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Abstract: There is an important complementarity between experimental methods for the study of 
high-temperature viscoelasticity in the time and frequency domains that has not always been fully 
exploited. Here, we show that the parallel processing of forced-oscillation data and microcreep 
records, involving the consistent use of either Andrade or extended Burgers creep function models, 
yields a robust composite modulus-dissipation dataset spanning a broader range of periods than 
either technique alone. In fitting this dataset, the alternative Andrade and extended Burgers models 
differ in their partitioning of strain between the anelastic and viscous contributions. The extended 
Burgers model is preferred because it involves a finite range of anelastic relaxation times and, 
accordingly, a well-defined anelastic relaxation strength. The new strategy offers the prospect of 
better constraining the transition between transient and steady-state creep or, equivalently, between 
anelastic and viscous behaviour. 

Keywords: viscoelasticity; anelasticity; creep function; forced-oscillation methods; microcreep 
methods 

 

1. Introduction 

Viscoelastic relaxation at small strain amplitudes is of geophysical significance as the cause of 
the attenuation and frequency-dependent wavespeeds (dispersion) of seismic waves within the 
Earth’s deep interior [1–3]. For example, Minster and Anderson [4] demonstrated the potentially 
important link between dislocation creep and seismic-wave attenuation, and Karato [5] showed how 
the temperature sensitivity of wavespeeds is enhanced by viscoelastic relaxation. 

In a very influential contribution, Goetze [6] reviewed the extensive literature concerning 
internal friction in metals, measured mainly with resonance (torsional pendulum) techniques, and 
emphasized the need for high-temperature laboratory measurements on geological materials at sub-
Hz teleseismic frequencies rather than the MHz frequencies of conventional laboratory wave-
propagation methods. This challenge has been addressed mainly with superior sub-resonant forced-
oscillation techniques in multiple laboratories worldwide (e.g., [7–12]). 

Concerning such methods for the study of high-temperature viscoelasticity, it is well known that 
there is, in principle, a valuable complementarity between time-domain and frequency- (or period-) 
domain methods (e.g., [13]). In practice, time-domain microcreep studies have been used to constrain 
the value of steady-state viscosity for use in modelling the results of sub-resonant forced oscillation 
studies [10,11]. In our laboratory, consistency between forced-oscillation and microcreep data has 
been used as evidence of linearity of mechanical behaviour [14], and microcreep studies have been 
used to provide a qualitative or quantitative indication of the extent to which the inelastic strain is 
recoverable on removal of the applied stress [15,16]. However, we have not yet fully exploited the 
valuable complementarity between the forced-oscillation and microcreep methods. The purpose of 
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this investigation is to explore how results obtained in our laboratory from the two methods might 
best be combined to take advantage of the complementarity. 

If a steady stress is suddenly applied at time t = 0, i.e., σ(t) = H(t), where H is the Heaviside step 
function, the resulting strain is specified by the creep function J(t). Provided only that the mechanical 
behaviour is linear, the strain ε(t) = ε0exp(iωt − δ) associated with a stress σ(t) = σ0exp(iωt), that is 
sinusoidally time-varying with angular frequency ω, may be calculated by superposition of the 
strains resulting from a series of consecutive step-function changes in stress each of infinitesimal 
amplitude. In this way, it is established that 

ε(t) = J*(ω)σ(t) (1) 

where the (complex) dynamic compliance J*(ω) is related to the creep function J(t) by (e.g., [13,17]). 

*

0

( ) ( )exp( )J i J i dω ω ξ ωξ ξ
∞

= −  (2) 

In the representation of linear viscoelastic behaviour, the alternative Andrade and extended 
Burgers creep functions J(t), respectively,  

J(t) = JU + βtn + t/η (3) 

and 

( ) {1 (ln )[1 exp( / )] ln } /UJ t J D t d tτ τ τ η
∞

−∞

= + Δ − − +  (4) 

are widely used. In Equations (3) and (4), JU is the unrelaxed compliance, β is the coefficient of the 
term representing the transient creep varying as the fractional n-th power of time t, and η is the 
steady-state viscosity. For the Burgers model, the parameter Δ is the anelastic relaxation strength 
associated with the distribution D(lnτ) of anelastic relaxation times. 

The distribution D(lnτ) of anelastic relaxation times is commonly prescribed by separately 
normalised contributions DB(lnτ) and DP(lnτ), appropriate for monotonic dissipation background and 
a superimposed peak, respectively, along with the associated modulus dispersion: 

DB(lnτ) = ατα/(τHα − τLα), for τL ≤ τ ≤ τH, and zero elsewhere [4,18]. 

