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Abstract: Laser-induced breakdown spectroscopy (LIBS) was undertaken using an instrument which
used a high-powered microscope to deliver the light and tightly focused the low energy laser beam
onto the surface of a solid sample. A micro-plasma was generated on the surface of the sample
under test even though the amount of energy/pulse from a beam of 532 nm was <1 mJ. Rare earth
elements such as europium, gadolinium, lanthanum, neodymium, praseodymium, samarium, and
a transition metal, yttrium, were tested. These elements are important in nuclear fission reactions
especially for estimation of actinide masses for non-proliferation “safeguards”. Each element was
mixed in the graphite matrix in different percentages from 1% to 50% by weight and the LIBS spectra
were obtained for each composition as well as after mixing each element in the same amount using
oxides of the elements. The data for the 5% mixture of the rare earth elements with graphite powder
along with the transition metal has been presented in this article. A micro-LIBS approach was used to
demonstrate that these rare earth elements can be identified individually and in a complex mixture in
glove boxes in which the microscope LIBS instrument is housed in a nuclear research environment.

Keywords: micro-laser-induced breakdown spectroscopy; rare earth elements; elemental peaks
detection; micro-plasma

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) analysis of nuclear materials is realizing increased
interest for actinide mass and isotopic measurements. LIBS offers advantages over conventional
solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel
dose, and contamination risk [1–6]. For example, conventional analysis can require million-fold
dilutions of high-activity samples, complicating impurity analyses. This article will provide an
insider’s look at the challenges and potential for routine LIBS application to high-level radiological
samples. By identifying practical needs in non-routine sample analysis, LIBS can supplement
conventional methods by providing rapid sample characterization of solid and concentrated liquid
samples. As a microanalytical (submicrogram) sampling technique, LIBS can provide analysis of the
limited sample masses permitted for high-level materials outside radiological hot cells. For isotopes
such as Pu-238 or Cm-244, glove boxes are typically limited to subgram quantities, and chemical hoods
to submicrograms [3,5]. The rare earths have been chosen to be studied based on the information
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provided in Reference [7], which reports that in a nuclear fission reaction, ~18% of fissions produce
Nd atoms, 13% Ce atoms (previously studied [8]), 6% La and Pr, 4% Y and Sm, 0.6% Eu, and 0.3% Gd.
These same elements have been studied previously to obtain quantitative analysis using PLS (partial
least square) technique in a prior publication by the same authors [8]. A number of articles have been
published describing the detection and monitoring of europium oxides and Eu2+ in colloids [9–14].
LIBS for the detection of gadolinium in molten glass, in coated stainless steel plates, and in its oxide
form have been reported in References [15–17]. Lanthanum in molten glass and alloys of neodymium
have also been reported [15,18–22]. Studies to detect samarium as a trace pollutant in soils, and its
alloys using the LIBS technique have been published [23,24]. Yttrium as a component of iron garnets
and as a toxic metal in incinerator stack exhausts has been reported in References [25–27]. LIBS has also
been used to detect a large number of lanthanides in raw monazite sands [28]. Some statistical analysis
is needed to develop calibration and validation models [29,30] for the LIBS work done previously.

The technique of choice for measuring the actinide and rare earth content in irradiated fuel is
ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) or ICP-OES/AES (Inductively Coupled
Plasma-Optical Emission Spectroscopy/Atomic Emission Spectroscopy) [31–35], but the challenge of
analyzing concentrated solutions from fuel dissolution with very high radiological dose must first be
addressed. This creates analytical uncertainties from large dilutions, up to a million-fold, which can be
costly and time consuming and increase worker hazards in sample handling. Furthermore, complex
spectral features can create problems in identification, fingerprinting, and in the quantification of
these elements.

In this journal article, the use of micro-LIBS (Laser delivered to a sample via a microscope
objective) has been studied in detail for the identification of the rare earth elements mentioned
previously. The LIBS detection optical system was coupled to a laser scribing system in a very elegant
configuration that is discussed in this article.

