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Abstract: Understanding the differences in surface properties between aegirite and specularite is
of great significance to study their separation. In this work, the surface properties of aegirite and
specularite, as well as their relationships to floatability, have been explored by first principle calculation,
flotation, and Zeta potential measurement. The surface relaxation indicated that the specularite (001)
surface appeared to show more surface reconstruction. The unsatisfied bond properties, Mulliken
bond population, and surface charge showed that the floatability of specularite was superior to that of
aegirite. The flotation results showed that the hydrophobicity of specularite was higher than that of
aegirite with dodecylamine (DDA) as the collector. It is infeasible to separate specularite from aegirite
by flotation using starch as the depressant, and research of effective reagents with high affinity to the
element Si is the subclinical breakthrough point of specularite/aegirite separation.

Keywords: aegirite; specularite; iron-containing silicate; surface properties; floatability; density
functional theory

1. Introduction

Iron is an important base metal and is widely used in various industries. Its low cost and high
strength make it indispensable in engineering applications such as the construction of machinery and
machine tools, automobiles, the hulls of large ships, and structural components for buildings [1]. Iron
ranks first among the metals in worldwide production and consumption [2].

Based on the type of gangue, iron ore can be classified into three major types: quartz-type,
carbonate-type, and silicate-type [3–6]. The difficulty of quartz-type iron ore separation via flotation is
relatively low, and extensive studies have been conducted that mainly focus on the flotation separation
of quartz-type oxide iron ore or the novel reagent synthesis and adsorption mechanism [7–12]. However,
silicate-type iron ore, especially the iron-containing silicate-type iron ores, such as aegirite, chlorite,
grunerite, garnet, etc., is difficult to separate due to the similar magnetic and floatability properties
between iron-containing silicate and oxidized iron ore [13]. The flotation separation efficiency and the
selectivity of ordinary reagents for iron-containing iron ore flotation are relatively low. Filippov et al. [5]
investigated the flotation separation of iron-containing silicates and iron oxide ore, and experimental
research suggests that a similar amount of amine groups was adsorbed on the surface of both
iron-containing silicates and Fe oxides, which makes it difficult to retreat magnetic concentrates by
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flotation with amines. They also found that starch was not a selective depressant for magnetite in the
process of the reverse cationic flotation of iron ores when iron-containing silicates as amphiboles are
present in the flotation system [8]. Carboxymethyl cellulose, an effective depressant for iron oxide,
was also found to be a depressant for chlorite [14].

The novel high-efficiency depressants or collectors are considered to be an effective method to solve
the unsatisfactory separation problems [15,16]. These depressants and collectors are targeted for making
a sufficient hydrophilic and hydrophobic state of the mineral and gangue surface, respectively. Therefore,
they are profoundly inseparable from understanding the surface properties of the minerals in the novel
depressant or collector molecule design and their adsorption mechanism on the mineral surface.

In recent years, with the rapid developments of theoretical and computational chemistry, a density
functional theory (DFT) calculation can be adopted to visually investigate the surface properties and
floatability of minerals and to predict possible novel reagents [4,17]. The wettability of the mineral
surface and its regulation have always been the core issues of the flotation process [18–20]. Thus, further
research of the nature of the cleavage surface, especially of the main cleavage surface, is of great
significance for investigating the floatability of the minerals. For example, Han et al. [21] calculated
the surface properties of the hemimorphite (110) surface and the simthsointe (101) surface by the
first-principle calculation method to investigate their relationships to the mineral floatability, which
implied that hemimorphite (110) surface is more readily wetted by water, while the O atoms on
hemimorphite (110) surface are more impeding of collector molecules. He et al. [22] calculated the
properties of spodumene and revealed that the O atoms in spodumene are the most active, while the
Li atoms are inactive, so an activator is necessary in flotation to increase the concentrate grade and
recovery. The effect of lattice impurities on the electronic structures and hydrophobicity of minerals
can also be studied by DFT calculation [23]. Moreover, many flotation reagents were designed and
applied based on DFT studies [4,17,24].

