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Abstract: Cold-water corals (CWCs) are frequently found at cold seep areas. However, the relationship
between fluid seepage and CWC development is not clear. Here, for the first time, we report
the occurrences, species identification, mineralogy, carbon and oxygen isotopes, as well as elemental
compositions of fossil CWC skeletons from gas-hydrate-bearing sediment in drilling cores from
the South China Sea (SCS). Three sites (GMGS-08, GMGS-09B, and GMGS-16) were investigated
but CWCs were only found at one site (GMGS-09B). Interestingly, the CWCs were found in three
horizons and they were all embedded with authigenic carbonates. Three genera of fossil CWCs
(Crispatotrochus sp., Solenosmilia sp. and Enallopsammia sp.) were identified. The CWC fragments
are predominantly aragonite. The CWCs exhibit δ13C values between −8.4%� and −0.6%� that are
significantly higher than δ13C values of the associated seep carbonates (δ13C values with an average
of −55.6%�, n = 19), which indicates a carbon source other than methane for the CWCs. It appears
that authigenic carbonates provide a substratum for coral colonization. Bathymetric high points,
appropriate water temperature and stronger bottom-water currents at site GMGS-09B might be
crucial to keep conditions favorable for the growth of CWCs in the studied area. In addition, high
trace-element concentrations of Cr, Ni, Pb, U, Ba, Th, and Sr suggest that the CWCs are influenced by
strong fluid seepage that can reach the water-sediment interface, and associated microbial activity.
Hence, it also becomes evident that CWCs in hydrocarbon-rich seepage areas not only provide
a critical constraint on the impact of fluid emission on the bottom water chemistry, but also are likely
to be very precise recorders of the end time of cold seep activity.
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1. Introduction

Cold-water corals (CWCs), also termed deep-water corals, belong to the phylum Cnidaria.
They include black corals (Antipatharia), stony corals (Scleractinia), hydrocorals (Stylasteridae),
and soft corals (Octocorallia) [1,2]. These corals commonly occur in marine settings on continental
margins, slopes, seamounts, and deep-sea basins in water depths of 30–1000 m, e.g., the moderately
deep parts of the Southern Ocean and North Atlantic [3–5]. Rather than relying on symbiotic algae,
the shallow-water coral’s food supply, CWCs feed on plankton, organic matter, and tiny organisms in
the oceans [1,6]. As such, CWCs are able to live in environments without sunlight and can provide
paleoceanographic records in regions where other fossils are usually sparse [2].

Previous studies of CWCs have focused mainly on the geochemical record of deep-ocean changes
archived in their skeletons [2,7]. Accurate dating by uranium-series disequilibrium and 14C systems are
facilitated by the high contents of U in their aragonitic skeletons [8–13].Various geochemical proxies,
including isotopes of carbon, oxygen, and neodymium, rare-earth elements (REEs), trace elements,
and Ba/Ca, Mg/Ca and Sr/Ca ratios of CWC skeletons are commonly used to reveal oceanic processes
such as carbon cycling [14,15], past water-mass changes [16–18], hydrothermal activity [7], changes in
water temperature [19], and ocean acidification [20].

It has been proposed that the development of CWCs is controlled by various oceanographic
conditions, including salinity, temperature, substrate, tractive current, and dissolved oxygen [21],
as well as hydrocarbon seepage [22]. CWCs have been reported in association with hydrocarbon
seeps in Norwegian fjords [6], offshore Ireland [23], the Kristen hydrocarbon field [24], the Norwegian
Margin [25], the Hikurangi Margin (New Zealand) [26,27], eastern central Atlantic [28], the Gulf of
Mexico [29], and the Gulf of Cádiz [30]. However, the influence of fluid seepage on CWC growth
is not yet fully understood. One theory, termed the “hydraulic theory”, suggests that the energy
and nutrient supply of CWCs may be directly fueled by cold seepage [22,31,32]. However, the absence
of DNA from methane- and sulfide-oxidizing microbes in CWCs from an active hydrocarbon-rich
seepage area of the Gulf of Cádiz indicates that CWCs do not harbor the chemosynthetic symbionts
required to consume the reduced compounds in hydrocarbon-rich fluids [33]. It is possible that
CWCs use authigenic carbonates, formed through anaerobic oxidation of methane (AOM) mediated by
a syntrophic consortium of anaerobic methanotrophic archaea and sulfate-reducing bacteria [34–39],
as a hard substrate for coral larval settlement [26,33,40–42]. In addition, CWCs potentially benefit from
fluid-seepage-related structures such as mud volcanoes and carbonate mounds, as these structures
provide morphological barriers that direct bottom currents to deliver nutrients to the corals [33,43,44].