2. Materials and Methods

2.1. Laser Scribing System

This research uses a commercial Quiklaze 200 mJ Nd:YAG laser scribing system (custom made),
ESL, Elemental Scientific Lasers, Bozeman, MT, shown in Figure 1a,b, and has been modified to
perform laser-induced breakdown spectroscopy. A pulsed laser is set on top of a microscope and the
light is focused by 50X and 100X objective lenses onto the surface of a sample placed at the focus of the
lens. The spot size generated by the 50X objective lens is 50 µm and with a 100 X objective lens the
spot size obtained is 10 µm. This laser system produces a 1064 nm (IR) wavelength laser pulse, which
can be frequency doubled and tripled to produce 532 nm (Green) and 355 nm (UV) laser pulses. For
this research, only the 532 nm wavelength light was used. The New Wave Quicklaze system custom
made) ESL, Elemental Scientific Lasers, Bozeman, MT) is equipped with an automated 3-dimensional
stage and a camera system. This allows for X-Y-Z movement while sampling in addition to being able
to see the sample surface and the etching/scribing of the sample surface via a camera assembly. Now,
in addition to these existing features, the ability to obtain the chemical composition of the sample via
the collection of optical emission from the sample has been added to this system.
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Figure 1. Quiklaze 200 laser scriber customized and coupled to a LIBS optical system: (a) The Quiklaze 
200 laser scribe placed in a glovebox and (b) Quiklaze 200 laser scriber coupled to a LIBS optical 
collection assembly. 

The scribing system is designed to inscribe insignias and identifying markers onto samples at 
the micrometer scale and has been customized for implementation in a glove box environment as 
well. Its original inscription purposes included use on radioactive and contaminated materials to 
identify these samples in a nuclear reactor environment. The samples that are inserted into a reactor 
to be irradiated need to be inscribed. The inscriptions on the samples are used to understand the 
placement sequence in the reactor where they are irradiated. The laser scribing system can also be used 
for cutting on a microscopic level, or to remove metal shorts that are created during microelectronics 
circuit fabrication. The laser beam in this scriber is designed to be guided along the optical path 
within the body of the microscope and is emitted at the output objective.  

2.2. LIBS Detection Coupled to the Laser Scribing System 

For LIBS, the Quiklaze 200 is equipped with an optical collection assembly, shown in Figure 2, 
consisting of six optical emission collectors and six fiber optic cables. The spectra acquired using the 

Figure 1. Quiklaze 200 laser scriber customized and coupled to a LIBS optical system: (a) The Quiklaze
200 laser scribe placed in a glovebox and (b) Quiklaze 200 laser scriber coupled to a LIBS optical
collection assembly.

The scribing system is designed to inscribe insignias and identifying markers onto samples at
the micrometer scale and has been customized for implementation in a glove box environment as
well. Its original inscription purposes included use on radioactive and contaminated materials to
identify these samples in a nuclear reactor environment. The samples that are inserted into a reactor
to be irradiated need to be inscribed. The inscriptions on the samples are used to understand the
placement sequence in the reactor where they are irradiated. The laser scribing system can also be used
for cutting on a microscopic level, or to remove metal shorts that are created during microelectronics
circuit fabrication. The laser beam in this scriber is designed to be guided along the optical path within
the body of the microscope and is emitted at the output objective.

2.2. LIBS Detection Coupled to the Laser Scribing System

For LIBS, the Quiklaze 200 is equipped with an optical collection assembly, shown in Figure 2,
consisting of six optical emission collectors and six fiber optic cables. The spectra acquired using the
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detection module provided by Applied Photonics Ltd were taken using single shots. The laser has a
wavelength of 532 nm with a pulse length nominally between 4–6 ns. The LIBS detection module added
to the scribing system utilizes six Avantes (Avantes BV, Apeldoorn, The Netherlands) spectrometers
that cover the wavelength range of 182–904 nm and the CCD (Charge Coupled Device/Detector)
arrays are operated with a gate width of 1.1 milliseconds and with a delay of 1.27 microseconds.
The spectral resolution is different for the different spectrometer channels. Specifically, the resolution
for Channel 1, covering 182–256 nm, Channel 2, covering 255–315 nm and Channel 3, with wavelength
range of 314–416 nm all have the FWHM (Full Width at Half Max) = approx. 0.06 nm. In case of
Channel 4 which covers the wavelength range of 414–498 nm has a FWHM of 0.08 nm. The last two
channels, Channel 5 (496–718 nm) and Channel 6 (716–904 nm) both have a FWHM of 0.18 nm, Applied
Photonics Ltd (Skipton, UK) has provided the ability for optical collection of the emission from the
spark that is generated on the sample surface and delivery to a bank of CCD array spectrometers
and detector system. This provides the dual-use capability for the modified instrument and allows
for in situ qualitative identification of materials in principle [8]. This report seeks to validate these
capabilities and prove its usefulness as a spectroscopic instrument. Figure 2 shows the AutoCAD
design of the optical collection system (a) side view and (b) close-up from the bottom. This attachment
has added the benefit of being able to do elemental detection and analysis along with the original
purpose of using the system for making patterns on a sample surface which would identify samples
before and after these samples were irradiated in a nuclear reactor.
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2.3. Materials and Preparation

