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Abstract: Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern
United States pulverized-coal power plant was studied by scanning electron microscopy
(SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED).
TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed
that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy
particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or
similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals
were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the
distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline
minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even
true atomic dispersion within the fly ash glass.
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1. Introduction

The enrichment and potential for extraction of the lanthanides Sc and Y, collectively rare earth
elements (REE) after Connelly et al. [1], from both coal [2–7] and fly ash as well as other coal combustion
products has attracted much attention in recent years [7–25]. The Pennsylvanian Fire Clay coal,
primarily in its central eastern Kentucky locations, is a prime source of coal-based REE; thus, the fly ash
from the combustion of the Fire Clay coal has also been of interest [9,13,17,18,26]. The Fire Clay coal
owes its enrichment in REE to the emplacement of a REE-bearing-minerals volcanic ash fall parting
(a tonstein) during its deposition [26].

A number of REE-bearing minerals have been found in coal; the most important REE hosts in coal
include carbonate (e.g., bastnäsite [4]) and phosphate minerals (e.g., florencite, monazite, xenotime,
rhabdophane, and apatite [2,10,13,27–32]). In addition to the larger, micron-scale zircon, monazite, and
other REE-bearing minerals observed petrographically in coal, nano-scale REE-bearing minerals were
observed in a correlative of the Fire Clay coal from Knox County, Kentucky [33]. Hower et al. [33]
noted fine (10’s of nm to ca. 1 µm) monazite interspersed and interlayered with kaolinite in their
transmission electron microscopy (TEM) studies of the same coal studied by Mardon and Hower [26].
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The interlayered monazite–kaolinite probably originated as monazite encased in the volcanic glass,
with the glass later being altered to kaolinite [30].

The modes of occurrence of REE in fly ash have been investigated by a number of
authors [8,9,13,14,18,30–32]. TEM studies of central eastern Kentucky coal-sourced fly ash have shown
a variety of mineral and amorphous phases to be present within the ash [18]. Indeed, in their study of
a Fire Clay coal-derived fly ash, Hood et al. [18] found La and Ce in an amorphous particle. The lack of
an X-ray diffraction pattern could indicate either that the region was truly a glass or that the minerals
were both fine and randomly oriented within the glass, thus showing no definitive crystal structure.
It has also been reported that minerals such as zircon, monazite, and xenotime in the feed coal do
not melt in the boiler [34,35]; rather, minerals—such as monazite—would be shattered into much
finer particles at boiler temperatures. While Hood et al. [18] also noted Y-bearing zircons in the fly
ash, Hower et al. [12] found xenotime (YPO4) in a La–Ce–Nd-monazite in a study of a ponded fly
ash obtained from a blend of coals. The exact blend of coals in the latter plant is not known, but it
is likely that the Fire Clay coal was included in the coals burned by the power plant in the several
decades represented by the ash in the pond. In a study of the stoker ash from the Kentucky State
University boiler, Hower et al. [13] noted ca. 600 × 600-nm La–Ce–Nd-bearing monazite and ca. 10-nm
Ce phosphates (the orthophosphate monazite CePO4 and the metaphosphate CeP3O9) attached to
mullite. As with the ponded ash noted above, while the exact source of the coal was not disclosed by
the stoker operator, the lanthanide + Y concentration of nearly 1200 µg/g strongly suggests that the
Fire Clay coal was a major component of their burns. As with the ashes known to be sourced from the
Fire Clay coal [18,26], the Kentucky State University ash has a relative enrichment in heavy REE ([13]
and Figure 2 in that paper).

In this study, the fly ash from a southeastern US utility power plant burning Fire Clay coal
was investigated. This sample was part of the large collection investigated for total REE contents
by Taggart et al. [17] and also part of the fly ash samples analyzed for yttrium speciation by X-ray
absorption spectroscopy methods [36]. While these studies provided insights on total REE contents
for a wide range of fly ashes and Y-specific local coordination states, additional insights related to
morphology and composition of discrete minerals would enrich our understanding of REE modes of
occurrence in fly ashes of the Fire Clay coal. This contribution seeks to fill in these knowledge gaps by
applying electron microscopy-based methods to study the nano-scale associations of REE with fly ash
glass and mineral phases.