CWCs in the South China Sea (SCS) were first discovered by Bassett-Smith [45] near the Zhongsha
Islands and the Nansha Islands. Subsequently, many species of CWCs have been observed near
the Xisha Islands and along the northern margin of the SCS [46]. Previous studies have focused
mostly on species identification and ecological analysis with only limited reports of geochemical
data. No evidence of CWCs being present in cold-seep areas of the SCS was reported until 2013,
when abundant authigenic carbonates and cold-seep biota including CWCs were discovered in
gas-hydrate-bearing sediments from cores GMGS2-08, GMGS2-09B, and GMGS2-16 obtained during
China’s second gas-hydrate drilling expedition (GMGS-2) (Figure 1). Despite the near-identical
oceanographic and sedimentological conditions of the three drill cores, CWCs were found only at core
site GMGS2-09B (Figure 2). However, the exact environmental conditions that regulate the occurrence
of CWCs in this region remain unresolved. These gas-hydrate drill cores represent excellent materials
to study the environmental factors that affect CWC development in methane-rich settings.

The present study reports, for the first time, species identification, mineralogy, and geochemistry
(carbon and oxygen isotopes and major and trace elements) of three CWC species (Crispatotrochus sp.,
Solenosmilia sp., and Enallopsammia sp.) retrieved from core GMGS-2 from a cold-seep area in the SCS
(Figure 2). Our results provide insights into the relationship between fluid seepage and CWC
development. Furthermore, the investigation helps to improve understanding of the factors that
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control coral growth and of interpretations of bottom-water chemistry recorded by CWC skeletons in
fluid-seepage settings.

Figure 1. Location of sites GMGS2-08, GMGS2-09B, and GMGS2-16 on the northern continental slope
of the South China Sea. Deep-water currents are after Liu et al. [47].

Figure 2. Cont.
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Figure 2. (A) Seismic images of sites GMGS2-08, GMGS2-09B, and GMGS2-16. The vertical lines
indicate position of cores. (B) Distribution of cold-water corals and authigenic carbonates at sites GMG
S2-08, GMGS2-09B, and GMGS2-16.

2. Geological Background

The northern SCS is an Atlantic-type passive continental margin, with extensive troughs, seamounts,
and basins, including the Xisha Trough, Pearl River Mouth Basin, Beibuwan Basin, Qiongdongnan
Basin, and Taixinan Basin [48]. The investigated area is located in the Dongsha area, which is situated
in the eastern part of the Pearl River Mouth Basin of the SCS, at a water depth of ~664 m (Figure 1).
Faults and mud diapirs, which are considered to be effective pathways for hydrocarbon migration,
are common in the area [49]. The depths of bottom simulating reflectors are in the range of 160–220 m
below the seafloor (mbsf) with an average depth of 180 mbsf [48]. Active cold-seep authigenic carbonates
and benthic seep biota have been observed in the Dongsha area [49–51]. Moreover, gas hydrates have
been recovered at this site during GMGS-2 in 2013 [48,52].

Gas hydrates were recovered during the GMGS-2 cruise conducted by the Chinese Geological
Survey in coordination with Fugro and Geotek in 2013, with drill cores taken at sites GMGS2-08,
GMGS2-09B, and GMGS2-16 (Figure 1). Authigenic carbonate nodules and chemosynthetic bivalve
shells are common in the three cores. Three fossil CWC skeleton layers were identified in GMGS2-09B
core samples, at depths of 3.00–4.47, 6.00–6.42, and 22.00–22.60 mbsf (Figure 2).

3. Samples and Methods

3.1. Samples

Drill core samples were collected at site GMGS2-09B. Gas hydrates containing >99% methane
were recovered at depths ranging from 9 to 21 mbsf (Figure 2). There is an extraordinarily high
sedimentation rate of ~73.3 cm/k.y. since 0.12 Ma at GMGS2-09B [48]. These samples exhibit both
nodular and massive morphologies. The drilling depth reached ~105 mbsf in a water depth of 664 m.
The dominant sediments were clayey silt and silt. Samples of fossil CWCs and authigenic carbonate
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nodules were obtained. The AMS14C (14C accelerator mass spectrometry) ages cluster of the CWCs
obtained at 3.35–3.55 mbsf between 15.1 and 15.5 ka BP, and CWCs at 6.20–6.30 mbsf have an age of
17.1 ka BP (unpublished data). All samples were washed immediately after collection and placed in
storage at 4 ◦C.