Although many in-depth studies on iron ore flotation have been carried out through experiments
and theoretical simulations, there is a lack of systematic studies on the surface property difference
between iron-containing silicates and iron oxide ores. Therefore, this investigation explores the
differences in surface properties and floatability of oxide iron ore and iron-containing silicate. Aegirite
and specularite were chosen as a typical iron-containing silicate-type iron ore [25,26]. The crystal
simulation parameters, convergence experiments, and surface slab model optimization were carried
out to obtain the optimum slab surface model of the two minerals. In addition, the electronic structure,
bonding ability, charge distribution, and bond covalency of surface atoms were calculated and
analyzed. Moreover, the native floatability of aegirite and specularite in different collector systems was
comparatively investigated with or without depressant at an atomic level and was verified by single
mineral flotation and Zeta potential measurement. This work provides a comprehensive understanding
of the relationship between surface properties and the floatability of aegirite and specularite.

2. Materials, Reagents, and Methods

2.1. Materials and Reagents

The individual minerals of aegirite and specularite were obtained from Baiyenebo, Inner Mongolia
and Huoqiu, Anhui province, China, respectively. Lumps of minerals were crushed and ground in
a porcelain ball mill. Then, the grounded samples were sieved to obtain particle size fractions in the
range of −74 +37 µm and −37 µm. The −74 +37 µm size fraction sample was used for flotation and
XRD measurements, while the −37 µm size fraction sample was further ground to −2 µm for the Zeta
potential tests. The content of SiO2 in aegirite and specularite was 53.46% and 3.36%, respectively [13].

The analytical reagents dodecylamine (DDA), starch, hydrochloric acid (HCl), sodium hydroxide
(NaOH), and potassium chloride (KCl) were all acquired from Adamas-beta® (Titan Scientific Co.,
Shanghai, China). The DDA was used as the collector, and HCl and NaOH were employed as the pH
modifier. The KCl was used as the background electrolyte solution in Zeta potential measurements.
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2.2. Methods

2.2.1. Computational Method

In this work, computational simulation was conducted with CASTEP program (version 6.0,
BIOVIA, San Diego, CA, USA) [27] in Material Studio software (MS). Ultrasoft pseudopotential was
used for performing the plane wave expansion of density functional theory based on the first principles.
Energy tolerance of 1 × 10−5 eV/atom, force tolerance of 0.05 eV/Å, displacement tolerance of 0.002 Å,
and stress of 0.1 Gpa were set as the convergence precision of the structure optimization and properties
calculation. The density mixing method was employed with a convergence tolerance of 1 × 10−6

eV/atom to minimize the self-consistent electronic influence.

2.2.2. Optimization of Aegirite and Specularite Bulk Structure

Generalized gradient approximation (GGA) using several functions was used to acquire accurate
calculation results of aegirite and specularite surface property [28]. For obtaining the high-quality
aegirite and specularite bulk structure, the exchange-correlation potential, kinetic cutoff energy,
and Brillouin zone K-point setting were tested.

All of the calculated bulk lattice parameters were compared with the experimental values and
a difference index (DI) was applied to verify the validity and rationality of the parameters setting.
The DI was calculated by Equation (1).

DI =

√
(a− a′)2 +

√
(b− b′)2 +

√
(c− c′)2

3
(1)

where a, b, and c are the calculated bulk lattice parameters; and a′, b′, and c′ are the experimental values.

2.2.3. Optimization of Aegirite and Specularite Surfaces

Surface energy (Esurface) was used to measure the thermodynamic stability of surface structure.
A lower and positive value indicates a more stable surface, which is important in the morphology of
the mineral. The Esurface of a slab model was calculated by Equation (2) [29].

Esur f ace =
Eslab − (

Nslab
Nbulk

) × Ebulk

2A
(2)

where Nslab and Eslab are the numbers of atoms contained in the slab and the total energy of the surface
slab models, respectively; Nbulk and Ebulk are the numbers of atoms contained in the bulk and the total
energy of the surface bulk models, respectively; A is the slab model surface area, and 2 indicates two
new surfaces formed when the surface slab model is constructed from bulk model. A range of surface
slabs with a vacuum thickness of 10 Å was then created from the optimized bulk unit cell of aegirite
and specularite by surface builder module in MS. A series of surface energy was calculated, and the
surface with the lowest positive surface energy was chosen for further research.