2. Materials and Methods

The fly ash sample KCER-93932 was obtained on 12 August 2014 from a 633-MW southeastern
United States utility boiler burning eastern Kentucky Fire Clay coal. The power plant personnel
assisted in the collection of the sample from the fly ash hopper (Figure 1). Moisture, ash, and carbon
analyses (the latter from the ultimate analysis) were conducted at the University of Kentucky, Center for
Applied Energy Research (CAER) following the appropriate ASTM international test methods, namely,
D7582-15 and D3176-15 [37,38]. Major oxides and minor elements concentrations were quantified
by X-ray fluorescence (XRF) at the CAER following procedures outlined by Hower and Bland [39].
The REE were extracted from the fly ash samples by an overnight 90–100 ◦C heated digestion with a
1:1 HF/HNO3 acid mixture, followed by analysis via inductively coupled plasma–mass spectrometry
(ICP-MS) (Agilent Technologies 7700, Agilent Technologies, Santa Clara, CA, USA) in the Department
of Civil and Environmental Engineering at Duke University [17]. The accuracy of this analysis method
was tested on a fly ash standard reference material (NIST SRM 1633c), which was digested and
analyzed in parallel to the samples in this study. Average recoveries of individual REE elements were
89.3% to 103.4% of the Reference Concentrations (for Dy, Eu, La, Lu, Sc, and Tb) and Information Mass
Concentrations (for Ce, Nd, Sm, and Yb) for SRM 1633c.

The sample for scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS)
was an epoxy-bound particulate pellet prepared to a 0.05 µm alumina final polish. The localization
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and identification of a REE-rich particle were performed by a survey with SEM-EDS on a FEI Helios
Nanolab 660 dual beam (FEI, Hillsboro, OR, USA) equipped with an Oxford Instruments X-MaxN

80 mm2 EDS detector (Oxford Instruments, Abington, UK). The particle was then separated from the
ash sample through focused ion beam (FIB) techniques, attached to a TEM copper grid and thinned
down to electron transparency (thickness less than 100 nm). Imaging and EDS characterizations were
performed on the TEM lamella using the dual beam both during and after thinning, to isolate the
REE-rich region within the particle, and on a JEOL 2010F TEM at the University of Kentucky Electron
Microscopy Center. Fast Fourier transform (FFT) and selected area electron diffraction (SAED) were
used to determine the crystalline structure of the sub-micron grains.
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Figure 1. Filling of barrel with fly ash.

3. Results and Discussion

The whole-ash analyses of the fly ash sample KCER-93932 are reported on Table 1. The REE
content of the whole ash was 669 ± 5 mg·kg−1 (ash basis) [17]. Hower et al. [9] partially based their
discussion of the partitioning of REE from the power-plant feed coal to the coal combustion fly ash on
KCER-93932. Although Ba could interfere with Eu concentrations in samples with Ba/Eu >1000 [3,40],
this ratio value in the sample KCER-93932 was 273, much lower than the threshold value proposed by
Yan et al. [40], and, therefore, the Eu and REE concentrations could be interpreted in this work.

A spherical Al–Si-rich glass particle was identified by the preliminary SEM–EDS examination as
having a relatively high rare earth content, as seen on the EDS from the region (Figure 2A). While other
morphologically similar particles were observed, time and budget did not allow for the examination
of REE-lean particles. An EDS scan along a beam line across the sphere demonstrated the relative
abundance of Ce, Nd, Pr, and Sm in the glass (Figure 2 B–D). Adding more elements to the array
showed not only the Al–Si content in the sphere, but also a P-rich grain near the lower-left edge of the
sphere (Figure 2E). While the P concentration was only relatively elevated within a small portion of
the scan, the REE concentration was no higher in the portion of the scan overlapping with the P-rich
grain than it was elsewhere in the scan. The apparent decline in all elements towards the edge of the
scan was due to the lesser analyzed volume as the edge of the spherical grain was approached.
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Figure 2. (A) EDS scan showing the presence of La, Ce, Pr, Nd, and Sm. (B) TEM image of the specimen
from focused ion beam (FIB) liftout. (C) Expanded spectrum image of an Al–Si glass sphere with the
location of beam scan indicated by the white line. (D) EDS scan across the diameter of the sphere
showing relative concentrations of Ce, Nd, Pr, and Sm. (E) Enhancement of Figure 2C to show the
relative concentrations of Si, Al, O, and P along with the rare earth elements shown in more detail in
Figure 2D.
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Table 1. Chemical analysis of fly ash sample KCER-93932. Ash and moisture (%, as received basis);
carbon, hydrogen, nitrogen, sulfur, and oxygen (%, dry basis); major oxides (%, ash basis); minor
elements (mg·kg−1, ash basis); Sc, Y, and rare earth elements (mg·kg−1, ash basis) (REE and minor
elements, both with average and standard deviation, from Taggart et al. [17]).