3.2. Analytical Methods

Well-preserved (without apparently crushed) fossil CWCs and authigenic carbonate samples
were selected and further cleaned with deionized water using an ultrasonic cleaner in the laboratory.
The shell fragments were separated from adhered sediments under a microscope to remove possible
contaminants. CWCs were investigated using Stereo microscope (Discovery V20) and 3D X-ray
microscope using an Xradia520 Versa instrument (Zeiss, Oberkochen, Germany) at the Guangzhou
Marine Geological Survey and at Carl Zeiss, Shanghai Co., Ltd. (Shanghai, China), respectively.
Subsamples from aragonite skeletons of CWCs were collected for geochemical analyses, and all
samples were crushed and pulverized to pass through a 200 mesh.

X-ray Powder Diffraction analysis (XRD) was used for semi-quantitative characterizations of CWC
mineralogy using a Rigaku D/MAX 2500PC Diffractometer (Tokyo, Japan) equipped with a diffracted
beam graphite monochromator and using Cu Kα radiation at the Guangzhou Marine Geological
Survey. Scans were conducted from 2.5◦ to 65◦ (2θ) at 0.01◦/s, using a 300 mA current and 40 kV
acceleration voltage. The relative proportions of carbonate minerals were quantified by whole pattern
fitting and Rietveld refinement of the MDI Jade 6 program (V6.1, MDI, CA, United States).

Carbon and oxygen isotope values of CWCs and authigenic carbonates were analyzed
at the Guangzhou Marine Geological Survey laboratory, following the procedure described by
Chen et al. [53]. Samples were processed with 100% phosphoric acid at 80 ◦C to release CO2

for measurement using a Kiel IV online carbonate preparation line connected to a MAT 253 mass
spectrometer (Thermo Scientific, Waltham, MA, United States). The isotope values are expressed using
δ notation relative to the Vienna Pee Dee Belemnite (VPDB) standard. Precisions based on repeated
measurements of carbonate standards are in the order of 0.1%� (2σ) for both δ13C and δ18O.

Major- and trace-element analysis was performed with HF–HNO3 solutions following
the procedure established by Hu et al. [54]. Major elements were analyzed via inductively coupled
plasma–optical emission spectrometry (ICP–OES) (Optima 8300, PerkinElmer, Waltham, MA, United
States) and trace elements were measured via ICP–mass spectrometry (MS) (X Series2, Thermo Fisher
Scientific, Waltham, MA, United States) at the Guangzhou Marine Geological Survey. The analytical
precision of element contents is better than 5%.

4. Results

4.1. Distribution and Species of CWCs

The abundance of CWCs decreases with depth, with distinct layers of higher abundance at 3.00–4.47,
6.00–6.42, and 22.00–22.60 mbsf (Figure 3). Most of the CWCs are fragments 0.063–5 cm in length.
The coral fragments’ preservation, based on integrity of skeletal structure, ranges from poor to moderate
throughout the core. Three genera and two unknown genera were identified, including the solitary
corals Crispatotrochus sp., Solenosmilia sp., and Enallopsammia sp. (Figure 4). The most commonly
observed CWC fragments were classified as Solenosmilia sp. Authigenic carbonates, mainly occurring
as gray to gray-white nodules, are found in association with these CWC fragments. These carbonates
display a brecciform structure and have lengths of ~0.2–1 cm.

On the basis of microstructures revealed by stereo microscope and micro-CT, three coral species
were identified: including Crispatotrochus sp., Solenosmilia sp., and Enallopsammia sp. (Figure 4).
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Figure 3. Distribution of cold-water corals and stable isotopes of authigenic carbonates from site
GMGS2-09B. The inset images (A–C) are coarse fragments of bulk sediments (>0.063 mm). The white
arrows indicate cold-water corals and red arrow indicates the authigenic carbonates.

Crispatotrochus Tenison-Woods, 1878
This genus is a sessile ceratoid solitary coral, with prominent costae, no paliform lobe, and bunchy

columella, and does not have a symbiotic relationship with zooxanthellae. The species distribution is
Pleistocene to present. Samples: GMGS2-09B at 3.45–3.55 mbsf, incomplete (Figure 4A,B).