In order to obtain the accurate three-dimensional periodic lattice to simulate aegirite and specularite
slab surface structure, different slab depths and vacuum thicknesses were tested [30]. The surface
energy calculation was conducted under the condition of Monkhorst–Pack mesh 2 × 2 × 3 and cutoff

energy of 470 eV for aegirite and 360 eV for specularite.

2.2.4. X-ray Diffraction (XRD) Measurements

The experimental XRD patterns of these two single minerals (−74 +37 µm size fraction) were
determined using an XRD system (D8ADVANCE, Bruker, Karlsruhe, Baden-Württemberg, Germany)
with Cu Kα1 radiation in the 2θ range of 5–90◦. The reflex module in Materials Studio software
(version 6.0, BIOVIA, San Diego, CA, USA) was employed to simulate the XRD pattern of aegirite and
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specularite based on the optimized bulk models. The parameter setting of the XRD pattern calculation
was the same as the experiment.

2.2.5. Flotation Tests

The flotation tests on aegirite and specularite were carried out using a model XFG flotation
machine (Shunze mining and metallurgical machinery manufacturing Co., Ltd., Changsha, China)
operating at 1696 rpm with a 50 mL suspension cell. In a typical flotation test, 2 g of single mineral
was added into 50 mL of deionized water. The pH value of pulp was modified to 6 by either HCl or
NaOH solutions. For the floatability of single mineral tests at the different concentration of the collector
without depressant, the DDA solution was added and conditioned for 3 min. The conditioned pulp was
floated for 5 min, and then both concentration and tailing products were dried and weighed to calculate
the recovery from the solid weight distribution between concentration and tailing products. Each test
was done 3 times, and the average value was collected. For the floatability of single mineral tests at the
different concentration of depressant, a required content starch solution was added for 3 min before
adding collector DDA. The specific process of flotation tests is presented in Figure 1. The conditions
of mixed minerals separation flotation were similar to those of the single minerals, except that each
sample was mixed with 1 g aegirite and 1 g specularite, and the SiO2 grade of concentrate products
was assayed.
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Figure 1. The flowsheet and conditions of the flotation tests.

2.2.6. Zeta Potential Measurements

The Zeta potential tests were conducted with a ZetaPALS (Bruker, Karlsruhe, Germany) measuring
instrument. Firstly, the −37 µm size fraction aegirite and specularite samples were further ground to
−2 µm. In a typical Zeta potential measurement, 30 mg of the −2 µm aegirite or specularite power was
mixed in 50 mL of 1 × 10−3 mol/L KCl solution with a magnetic stirrer at a speed of 1500 rpm. The pH
value of the suspension was adjusted by either HCl or NaOH after stirring for 2 min. Finally, the Zeta
potential of samples was measured after they were standing for 5 min. Three measurements were
performed under each condition, and the average value was recorded with the standard deviation.

3. Results and Discussion

3.1. Preparation of Aegirite and Specularite Bulk Crystals

The initial bulk aegirite and specularite lattices were built according to the crystal structure
parameters from American Mineralogist Crystal Structure Database [31]. The lattice constant of aegirite
was a = 9.658 Å, b = 8.7958 Å, c = 5.294 Å, α = γ = 90◦, β = 107.42◦ [32] and a = b = 5.035 Å, c = 13.747 Å,
α = β = 90◦, γ = 120◦ for specularite [33]. The total energy and DI value at difference functions, cutoff

energy, and K-point sets were tested, and the results are shown in Figure 2.
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Figure 2. Comparison of total energy and difference index (DI) value at different parameters setting 
((a,c,e) for function, cutoff energy, and K-point set of aegirite, respectively; (b,d,f) for function, cutoff 
energy, and K-point set of specularite, respectively). 

It can be seen from Figure 2 that the total energy and DI values (0.149 and 0.298) of aegirite and 
specularite were both the lowest when the exchange-correlation potential was set as PW91, 
indicating that PW91 was an adaptive function setting. Moreover, the total energy and DI value 

Figure 2. Comparison of total energy and difference index (DI) value at different parameters setting
((a,c,e) for function, cutoff energy, and K-point set of aegirite, respectively; (b,d,f) for function, cutoff

energy, and K-point set of specularite, respectively).

