simulation (SGS) [23,27,61]. Realizations generated at
the point-support scale are rescaled to block support using a discretization of 25 nodes per block.

3.1. Results, Comparisons and Effects of High-Order and Second-Order Simulations

First, to provide a common ground for comparison, Figure 2 shows the grade-tonnage curve for
both simulation frameworks with equivalent overall reporting and quantification of related uncertainty.
The graph shows very similar proportions regarding tonnages and grades over the deposit. Although
the metal quantity is very comparable in both cases, how each method connects these elements in
space can be very different, especially at the high-grade values, as noted earlier in Figure 1. Figure 3
displays cross sections of both second-order and high-order realizations of the deposit, where the
high-grade zones are highlighted with red circles. It is possible to visualize the effect of the maximum
entropy property over the second-order simulations, which is enhanced by the fact that the simulation
process was performed in the Gaussian space. The grades displayed by the simulations generated with
SGS are visually more dispersed than those generated using high-order simulations. This connectivity
can be quantified [52] and it is presented in Figure 4. Please note that, in all figures, P10 and P90
represent the 10th and 90th percentiles of the reported values, respectively. For the connectivity plot,
the cut-off applied is 5 g/ton, corresponding to the 99th percentile of the grade distribution, as the
focus of the comparison is on the high-grades. In the NE direction, the second-order realizations are
consistently less connected than the high-order realizations for all lags. The difference becomes more
pronounced in the NE direction and at the 45º dip, with a considerable gap evident between both
simulation methods. As the high-grade mineralization drives the mine production schedule, this plays
a vital role in the optimization of the mining complex.
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3.2. LOM Production Schedule Optimization and Forecasting

The mining complex considered in the test case consists of a single gold mine, where ore and
waste material can flow to the following destinations: Leach pad, ore stockpile, waste dump, and a
mill circuit (Figure 5). Both the mill and the leach pad process ore to generate sellable products, while
encountering different costs and recoveries. Since the high-grade materials are typically processed
at the mill, having a substantially higher impact on cash flows, this processing stream receives more
attention in this paper. Doing so simultaneously allows for investigating the impact of the high-grade
spatial connectivity generated by the two simulation methods examined. The critical parameters for
the optimization, displayed in Table 1, are kept the same in both cases. The uncertainty in the material
properties sourced from the mine is quantified by the set of simulations generated and is used as input
for the optimization framework. The mining complex is first optimized using simulations generated
by the high-order direct block support method, which is referred to throughout the remainder of the
paper as Case 1. The same mining complex setting is then optimized, using the set of simulations
generated by the second-order Gaussian simulation method. The result of this optimization is referred
to as Case 2.
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Figure 5. Flow diagram of the mine complex configuration.

The life of mine production schedules for Case 1 and 2 are optimized and results are discussed
below. Cross sections of the LOM production schedules optimized for each case are displayed in
Figures 6 and 7 along West-East and North-South directions, respectively. The areas with the same
color represent the same period of extraction, and they highlight that the sequences of extraction
obtained differ considerably, which is not surprising given the differences in the two simulation
methods used. Cross sections of Case 1 show that the sequence of extraction follows a clear direction,
highlighted by the red arrow. Note that this trend in the extraction sequence is amplified in the direction
where the difference in connectivity is more evident, recall from Figure 4. The higher continuity of
high-grades drives the schedule towards areas with more connected ore materials so that they can be
processed together.
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Table 1. Main parameter used in the optimization.

Parameter Specification

Mine capacity 30 Mtpa
Mill capacity 8.25 Mtpa

Leach pad capacity 10 Mtpa
Sink rate 60 m/year

Mining radius 60 m
Mining cost 1.6 $/ton
Milling cost 7.84 $/ton

Leaching cost 2.30 $/ton
Refining cost 12.97 $/oz

Gold price 1250 $/oz
Discount rate 10%

Geologic risk discounting 10%
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continuity of high-grades.