Solenosmilia Duncan, 1873
This species exhibits dendritic or bush-shaped complexes, thin walls, and several septa with

three complete rounds, or four or five incomplete rounds. The septa of the first and second rounds
are long and twisted, with a central connection. Columella are spongy or unapparent. This species
does not have a symbiotic relationship with zooxanthellae. Samples: GMGS2-09B at 3.45–3.55 mbsf
(Figure 4C,F).

Enallopsammia Michelotti in Sismonda, 1871
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This species exhibits dendritic complexes and has thin walls covered by costae. The septa are
regularly arranged. The columella is mastoid. This species does not have a symbiotic relationship with
zooxanthellae. The species distribution is Pleistocene to present. Samples: GMGS2-09B at 6.30–6.45
mbsf (Figure 4G,H), 6.00–6.15 mbsf (Figure 4I,L), and 3.45–3.55 mbsf (Figure 4K,M).

Figure 4. Microscope and micro-CT photos of cold water corals (CWCs) from site GMGS2-09B ((A,B):
Crispatotrochus sp. Fragment, 345–355 cm; (C–F): Solenosmilia sp. 345–355 cm; (G,H): Enallopsammia sp.,
630–645 cm; (I,J): unknown species A 345–355 cm; (K,L): unknown species B, 600–615 cm; (M,N):
Solenosmilia sp. cross-sectional view and longitudinal sectional view; (O,P): Enallopsammia sp. cross-sectional
view and longitudinal sectional view).

4.2. CWC Mineralogy

XRD results show that the CWC samples are 95–99% aragonite, and 1–5% calcite (Table A1),
and authigenic carbonate samples are dominated by aragonite, high-Mg calcite, low-Mg calcite
and dolomite (unpublished data).

4.3. Carbon and Oxygen Isotopes of CWCs and Carbonates

Stable isotope values for CWCs and carbonates are listed in Table A2 and presented in Figure 5.
CWC δ13C values range from −8.4%� to −0.6%� (mean = −5.3%�, n = 48). The mean δ13C values of
Crispatotrochus sp. and Solenosmilia sp. are −6.1%� and −5.4%� respectively, but Enallopsammia sp.
displays a slight 13C enrichment compare to the above corals, with a mean value of −3.8%�. δ18O values
for CWCs vary from 0.6%� to 4.5%� (mean = 1.9%�, n = 48). Crispatotrochus sp. and Solenosmilia sp.
exhibit similar δ18O values that range from 0.6%� to 3.3%� (mean = 1.7%�, n = 38). Enallopsammia sp.
yields higher positive δ18O values (mean = 2.5%�, n = 7).
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Authigenic carbonates from site GMGS2-09B exhibit extremely negative δ13C values ranging from
−62.3%� to −48.5%� (mean = −55.6%�, n = 19). δ18O values range from 3.4%� to 6.0%� (mean= 4.4%�,
n = 19).

Figure 5. Carbon and oxygen isotopic compositions of CWCs and the associated authigenic carbonates
from the South China Sea.

4.4. CWC Element Contents

Contents of major and trace elements in the CWCs are presented in Table A3. Mean calcium
contents are 37.89% in Crispatotrochus sp., 36.72% in Solenosmilia sp., and 38.82% in Enallopsammia sp.
All samples exhibit similarities in major-element abundances with Ca > Na > K > Al. Contents of Mg,
Mn, and Fe are very low, and less than 0.03%.

All samples exhibit similar trace-element contents in the order Ba > Ni > Zn > U > Cr > Cu
> Pb >Co > Cd (Table A3). Only Ba, Zn, and Ni show moderate to strong content in the CWC
samples, with mean values of 22.36 µg/g for Ba, 9.06 µg/g for Zn, and 10.51 µg/g for Ni. Contents of Cr
(2.51–5.25 µg/g), Cu (1.30–3.84 µg/g), Pb (0.79–3.26 µg/g), Co (0.73–1.40 µg/g), and Cd (0.082–0.093 µg/g)
show little variation.

5. Discussion

5.1. CWCs Distribution and Factors Affect Their Growth

The factors determining CWC formation at cold seep areas are largely unknown.
Hovland and Thomsen [22] established the “hydraulic theory” on the basis of the presence of
cold seeps. These authors posited that hydrocarbon seeps directly fertilize CWCs, a premise supported
by the fact that all the studied CWCs are embedded in authigenic carbonates. However, despite
the almost identical oceanographic and sedimentological environments of the hydrate drilling area,
CWCs were only observed at site GMGS-09B (Figure 2). Even at site GMGS-09B, not all the authigenic
carbonate layers contain CWCs. Unlike bivalves and other seep-dwelling animals that directly use
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the chemical energy produced by cold-seep processes, CWCs may benefit indirectly from cold seeps
through the formation of associated authigenic carbonates [33]. Authigenic carbonates potentially
create a hard substrate for CWC larvae settlement [41]. Although cold-seep activity was widely
observed in the research area, observations made by a remotely operated vehicle revealed that
authigenic carbonates occurred in seabed only at site GMGS2-09B.