It can be seen from Figure 2 that the total energy and DI values (0.149 and 0.298) of aegirite and
specularite were both the lowest when the exchange-correlation potential was set as PW91, indicating
that PW91 was an adaptive function setting. Moreover, the total energy and DI value decreased
gradually with the increase of cutoff energy and K-point grid density when the kinetic cutoff energies
of 470 eV and 360 eV were set for aegirite and specularite, respectively. When the K-point grids of
aegirite and specularite were 2 × 2 × 3 and 3 × 3 × 2, respectively, the minimum DI values of 0.129 for
aegirite and 0.107 for specularite were achieved. Figure 3 shows the simulated and experimental XRD
patterns of the two minerals at the optimal calculation parameters setting, showing that the simulated
and experimental XRD patterns are almost identical, which proves that the convergence of the total
energy is authentic and the simulation calculation setting is appropriate.
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3.2. Surface Slab Model Optimization

The calculated surface energies of six surfaces for the two minerals are shown in Figure 4.
For aegirite and specularite, the surfaces with the lowest energy were (110) and (001), respectively,
which were the dominant cleavage planes of these two mineral crystals. Thus, the surfaces of aegirite
(110) and specularite (001) were chosen for investing the further properties.
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The mineral crystal breakage destroys the equilibrium of the forces prior to acting on the surface
atoms. The attraction force from the crystal interior reconstructs the surface structure to achieve the
lowest surface Gibbs free energy, which causes the relaxation of the surface atoms. In addition, the DFT
calculation is conducted under the three-dimensional periodicity condition, so the vacuum thickness
should be enough to avoid the interaction between the two identical reflection surfaces [21]. In order
to obtain a stable surface slab model, the surface energy of the mineral’s slab surface at different slab
depths and vacuum thicknesses was calculated, and the results are listed in Table 1.
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Table 1. Surface energies of aegirite and specularite (110) and specularite (001) plane in the function of
slab depth and vacuum thickness.

Mineral Property

Aegirite

Slab depth (Å) 6.272 12.543 18.814 25.085 31.356
Surface energy(J/m2) 0.317 0.476 0.503 0.521 0.524

Vacuum thickness (Å) 8 10 12 14 16
Surface energy(J/m2) 0.517 0.521 0.526 0.528 0.529

Specularite

Slab depth (Å) 13.772 27.544 41.316 55.088
Surface energy(J/m2) 1.116 1.231 1.233 1.234

Vacuum thickness (Å) 8 10 12 14 16
Surface energy(J/m2) 1.219 1.232 1.235 1.237 1.238

When the layer number of aegirite (110) model was more than four, and that of specularite
(001) was more than three, the surface energy trended to invariant. In the case of vacuum thickness,
the surface energy of both aegirite and specularite decreased with the increase of vacuum thickness,
and a vacuum thickness of 12 Å was enough to prevent the electrostatic interactions between two sides
of a slab either for aegirite (110) surface or specularite (001) surface. The surface slab models of aegirite
(110) (slab depth 25.085 Å, vacuum thickness 12 Å) and specularite (001) (slab depth 41.316 Å, vacuum
thickness 12 Å) were used to simulate the structure of aegirite and specularite surface, respectively.
The geometry structures of these two surface models and surface atoms displacement before and after
optimization are shown in Figure 5 and Table 2, respectively.
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Table 2. Displacement of surface atoms of aegirite (110) and specularite (001) before and after relaxation.
(∆: displacement of atoms).

Mineral
Displacement (Å)

∆Fe ∆O1 ∆O2

Aegirine −0.2300 0.0016 0.0156
Specularite −0.2807 0.0028 0.0161

As presented in Figure 5 and Table 2, for the aegirite (001) surface slab model, O atoms move
toward outside the bulk (O1 for 0.0016 Å and O2 for 0.0156 Å), while Fe atoms move toward inside
the bulk for 0.23 Å, which increases the negative charge density of surface O atoms. Moreover, for
the specularite (001) surface, atom relaxation makes a similar reconstruction. Surface atoms O move
outside the bulk (O1 for 0.0028 Å and O2 for 0.0161 Å) and surface atoms Fe move inside for 0.2807 Å,
similar to the results of Dzade et al. [26]. Compared with the atoms displacement of the two minerals,
the displacement values of Fe and O atoms in specularite (001) surface moving toward inside and
outside were larger than those of aegirite, which led to a higher negative charge increase of specularite
than that of aegirite. The overall effect caused by surface relaxation makes specularite show higher
floatability in a cationic collector system than that in anionic collector system.