Excess material of the rare earth powders was obtained from other researchers in the organization.
The powders of the rare earth oxides that were obtained were europium oxide (Eu2O3), gadolinium
oxide (Gd2O3), lanthanum oxide (La2O3), neodymium oxide (Nd2O3), praseodymium oxide (Pr6O11),
samarium oxide (Sm2O3), and the transition metal oxide, yttrium oxide (Y2O3). The purity of
the oxide powders that were used in this research was 99.99%. The graphite powder that was a
natural, microcrystal grade, of 99.9995% purity was also obtained from Alpha Aesar (Ward Hill, MA,
USA). The polyvinyl acetate (PVA) was 99–100% hydrolyzed and was obtained from Acros Organics
(Waltham, NJ, USA). These powders were weighed out, and a balancing amount of graphite powder
was also weighed and combined in a bottle. The mixture was vortexed and stirred. 300 µL of 0.5% PVA
was pipetted into a glass tube and re-mixed a second time as in the previous step. The PVA was mixed
with the powders and then dried on a heating block. The contents of the glass tube were emptied into
a 1/4" die, pressed at 1500 1b for one minute. The pellets were placed in a labeled plastic bag and LIBS
measurements were performed on them.

3. Results and Discussion

The plasma created by a 532 nm laser pulse of 0.5 mJ energy is very faint or weak, making it
difficult to obtain the emission spectra from the sample under test. It was hypothesized that if the
spark can be seen by the human eye then the bank of the CCD detector array should be able to detect
the emission spectrum for any solid sample that is being tested. This hypothesis was proven to be true.
The spectra for all the rare earth listed above with a mix of 5% rare earth and 95% graphite pellets
were obtained. The data for the 5% mixture of the rare earth elements with graphite powder along
with the transition metal has been presented here in Figure 3. The objective used for the collection of
the emission peaks for all of the rare earth elements is identified to be 50X. Figure 3 shows the spectra
for them.

Figure 3a shows the emission spectra for the rare earth Eu. The main spectral features such
as, 381.967 nm (II), 393.048 nm (II), 397.196 nm (II), 420.505 nm (II), 443.556 nm (II), 452.257 nm
(II), 459.403 nm (I), 462.722 nm (I), 466.188 nm (I), 490.086 nm (I), 535.761 nm (I), 548.865 nm (I),
576.520 nm (I), 583.098 nm (I), and 596.607 nm (II) have been detected. This shows that 5% of the
europium and other rare earth elements in 95% of the graphite matrix can be detected quite easily.
The successful acquisition of micro-LIBS spectra for all the rare earth elements was performed and
shown in Figure 3a–g. The authors have further identified the emission peaks for these samples that
are detected in the UV-region of the wavelength region (190–450 nm). More detailed spectral features
have been shown and discussed in another publication [8].
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Figure 3. The broadband LIBS spectra for 5% of (a) europium, (b) gadolinium, (c) lanthanum, and (d)
neodymium, (e) praseodymium, (f) samarium, and (g) yttrium in 95% graphite powder.

The distinguishing features for all the elements that were studied are shown in Table 1.
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Table 1. Major emission wavelengths contributing to the LIBS spectra for each of the rare earth elements.