Oceanographic processes have also been regarded as an important factor in CWC
development [33,55,56]. Bathymetric highs form areas where eddy currents and internal waves
result in increased concentrations of nutrients and a higher food flux for CWCs [56,57]. The shallowest
bathymetry recorded during the GMGS-2 survey occurred at site GMGS2-09B (water depth of ~664 m;
Figure 2), and the raised seafloor might have resulted in an increased nutrient supply to drive CWC
growth [55].

Additional environmental factors favoring CWC growth at site GMGS2-09B are oceanic
temperatures and the prevailing hydrodynamic regime [56]. The bottom seawater temperature
at site GMGS2-09B was measured as 5.35 ◦C, which is within the preferred temperature range of
4–13 ◦C reported for CWCs along continental margins worldwide [1]. In addition, the research area
is located in an area where deep Pacific water flows through the Luzon Strait to enter the SCS [47].
This presence of a strong and deep seawater flow should deliver increased nutrients that drive CWC
growth. Furthermore, the strong bottom current and the steep and hard seafloor structure prevent
deposition of large amounts of debris that could bury CWCs. These favorable oceanographic conditions
are likely a significant factor favoring the growth of CWCs in the study area.

5.2. Bottom-Water Chemistry and Fluid Seepage Archived in CWCs

5.2.1. Comparison of C and O Isotope Signatures

As CWCs use HCO3
− from both ambient seawater and internally produced carbon dioxide for

skeleton biomineralization, δ13C signatures of coral skeletons can be used to trace external carbon
sources [33,58,59]. Food sources will also affect CWC stable isotope values [60]. CWCs may capture
live zooplankton or detrital particulate organic matter from the upper water column [1]. Alternatively,
it is also possible that they feed on bacterial mats or microorganisms associated with methane fluids [6].
Cold seeps are characterized by widespread chemosynthesis-based ecosystems and are commonly
associated with high biomass, fueled by microbial chemosynthesis [61].

However, the data from 48 CWC samples in this study show a linear trend, with obviously high
δ13C values (−8.4%� to −0.6%�; Figure 5) compared to those of authigenic carbonates. These values
are significantly different from those of the co-occurring authigenic carbonates. The highly
13C-depleted authigenic carbonates (mean = −55.6%�, n = 19) at the four intervals (3.25–3.65, 6–6.45,
8.30–8.45, and 22–22.6 mbsf) in core GMGS2-09B indicate a methane-derived isotopic signature,
indicating the presence of past methane seepages at the times of deposition of these intervals (Figure 5).
Biogenic methane typically exhibits δ13C values in the range of −110%� to −50%� [62] and thermogenic
methane in the range of −50%� to −30%� [63]. The extremely negative δ13C values of the carbonates
(−62.3%� to−48.5%�) from core GMGS2-09B indicate that the dominant source of carbon fueling the system
is biogenic methane.

A summary of δ13C and δ18O values of CWCs, coral reefs, and carbonates in the SCS and other
locations are shown in Figure 6. The values exhibited by the CWCs and carbonates of the present
study differ markedly from those from shallow coral reefs at the Xisha Islands [64] and Sanya Bay [65]
in the SCS. Carbonates from hydrothermal sites from Mariana Forearc [66] and Lost City [67] show
higher δ13C values relative to the authigenic carbonates and CWCs from site GMGS2-09B, indicating that
the research area is not influenced by low-temperature hydrothermal processes. Our data are comparable
with the ranges of δ13C and δ18O values in CWCs from the North Atlantic [68] and the Japan Sea [69],
particularly those from the Dongsha area in the SCS [70,71], which does not have any cold-seep activity.
As such, our results do not support the idea that CWCs take up methane-derived carbon at fluid-seepage
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areas. We therefore postulate that the primary food sources for CWCs are phytoplankton, zooplankton,
and dissolved organic matter, as proposed by other studies [26,72]. However, more work on living coral
skeletons is needed to verify this conclusion.