Figure 8 shows horizontal sections of the LOM production schedules generated and the differences
in the sequences of extraction are again evident. Additionally, these sections show variations in the
extension of the ultimate pit limits (UPL). The red circles highlight how much larger the UPL is in
Case 2. As second-order simulations methods represent high-grade material as being more scattered,
it is logical that the pits have to be larger to encompass all of the ore to be processed, resulting in a
higher waste extraction, as shown in Figure 9a. These differences are of particular interest, since after
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the optimization is complete, infrastructure, such as ramps, access points, equipment placement and
facility locations, reduces the flexibility to change the schedule. This optimization opportunity can
only be achieved if the degree of connectivity of high-grades is correctly modeled.
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Once the production schedules are generated, the risk assessment of achieving production
forecasts is calculated by pushing another set of simulations through each LOM schedule and by
evaluating related forecasts. The results are presented in terms of P10 and P90, representing the 10th
and 90th percentiles of related performance indicators, respectively. Regarding production targets and
forecasts, Figure 9a shows the total tonnage mined over the LOM and the cumulative strip ratio for
both cases. The production schedule obtained in Case 2 represents, in total, 5% more material mined
than in Case 1. This difference reaches 8% at the end of the 10th year to ensure a similar throughput
at the mill, Figure 9b. Mining more, in this case, translates to higher waste production, which is
quantified by the higher strip ratios presented by Case 2. This can be explained by the spatial disorder
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(maximum entropy) that Gaussian-based approaches generate with respect to high-grades. Having
ore blocks less connected in space forces the optimizer to mine more dispersed high-grade values
(mining blocks), so as to provide a consistent feed rate to the mill; this also leads to different total
tonnages of materials mined and the differences in UPL shapes, shown in Figure 8. On the other hand,
if the optimizer receives more realistic information regarding spatial grade connectivity, the LOM
production schedule, such as in Case 1, pursues high-grades more efficiently.

Although the mill’s throughput is kept reasonably constant throughout the LOM in both instances,
the dissimilarities regarding metal content are stressed in Figure 10. Case 1 can feed the mill with a
higher head grade for the majority of the LOM, as shown in Figure 10a. As the optimizer encounters
better-connected zones of high-grade, it can bring their extraction to the same period so they can be
processed together, increasing the average feed grade at the mill and recovering more ounces earlier,
as shown in Figure 10b. Case 1 shows an ounces profile that is consistently higher for the first 17 years;
this difference reaches 7% after the 10th year. Case 2 produces, after the 20th year, 2% more gold,
but this is not significant due to the effect of discounting and the time value of money. Recovering more
ounces sooner brings more cash flow earlier to the operation, which positively impacts the net present
value (NPV). Summing up the joint effects of correctly meeting production targets, mining less waste
and producing more gold earlier results in a considerable increase in NPV, as shown in Figure 10c.
By producing more metal and less waste, the LOM production schedule obtained in Case 1 generates
in a total of 5% higher NPV than Case 2, and 16% higher in the initial ten years. The difference is
substantial and improves financial returns at the early stages of the development of the mine.Minerals 2019, 9, x FOR PEER REVIEW 12 of 16 
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4. Conclusions

This paper investigates the effects of using high-order simulations of an ore deposit in the
simultaneous stochastic optimization of a gold mining complex. The high-order simulations are
generated directly at the block-support scale and are used as inputs to the simultaneous optimization
(Case 1). The optimized LOM production schedule generated is benchmarked against a case where the
stochastic realizations of the orebody are generated through the use of a conventional second-order
simulation method, SGS (Case 2). The geological realizations from both methods present comparable
proportions of tonnages and grades, but very different spatial connectivity of high-grades. Frameworks
based on the second-order statistics, in particular, Gaussian-based, maximize the spatial disorder of
the generated realizations preventing the reproduction of the connectivity of high-grades.

In this study, the high-order simulations present a greater degree of continuity of high-grades,
which is notably more pronounced in the NE/45◦ direction when compared to the second-order
simulations. This information is incorporated into the simultaneous stochastic optimization framework
driving the sequence of extraction favoring this direction. The direct consequence of the above is that
Case 1 favors the zones of more connected high-grades, which are processed together and increase the
mill’s head grade. The result is that a higher amount of metal is produced earlier, with, most notably,
7% more gold being recovered by the end of year 10. This is achieved while mining less waste—the
strip ratio of Case 1 being consistently below Case 2. The combined effect of producing more metal
earlier and mining less waste increases the NPV by 5% to 16% when compared to Case 2. These
findings demonstrate that high-order simulation methods play a significant role in mining complex
optimization and that the simultaneous stochastic optimization of a mining complex can profit from
the benefits of using simulations that can reproduce the multi-point connectivity of high-grades.

Future work will focus on extending the high-order block support simulation method to
incorporate correlated elements into a single framework and will continue to improve the related
computation efficiency. Additional case studies in different mining complexes and commodities will
further assist related effects and applied aspects.
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