3.3. Relationship between Surface Property and Floatability

3.3.1. Electronic Structure and Properties of Mineral Surface

The electron near the Fermi lever showed the strongest activity; therefore the density of states
(DOS) of electrons near the Fermi energy can be observed to judge the reactivity of surface atoms in
chemical adsorption [34,35]. The DOSes of electrons in these two minerals surface were calculated,
and the results are presented in Figures 6 and 7, respectively.

Minerals 2018, 8, x FOR PEER REVIEW  8 of 15 

 

similar to the results of Dzade et al. [26]. Compared with the atoms displacement of the two 
minerals, the displacement values of Fe and O atoms in specularite (001) surface moving toward 
inside and outside were larger than those of aegirite, which led to a higher negative charge increase 
of specularite than that of aegirite. The overall effect caused by surface relaxation makes specularite 
show higher floatability in a cationic collector system than that in anionic collector system. 

Table 2. Displacement of surface atoms of aegirite (110) and specularite (001) before and after 
relaxation. (∆: displacement of atoms). 

Mineral 
Displacement (Å) 

∆Fe ∆O1 ∆O2 
Aegirine –0.2300 0.0016 0.0156 

Specularite –0.2807 0.0028 0.0161 

3.3. Relationship between Surface Property and Floatability 

3.3.1. Electronic Structure and Properties of Mineral Surface 

The electron near the Fermi lever showed the strongest activity; therefore the density of states 
(DOS) of electrons near the Fermi energy can be observed to judge the reactivity of surface atoms in 
chemical adsorption [34,35]. The DOSes of electrons in these two minerals surface were calculated, 
and the results are presented in Figures 6 and 7, respectively. 

0

10

20

30

40

0

6

12

18

24
30

0

4

8

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

4

8

12

 Total

 O 2s
 O 2p

 Si 3s
 Si 3p

De
ns

ity
 o

f s
ta

tes
 (e

le
ctr

on
s/e

V)

Energy (eV)

 Fe 4s
 Fe 3p
 Fe 3d

 

Figure 6. Calculated total and partial density of state of atoms for aegirite (110) surface. 

The Fe 3p and 3d orbitals make the major contribution to the conduction band for aegirite (110) 
surface. The O 2p orbital, as well as the Si 3s and 3p orbitals, also makes a little contribution to the 
conduction band. The Fe 3d orbital and the O 2p orbital make the primary contribution, and the Si 
3p makes a minor contribution to the upper valence band (–10 to 0 eV) [36]. The O 2s orbital and Si 3s 
orbital make the major contribution to the bottom valence band (–23 to –10 eV). Moreover, there are 
two sharp states in the DOS of Fe 3d orbital, which indicates that the electrons in the Fe 3d orbital 
have more effective mass and degree of locality, and the scalability of atomic orbital is weak. 
Meanwhile, the energy lever of the Fe 3d orbital (11.86 electron/eV) is higher than that of O 2p orbital 

Figure 6. Calculated total and partial density of state of atoms for aegirite (110) surface.



Minerals 2019, 9, 782 9 of 15

Minerals 2018, 8, x FOR PEER REVIEW  9 of 15 

 

(2.95 electron/eV) and Si 3p orbital (0.05 electron/eV). This indicates that the bonding atoms in the 
polar group of collector molecules preferentially bond with the atom Fe. 

0

24

48

72

96

0

25

50

75

100

-25 -20 -15 -10 -5 0 5 10 15 20 25
0

18

36

54

 Total

De
ns

ity
 o

f s
ta

tes
 (e

le
ctr

on
s/e

V)
 O 2s
 O 2p

Energy (eV)

 Fe 4s
 Fe 3p
 Fe 3d

 

Figure 7. Calculated total and partial density of state of atoms for specularite (001) surface. 