Figure 6. A comparison of carbon and oxygen isotopic compositions of CWCs from the South China
Sea and other regions. Data from Pirlet et al. [30], Zhang and He. [64], Ke et al. [65], Tran et al. [66],
Früh-Green et al. [67], Blamart et al. [68], Shirai et al. [69], and Chen et al. [70].

The strong linear trend of δ18O and δ13C from CWCs may be exploited for reconstructing
temperature of past climates [1]. However, δ18O appear to have a relatively weak covariance with
respect to δ13C in this study (Figure 6). The most reasonable explanation is that this observation is
a result of gas hydrate dissociation. Decomposition of gas hydrate could liberate 18O-rich water with
methane [35,50,53]. During an intense methane seepage, this fluid is transported from the sedimentary
subsurface to the seabed and into the water column, resulting in alteration of δ18O in porewater
and bottom seawater [51,54]. This environment would favor heavier δ18O values of CWCs during
skeleton precipitation. The variance of oxygen isotopes in CWCs caused by gas hydrate dynamics is
also supported by occurrence of gas hydrate resources at depth of 9–21 mbsf in GMGS2-09B (Figure 2).

5.2.2. CWC Trace-Element Contents

Trace-element contents in skeletal corals have been used to reconstruct oceanographic
conditions [73], but there is very limited information on baseline levels of trace elements in CWCs [7],
particularly in cold-seep areas. This study provides the first reported trace-element contents in the fossil
CWCs Crispatotrochus sp., Enallopsammia sp., and Solenosmilia sp., collected at SCS cold seeps.
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Metal contents within CWC skeletons are controlled by two main factors: the external environment
and vital effects [74]. It is considered that the uptake and accumulation of elements in corals during
metabolic and physiological processes are influenced by the ambient environmental conditions,
including organic matter availability, salinity, production cycle, and seawater temperature [75].
Trace element contents in CWCs that live in non-seep settings tend to be fairly low under the conditions
of their typical habitat without an additional source of metal elements [7,76].

In general, contents of Cr, Co, Ni, Cu, Zn, Cd, Pb, U, Ba, Th, and Sr in the samples from core
GMGS2-09B are similar to or higher than those observed in modern CWCs from non-seep marine
environments (Figure 7). Crocket et al. [77] suggested that such high trace-element contents could be
derived from contaminant phases. However, the absence of a systematic relationship between Fe, Mn,
Al, and other trace elements (Figure S1) indicates that ambient contamination is not likely the primary
influence on CWC trace-element contents. High metal contents are presumably related to the existence
of an additional source of trace elements. The contents of Ni and Pb are in good agreement with those
found at a hydrothermal site (Azores Islands) (Figure 7), supporting this interpretation. The fluids
found in cold seeps contain high concentrations of dissolved trace elements (e.g., Ba), resulting in
elemental enrichments in bottom seawater and surface sediments [78,79]. However, the presence of free
H2S produced by intense AOM tends to scavenge trace elements from ambient porewater or seawater,
causing subsequent enrichment of redox-sensitive elements (e.g., U and Mo) at cold seeps [53,80].
This is further supported by the obvious enrichment of trace elements (e.g., Mo, U, Pb, Zn and Cu) in
seep-impacted aragonites that forming close to the sediment-water interface with free H2S in sediment
pore water [81]. Our results suggest that CWCs might record the influence of biogeochemical processes
of fluid seepage on bottom water chemistry.

Figure 7. Trace-element contents of CWCs from site GMGS2-09B. Published data from modern
CWCs [2,7,76,77] and CWCs in a hydrothermal site [7] are included for comparison.

The geochemical and isotopic signatures and mineralogy of authigenic carbonates are widely
used to trace the composition of ascending fluids, seepage intensities, and associated environmental
parameters [78,82–85]. The CWCs in seep environments can record rapid changes in ocean chemistry,
providing an important constraint on bottom water environmental conditions [26]. As such, the combined
study of authigenic carbonates and associated CWCs in seep environments is potentially useful to
calibrate the geochemical signatures within authigenic carbonates to aid in reconstruction of past
conditions (Figure 8). In addition, U–Th dating of authigenic carbonates is a powerful tool that can also
contribute to our understanding of the geological factors and processes controlling seabed methane
release [86–91]. However, accurate dating of authigenic carbonates is difficult owing to contamination by
detrital terrestrial material [84]. Furthermore, CWC geochronology can potentially provide information
about the cessation of cold seep activity, as CWCs use authigenic carbonates as a substrate for colonization.
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Figure 8. A schematic growth model of formation of CWCs in cold seep area. (a) The absence of cold
seep activities in the marine environment. (b) Extensive authigenic carbonates are precipitated close to
the sediment-water interface during anaerobic oxidation of methane (AOM) due to enhanced fluid
flow associated with dissociation of gas hydrate, providing hard substrates on the seafloor. (c) CWCs
settle on the hard carbonate substrates and then are sustained by bottom current and nutrient input.
Trace elements may be enriched in CWCs skeleton based on the presence of free H2S produced by
intense AOM.