Element Wavelength (nm) Element Wavelength (nm)

Eu II 381.967 La II 415.197
Eu II 393.048 La I 418.732
Eu II 397.196 La II 419.655
Eu II 420.505 La II 423.838
Eu II 443.556 La II 429.605
Eu II 452.257 La II 433.374
Eu I 459.403 La II 452.237
Eu I 462.722 La II 452.612
Eu I 466.188 La II 455.846
Eu I 490.086 La I 521.186
Eu I 535.761 La I 545. 515
Eu I 548.865 La I 639.423
Eu I 576.520 Pr II 417.939
Eu I 583.098 Pr II 422.293
Eu I 596.710 Pr II 422.535

Nd II 415.626 Pr II 428.242
Nd II 417.732 Pr II 440.882
Nd II 432.576 Pr II 446.866
Nd II 433.88 Pr I 473.669
Nd II 445.157 Pr I 492.460
Nd II 527.343 Pr II 511.038
Nd II 543.153 Pr I 513.344
Nd II 582.587 Pr II 522.011
Gd I 422.585 Pr II 532.276
Gd I 432.712 Pr II 535.240
Gd I 501.504 Pr I 552.415
Gd I 510.345 Pr I 553.837
Gd I 515.584 Pr II 562.305
Gd I 537.063 Pr II 581.533.
Gd I 545.346 Sm I 429.674
Gd I 561.791 Sm II 443. 388
Gd I 570.135 Sm I 471.610
Gd I 574.636 Sm I 488.377
Gd I 577.602 Sm I 511.716
Gd I 579.138 Y II 430.963
Gd I 585.163 Y II 437.494
Gd II 585.524 Y II 439.802
Gd I 585.622 Y II 508.742

Y I 570.671

The detailed identification of the emission peaks in the broadband spectra is very difficult to label
in Figure 3a–g. The individual enhanced spectra for (a) europium, (b) gadolinium, (c) lanthanum, and
(d) neodymium are shown below in Figure 4a–d. These spectra show the specific micro-LIBS emissions
lines in a smaller wavelength range for each of the elements mentioned above. The six Avantes
spectrometers that are used to detect the plasma emission from the sample being tested do not have the
same optical efficiency throughout the whole wavelength range of 195–904 nm. This efficiency is very
low for the UV-VIS (Ultra Violet-Visible) part of the broadband region of spectrometers (specifically
from 195–450 nm). This is demonstrated in the broadband spectra for each of the rare earth elements
and the transition metal. The majority of the emission lines are observed in the wavelength range of
350–600 nm (Figure 3). The above spectra in Figure 3a–g have been enhanced to show micro-plasma
that was detected by the spectrometers even in the low optical efficiency wavelength range.
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Figure 4. The LIBS spectra for 5% of (a) europium, (b) gadolinium, (c) lanthanum, and (d) neodymium
(e) praseodymium, (f) samarium, and (g) yttrium in 95% graphite powder in a narrow wavelength
range showing the individual peaks that are characteristics of the elements shown here.
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Similarly, Figure 4e–g emphasize the LIBS spectra for 5% of (e) praseodymium, (f) samarium, and
(g) yttrium, in 95% graphite powder in a narrow wavelength range showing the individual peaks that
are characteristic of the elements labeled here.

The LIBS spectra of all the rare earth elements separately have been obtained using a laser beam
guided through a microscope coupled to a LIBS collection system for the first time. A nanosecond
laser pulse with an energy/pulse of less than a millijoule has been used successfully to fingerprint all
of these elements. Numerous peaks which are representative of the different rare earth elements and
the one transition metal were identified.

4. Conclusions

The successful detection of rare earth elements such as Eu, Gd, La, Nd, Pr, Sm, and one transition
metal, Y, was performed using a LIBS optical detection system coupled with a laser scribing instrument
for the first time. The rare earth oxides and transition metal oxides were mixed in a 5% oxide and a 95%
graphite matrix. All of the samples that were tested using the LIBS technique showed prominent peaks
of the rare earth elements and of the transition metal in the graphite matrix. A microscope was used to
focus the laser onto the surface of the sample and a very complex, but elegant, design for the collection
of the plasma emission for the spectral acquisition was performed. A very innovative collection optics
configuration was used to collect light from the micro-plasma that was generated by the laser-guided
through the body of the microscope and focused at the exit via a microscopic lens onto the sample
surface. This was achieved for the first time to identify and fingerprint all of these rare-earths and the
transition metal that were tested. In the future, the same experimental configuration will be used to
quantify and measure the limits of detection of the elements that were tested.
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