For specularite (001) surface, the Fe 3d orbital and the O 2p orbital are primarily contributed to 
the conduction band. The Fe 3d orbital and the O 2p orbital make the major contribution and the Fe 
3p orbital makes a small contribution to the upper valence band (–6 to 0 eV). The O 2s orbital makes 
a major contribution to the deep valence band (–20 to –6 eV). The Fe 3d orbital of specularite model 
similarly presents sharp states compared with that of aegirite model, which means that the electrons 
of Fe 3d in specularite also have more effective mass and degree of locality. 

It can be concluded from the above analysis that the valence electrons of surface Fe atoms both 
in aegirite and in specularite models possess a larger degree of locality than that of atoms O. This 
leads to the bonding appetency of the adhesion group of collectors to the atoms Fe being higher than 
that of atoms O. Additionally, despite the 3d orbital energy level of Fe atoms both in the surface 
layer of aegirite and specularite, the DOS of 3d orbital energy level of Fe atoms in the surface layer of 
specularite is much higher than that of aegirite. In summary, compared with aegirite, the Fe atoms in 
the surface layer of specularite possess more significant activity in chemisorption of collectors. The 
calculation results indicate that specularite should show higher floatability than aegirite when 
cationic collector is used. 

3.3.2. Unsatisfied Bond Properties of Mineral Surface 

The natural floatability of minerals is determined by the ionicity of the chemical bonds in their 
mineral surface [21]. Mulliken population analysis was used to analyze the property of the chemical 
bonds [37]. The Fe–O and Si–O bonds break when the aegirite and specularite are ruptured along 
the surface (110) and (001), respectively. The Mulliken population values of Fe–O and Si–O bonds in 
the interiors of mineral and in the mineral surface layers are shown in Table 3. 

Figure 7. Calculated total and partial density of state of atoms for specularite (001) surface.

The Fe 3p and 3d orbitals make the major contribution to the conduction band for aegirite (110)
surface. The O 2p orbital, as well as the Si 3s and 3p orbitals, also makes a little contribution to the
conduction band. The Fe 3d orbital and the O 2p orbital make the primary contribution, and the Si
3p makes a minor contribution to the upper valence band (−10 to 0 eV) [36]. The O 2s orbital and
Si 3s orbital make the major contribution to the bottom valence band (−23 to −10 eV). Moreover,
there are two sharp states in the DOS of Fe 3d orbital, which indicates that the electrons in the Fe 3d
orbital have more effective mass and degree of locality, and the scalability of atomic orbital is weak.
Meanwhile, the energy lever of the Fe 3d orbital (11.86 electron/eV) is higher than that of O 2p orbital
(2.95 electron/eV) and Si 3p orbital (0.05 electron/eV). This indicates that the bonding atoms in the polar
group of collector molecules preferentially bond with the atom Fe.

For specularite (001) surface, the Fe 3d orbital and the O 2p orbital are primarily contributed to
the conduction band. The Fe 3d orbital and the O 2p orbital make the major contribution and the Fe
3p orbital makes a small contribution to the upper valence band (−6 to 0 eV). The O 2s orbital makes
a major contribution to the deep valence band (−20 to −6 eV). The Fe 3d orbital of specularite model
similarly presents sharp states compared with that of aegirite model, which means that the electrons of
Fe 3d in specularite also have more effective mass and degree of locality.

It can be concluded from the above analysis that the valence electrons of surface Fe atoms both in
aegirite and in specularite models possess a larger degree of locality than that of atoms O. This leads
to the bonding appetency of the adhesion group of collectors to the atoms Fe being higher than that
of atoms O. Additionally, despite the 3d orbital energy level of Fe atoms both in the surface layer of
aegirite and specularite, the DOS of 3d orbital energy level of Fe atoms in the surface layer of specularite
is much higher than that of aegirite. In summary, compared with aegirite, the Fe atoms in the surface
layer of specularite possess more significant activity in chemisorption of collectors. The calculation
results indicate that specularite should show higher floatability than aegirite when cationic collector
is used.
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3.3.2. Unsatisfied Bond Properties of Mineral Surface

The natural floatability of minerals is determined by the ionicity of the chemical bonds in their
mineral surface [21]. Mulliken population analysis was used to analyze the property of the chemical
bonds [37]. The Fe–O and Si–O bonds break when the aegirite and specularite are ruptured along the
surface (110) and (001), respectively. The Mulliken population values of Fe–O and Si–O bonds in the
interiors of mineral and in the mineral surface layers are shown in Table 3.