6. Conclusions

A combined study of three gas-hydrate-bearing sediment cores in the SCS reveal that CWCs were
only found at one core and embedded with authigenic carbonates. The close relationship between
CWCs and authigenic carbonates is due to the CWCs using authigenic carbonates as a substratum
for colonization. Stable isotope studies suggest the source of carbon for CWCs is not directly from
fluid seepage. It is suggested that the development of CWCs also require a high seabed topography,
appropriate water temperature and stronger bottom-water current. However, in the case of strong
fluid seepage, a large amount of nutrient elements will release into the bottom water. This information
will be recorded by the coral skeletons. Therefore, CWCs from cold seep area could record the period
of the latest cold seep activity, and the detailed geochemical study of CWCs will reveal environmental
information during their growth period.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/12/742/s1,
Figure S1: The relationship between Fe, Al, U, Cr and Cd of cold-water coral samples from the South China Sea.
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Appendix A

Table A1. Mineral compositions of cold-water coral fragments from the South China Sea.

Depth (cmbsf) Sample Ara Cal

335–345 Cri. 99 1
345–355 Cri. 97 3
345–355 Sol. 99 1
345–355 Sol. 95 5
345–355 Sol. 98 2
355–365 Sol. 99 1
355–365 Ena. 97 3
630–645 Ena. 99 1

Note: Cri.—Crispatotrochus species; Sol.—Solenosmilia species; Ena.—Enallopsammia species; Ara—aragonite;
Cal—calcite.; cmbsf—cm below seafloor.

Table A2. Stable carbon and oxygen isotopes of cold-water corals and associated authigenic carbonates
from the gas hydrate-bearing sediments of the South China Sea.

Core Number Depth (cmbsf) Sample Type δ13C (%�) δ18O (%�)

09B-2M-1a 325–335 Grey nodular carbonate −48.5 3.6
09B-2M-1a 335–345 Grey nodular carbonate −52.4 3.4
09B-2M-1a 345–355 Grey nodular carbonate −52.0 3.9
09B-2M-1a 355–365 Grey nodular carbonate −56.0 3.9
09B-2M-1a 600–615 Grey nodular carbonate −59.5 4.4
09B-2M-1a 620–630 Grey nodular carbonate −57.0 4.5
09B-2M-1a 620–630 Opalescent nodular carbonate −53.2 4.6
09B-2M-1a 630–645 Grey nodular carbonate −52.6 6.0
09B-2M-1a 630–645 Opalescent nodular carbonate −60.4 4.3
09B-2M-1a 830–840 Opalescent nodular carbonate −53.8 4.2
09B-2M-1a 830–840 Grey nodular carbonate −55.5 4.7
09B-2M-1a 840–845 Grey nodular carbonate −60.5 4.7
09B-5H-1 2200–2215 Grey nodular carbonate −54.3 4.5
09B-5H-1 2220–2230 Grey nodular carbonate −53.0 4.3
09B-5H-1 2230–2240 Opalescent nodular carbonate −60.9 4.4
09B-5H-1 2230–2240 Grey nodular carbonate −53.1 4.9
09B-5H-1 2240–2250 Opalescent nodular carbonate −62.3 4.5
09B-5H-1 2240–2250 Grey nodular carbonate −56.4 5.0
09B-5H-1 2250–2260 Grey nodular carbonate −54.9 4.1

09B-2M-1a 325–335 Crispatotrochus species −5.6 1.8
09B-2M-1a 325–335 Crispatotrochus species −7.4 1.6
09B-2M-1a 325–335 Crispatotrochus species −5.3 2.0
09B-2M-1a 335–345 Crispatotrochus species −6.6 1.5
09B-2M-1a 335–345 Crispatotrochus species −8.4 1.0
09B-3M-1 630–645 Crispatotrochus species −4.6 2.2
09B-5H-1 2230–2240 Crispatotrochus species −6.0 2.0