Ash Moisture C H N S O

94.25 0.17 7.76 0.42 <0.01 0.25 <0.1

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O P2O5 TiO2 SO3
54.21 28.43 7.60 4.01 1.07 0.32 2.26 0.54 1.60 0.09

V Cr Mn Fe Co Ni Cu Zn Ga As
av. 350 184 191 45,438 76 148 189 192 64 67

std dev. 2.6 2.3 3.7 700 1.3 2.7 2.6 2.0 0.2 0.6

Se Rb Sr Y Mo Ba Pb Th U
av. 7 104.31 1045 107.64 14.42 1060 87.60 34.78 16.09

std dev. 0.6 0.77 6.1 0.29 0.20 5.79 0.10 0.36 0.07

Sc La Ce Pr Nd Sm
av. 42.39 108.25 212.20 23.66 88.13 18.68

std dev. 0.40 1.39 2.78 0.21 0.81 0.11

Eu Gd Tb Dy Y Ho Er Tm Yb Lu
av. 3.88 18.81 2.95 17.46 107.64 3.54 9.88 1.40 8.82 1.31

std dev. 0.03 0.17 0.02 0.12 0.29 0.01 0.06 0.01 0.02 0.02

Note: av., average deviation; std dev., standard deviation.

Two areas were analyzed more thoroughly: Area A, near the edge of the spherical grain, and
Area B, the location of the P-rich grain noted above (Figure 3). FFT imaging (Figure 4) showed a
non-definitive diffraction pattern, indicating that the region was largely glassy without eliminating the
possibility of small, randomly oriented minerals, as observed by Hood et al. [18] and Hower et al. [12]
in their TEM studies of fly ashes. The EDS scan from area A showed the presence of Ce and Nd
(Figure 5).
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Area B, which was associated with mineral grains, appeared more complex. Both FFT (Figure 6A)
and SAED (Figure 6B) images indicated the presence of crystallinity. However, there was also an
amorphous, non-crystalline surface on the mineral grain, a relic of destruction of the crystallinity by
the ion beam used for FIB thinning of the specimen (right side of Figure 6C). Nevertheless, the EDS
scan of the mineral showed the presence of Ce and Nd (Figure 7).

This fly ash sample was also examined by Taggart et al. [36] (denoted as “App-FA3” in that study)
for Y modes of occurrence through microprobe X-ray Absorption Spectroscopy (XAS) techniques.
That study also reported distinct Y species (e.g., Y distributed in glasses, YPO4 particles), suggesting
that REE occur in widely variable forms in this fly ash. We note that this previous microprobe XAS
evaluated the fly ash sample at a fairly coarse spatial resolution (2 µm resolution) and was limited to a
whole grain or collection of grains, rather than being performed within a grain, as shown in this study.
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4. Conclusions

The emphasis in this study was on nano-size particles, not on a holistic view of the entire fly
ash and its mix of REE-bearing and REE-lean (or absent) particles. All of the latter were scanned
in the SEM–EDS examination; the sample selected for investigation was, for the sake of the study,
a REE-rich area. Such a particle is not representative of the entire fly ash but, nonetheless, it is essential
to understand such particles, since they are the components that collectively give this ash its reputation
as a relatively REE-rich ash.
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The TEM approach employed here improved the spatial resolution of other analyses, such as the
bulk ICP-MS chemical analysis and the XAS approach applied by Taggart et al. [36], and subsequently
revealed substantial heterogeneity of REE forms within an individual fly ash grain. Unlike the
indications of minerals seen in other studies [12,13], as in the work by Hood et al. [18], the mineralogy
of the particles is elusive. With the caveat that only a small, albeit REE-rich, area was investigated,
this study demonstrates that REE forms in fly ash vary widely in chemical composition and size.
Thus, this variability will need to be considered in the development of REE separation and extraction
technologies for coal fly ash.
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