Table 3. Mulliken bond population of internal and surface chemical bonds of aegirite and specularite.

Mineral Interior Value Surface Value

Aegirine (
∑

(Fe–O, Si–O Bond)) 4.41 3.95
Specularite (

∑
Fe–O Bond) 1.62 1.29

The Mulliken population values of chemical bonds in the interiors of aegirite and specularite are
larger than those in the surface layers. This leads the ionicity of the chemical bonds in the surface
layers of aegirite and specularite to increase when the crystals are ruptured along the surface (110) and
(001), respectively. The sum of Mulliken bond population values of the chemical bonds in aegirite
(110) surface is 3.95, which is higher than that of the chemical bonds in specularite (001) surface (1.29),
which means that the ionicity of the unsaturated chemical bonds in aegirite (110) surface is stronger
than that in specularite (001) surface. Therefore, the aegirite (110) surface shows more affinity to water
compared with the specularite (001) surface, which means that the native floatability of aegirite is
lower than that of specularite.

3.3.3. Surface Charge of Mineral Surface

The point of zero charge (PZC) of a mineral is related to the electrical properties of layer atoms in
the mineral surface. In the case of no specific adsorption in the solution system, the PZC is equal to the
isoelectric point (IEP); therefore, there is some connection between the original charge layer atoms in
mineral surface and PZC [38,39]. The calculated atomic charges of layer atoms in the aegirite (110)
surface and the specularite (001) surface are shown in Table 4, where R represents the absolute value of
the ratio of negative charges to positive charges.

Table 4. Charge on the aegirite (110) and specularite (001) surface.

Mineral
∑

Negative Charge (×10−19 C)
∑

Positive Charge (×10−19 C) R (Negative/Positive)

Aegirine −1.49 0.74 2.01
Specularite −1.29 0.81 1.59

The larger the R value is, the larger the ability to attract cations compared to anions. The R value
of aegirite (2.01) is higher than that of specularite (1.59); therefore, it can be conjectured that the
IEP of specularite is higher than that of aegirite. The Zeta potentials of aegirite and specularite at
different pH values were measured, and the result is illustrated in Figure 8. As shown in Figure 8,
the Zeta potentials of these two minerals both decreased with the increase of pH value, and the
IEP of specularite (2.83) is higher than that of aegirite (2.12), which conforms to the conjecture and
previous results [11,40]. As a cationic collector, DDA increases the surface potential when adsorbed on
a mineral surface. It is obvious that the surface potential of both aegirite and specularite shifted to
a higher value when treated by DDA, and the surface-potential shift margin enlarged along with the
increase of DDA concentration, which means that DDA was adsorbed on these minerals. Moreover,
the surface-potential shift margin of specularite was significant in comparison to aegirite; this was
mainly due to the hydrophobic adsorption and higher adsorption density. As we know, the DDA
collects mineral via physisorption [41,42]. Therefore, the natural floatability of specularite should be
higher than that of aegirite.
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Starch is one of the most widely used depressants in iron ore flotation. Satisfactory depression 
selective of the starch can be achieved when quartz is the main existing form of gangue [11,43,44]. 
Figure 10 shows the depression effect of starch on aegirite and specularite with 20 mg/L DDA as the 
collector. Although the natural floatability of specularite is higher than that of aegirite, starch has 
shown stronger depression on specularite than on aegirite. In contrast to the depression of starch on 
quartz, the floatability of aegirite decreased rapidly with the increase of starch concentration. For 
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3.3.4. Floatability of Aegirite and Specularite

The floatability of the single minerals and separation of mixture with DDA as the collector at pH
6 are shown in Figure 9. The recovery of aegirite and of specularite without collector were 4.34% and
17.26%, respectively, and increased with the increasing DDA concentration. The results indicate that
specularite possesses higher natural floatability compared with aegirite, which is consistent with the
speculation by calculation and Zeta potential measurements. Figure 9b shows the froth production of
mixed mineral flotation with different DDA concentrations, and the grade and recovery of SiO2 in
froth products. Compared to single minerals flotation, DDA still showed dramatic collect action on
mixture. However, the grade and recovery of SiO2 ascended simultaneously, which demonstrates that
the entrainment of aegirite in specularite is sensible. DDA consequently revealed little selectivity for
aegirite and specularite without depressant, although it had splendid collecting ability.
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DDA as the collector.