09B-2M-1a 345–355 Crispatotrochus species −4.5 2.0
09B-5H-1 2200–2215 Enallopsammia species −3.1 2.1
09B-5H-1 2200–2215 Enallopsammia species −6.5 1.9
09B-5H-1 2230–2240 Enallopsammia species −3.9 2.0
09B-5H-1 2220–2230 Enallopsammia species −4.2 2.7
09B-3M-1 630–645 Enallopsammia species −2.4 3.1
09B-3M-1 630–645 Enallopsammia species −1.7 4.5

09B-2M-1a 2220–2230 Enallopsammia species −4.6 0.9
09B-2M-1a 335–345 Solenosmilia species −1.3 2.7
09B-2M-1a 335–345 Solenosmilia species −4.5 1.0
09B-2M-1a 335–345 Solenosmilia species −6.5 1.1
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Table A2. Cont.

Core Number Depth (cmbsf) Sample Type δ13C (%�) δ18O (%�)

09B-2M-1a 335–345 Solenosmilia species −7.6 1.2
09B-2M-1a 335–345 Solenosmilia species −7.5 1.5
09B-2M-1a 345–355 Solenosmilia species −5.9 1.8
09B-2M-1a 345–355 Solenosmilia species −6.0 1.3
09B-2M-1a 345–355 Solenosmilia species −6.8 2.6
09B-2M-1a 335–345 Solenosmilia species −6.4 2.0
09B-2M-1a 345–355 Solenosmilia species −1.7 2.4
09B-2M-1a 345–355 Solenosmilia species −3.8 1.6
09B-2M-1a 345–355 Solenosmilia species −6.3 1.9
09B-2M-1a 345–355 Solenosmilia species −3.7 1.7
09B-2M-1a 345–355 Solenosmilia species −6.5 1.5
09B-2M-1a 335–345 Solenosmilia species −5.1 2.1
09B-2M-1a 345–355 Solenosmilia species −6.5 1.0
09B-2M-1a 345–355 Solenosmilia species −8.4 1.8
09B-2M-1a 345–355 Solenosmilia species -−7.9 0.7
09B-2M-1a 355–365 Solenosmilia species -−2.0 3.3
09B-2M-1a 355–365 Solenosmilia species −7.8 0.6
09B-3M-1 600–615 Solenosmilia species −3.8 2.9
09B-3M-1 600–615 Solenosmilia species −3.4 1.7
09B-3M-1 630–645 Solenosmilia species −2.4 2.4
09B-5H-1 2200–2215 Solenosmilia species −3.6 1.8
09B-5H-1 2230–2240 Solenosmilia species −4.3 3.0
09B-5H-1 2230–2240 Solenosmilia species −6.4 1.0
09B-5H-1 2220–2230 Solenosmilia species −7.5 1.0
09B-5H-1 2220–2230 Solenosmilia species −6.8 1.7

09B-2M-2a 345–355 Solenosmilia species −6.8 1.3
09B-2M-1a 610–615 Solenosmilia species −5.7 1.5
09B-2M-1a 335–345 coral (species undefined) −7.2 1.1
09B-2M-1a 345–355 coral (species undefined) −7.3 0.7
09B-2M-1a 620–630 coral (species undefined) −0.6 3.4

Table A3. Major and trace elements contents of cold-water corals from the South China Sea.

Depth (cmbsf) 345–355 345–355 610–615 2220–2230

Al (%) 0.021 0.028 0.076 0.036
Fe (%) 0.003 0.011 0.026 0.002
Mn (%) 0.0003 0.001 0.002 0.006
P (%) 0.009 0.023 0.012 0.006
Ti (%) 0.0001 0.0002 0.0003 0.0005
Ca (%) 37.89 37.09 36.34 38.82
Mg (%) bl bl 0.046 bl
Na (%) 1.52 1.47 1.22 2.06
K (%) 0.021 0.045 0.048 0.1
Cr (µg/g) 2.5 2.6 2.9 5.3
Co (µg/g) 0.7 0.8 0.9 1.4
Ni (µg/g) 9.3 10.6 10.2 12.0
Cu (µg/g) 1.3 3.1 2.7 3.8
Zn (µg/g) 5.0 8.0 7.0 12.3
Cd (µg/g) 0.1 0.1 0.1 0.1
Pb (µg/g) 0.8 1.0 1.1 3.3
U (µg/g) 4.6 4.4 6.9 7.0
Ba (µg/g) 16.2 23.4 20.4 29.5
Th (µg/g) 0.1 0.1 0.2 0.1
Sr (µg/g) 9218.0 9248.0 9706.0 9853.0

Note: bl-Below detection limit.
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