Starch is one of the most widely used depressants in iron ore flotation. Satisfactory depression
selective of the starch can be achieved when quartz is the main existing form of gangue [11,43,44].
Figure 10 shows the depression effect of starch on aegirite and specularite with 20 mg/L DDA as the
collector. Although the natural floatability of specularite is higher than that of aegirite, starch has
shown stronger depression on specularite than on aegirite. In contrast to the depression of starch
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on quartz, the floatability of aegirite decreased rapidly with the increase of starch concentration.
For example, the recovery of specularite decreased from 91.16% without starch to 9.06% with 2.0 mg/L
starch; meanwhile, the recovery of aegirite decreased from 74.86% to 19.91%.
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Figure 10. The floatability of aegirite and specularite with starch as the depressant when 20 mg/L of
DDA was used as the collector.

Starch depresses iron oxide minerals mainly due to the chemisorption via C–OH groups of the
starch to the element Fe in iron oxide ore [11]. As a comparison of DOS of the Fe atom for aegirite and
specularite, the reactivity of element Fe in specularite surface is stronger than that in aegirite; moreover,
the content of element Fe in the specularite surface is higher than in aegirite, which all make the degree
of adsorption of starch on specularite higher than on aegirite.

As mentioned in the introduction of this paper, the element Fe in the iron-containing silicates
such as aegirite and chlorite makes these gangues show similar magnetic properties and floatability to
iron oxide ore. Traditional reagents are hypodynamic in the flotation of iron-containing silicates-type
iron ore. Therefore, novel and effective reagents are urgently needed to synthesize based on the
in-depth study of the surface property difference. It is generally acknowledged that cationic/anionic
reverse flotation is one of the most efficient technologies for the enrichment of iron-containing minerals
from iron ores [45]. It should be noted that in reverse flotation, a depressant such as starch is added
and adsorbs on the iron ore surface before the collector, whether cationic or anionic is used, and the
cover-type adsorption of starch blocks the follow-up collector adsorption effectively [46]. It is extremely
difficult to activate the depressed iron-containing silicates by metal ions. Therefore, the selectivity of
the depressant plays a decisive role in the overall flotation. Thus, we believe the design and synthesis
of the effective depressant in direct flotation or collector in reverse flotation, especially with high
affinity to element Si, should be the key point in further research on the separation of iron-containing
silicates iron ore.

4. Conclusions

In this work, the surface properties of aegirite and specularite were systematically studied for the
first time by DFT calculations. The floatability of these two minerals with or without depressant was
further scientifically investigated by single mineral flotation and Zeta potential measurements.

The calculation results show that the dominant cleavage planes of aegirite and specularite are
(110) and (001), respectively. The surface atom relaxation occurred on when the two mineral crystals
were cleaved, where the Fe atoms both of aegirite and specularite moved toward inside the surface,
while the atoms O moved outside the surface. The upper valence band of aegirite (110) surface atoms
and specularite (001) surface atoms was mainly composed of Fe 3d orbital and O 2p orbital. The Fe
content of specularite was higher than that of aegirite. The calculated results of unsatisfied bond
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properties, Mulliken bond population, and surface charge exhibited lower ionicity of the chemical
bonds for specularite and higher floatability than aegirite.

The flotation results show that the floatability of specularite was higher than that of aegirite in
DDA collector system. Starch depressed specularite stronger than aegirite, mainly due to the higher
content and reactivity of element Fe in specularite surface than that of aegirite. The design and
synthesis of effective reagents with high affinity to element Si is the tendency for the separation of
iron-containing silicates iron ore.
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