DP(lnτ) = σ−1(2π)−1/2exp{−[ln(τ/τP)/σ]2}. (5) 

In Equation (5), τL and τH are respectively the lower and upper limits of the distribution of 
anelastic relaxation times τ, and α the τ-exponent in the distribution DB(lnτ). The parameters τP and 
σ define the centre and width, respectively, of the log-normal distribution of relaxation times given 
by DP(lnτ). The duration of transient creep involving grain-boundary sliding has been identified with 
the Maxwell time τM = ηJU [19]. Accordingly, consistent with insights from more recent 
micromechanical modelling of grain-boundary sliding [20] and our recent practice [16], we here set 
τH = τM. 

The real and negative imaginary parts of the associated dynamic compliance J*(ω) = J1(ω) − iJ2(ω) 
for the Andrade model are  

J1(ω) = JU + βΓ(1 + n)ω−ncos(nπ/2) 
J2(ω) = βΓ(1 + n)ω−nsin(nπ/2) + 1/ηω. (6) 

The corresponding quantities for the extended Burgers model are  

2 2
1( ) {1 (ln ) ln / (1 )}UJ J D dω τ τ ω τ

∞

−∞

= + Δ +  

2 2
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−∞
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(7) 
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In equivalent parameterisations, the Maxwell time τM = ηJU takes the place of viscosity η. 
The (stiffness) modulus M(ω) and strain energy dissipation Q−1(ω) then follow as 

M(ω) = [J12(ω) + J22(ω)]−1/2 and Q−1(ω) = J2(ω)/J1(ω). (8) 

Accordingly, it is seen that, in principle, the creep function J(t) and the dynamic compliance J*(ω) 
contain identical information concerning the mechanical behaviour. 

In practice, however, there are two important qualifications. Forced-oscillation measurements 
of shear modulus G (or Young’s modulus E) and associated strain-energy dissipation Q−1 involve 
comparison of stress and strain signals of prescribed frequency or period (To) that are intensively 
sampled—even at short periods. In contrast, microcreep records, of much longer duration, are 
normally much more sparsely sampled. Thus, in our laboratory, the forced-oscillation and 
microcreep records are routinely sampled at frequencies of 128/To and 1 Hz, respectively. 
Accordingly, forced-oscillation data are expected to better resolve the behaviour at short timescales, 
whereas microcreep records will better resolve the behaviour at long timescales. Furthermore, our 
microcreep testing protocol involving successive switching of the torque between steady values 0, 
+L, 0, −L, and 0 has the capacity to distinguish between recoverable (and therefore anelastic) and 
permanent (viscous) strains, as demonstrated below. Forced-oscillation records comprising multiple 
complete cycles of oscillation have no such capacity to distinguish between anelastic and viscous 
behaviour. 

2. Materials and Methods 

2.1. The Processing of Experimental Forced-Oscillation Data 

In our laboratory, shear modulus G and dissipation Q−1 are measured at each prescribed 
oscillation period To by comparing the complex torsional compliances (rad (Nm)−1) measured on 
complementary experimental assemblies containing, respectively, the cylindrical specimen of interest 
and a control specimen of known, nearly elastic, shear modulus [9]. Calculation of the compliance 
differential between the two assemblies serves to eliminate the contribution to the overall compliance 
from ceramic/steel torsion rods in series mechanically with the specimens. Accordingly, the 
compliance differential is the difference in compliance between the metal-jacketed specimen and a 
similarly jacketed control specimen of either polycrystalline alumina or a sapphire crystal. The 
compliances of the respective assemblies are routinely corrected for the small perturbation caused by 
interaction between the gas (argon) pressure medium and the central plate moving between the pair 
of relatively closely spaced outer fixed plates of the capacitance displacement transducers [21]. The 
force exerted by the gas medium on the central plate perturbs the observed compliance both by 
bending the lever arms on which the transducer central plates are mounted and by contributing to 
the torque. If the space between two parallel circular plates of radius R is occupied by gas (argon) of 
density ρ and viscosity η, the force F(t) on the plate with normal displacement d(t) = d0exp(iωt) is 

F(t) = −{πρω2R4/8h[(b/2)−1tanh(b/2) − 1]} × d(t) (9) 

with 

b = (1 + i)h/δ, and boundary layer thickness δ = (2η/ρω)1/2. (10) 

The compliance differential is also corrected for any small differences between the dimensions 
and jacketing of the two specimens. Established procedures for the routine processing of such forced-
oscillation data for each of a series of oscillation periods To, approximately logarithmically equally 
spaced at each temperature T, are outlined in previous publications [9,22]. All such G and Q−1 data 
obtained at relatively high temperatures and oscillation periods of 1–1000 s with logQ−1 > −2.2 are 
then usually fitted by a non-linear least-squares procedure to an extended Burgers creep function 
model (e.g., [23]). 
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2.2. The Processing of Complementary Torsional Microcreep Records 

Torsional microcreep tests in our laboratory, conducted on the same assembly as for the forced-
oscillation measurements, involve the application of a torque of amplitude 0, +L, 0, −L, and 0 for 
successive time intervals typically of 2000 s duration each [4]. The first segment is used to estimate 
and correct for any linear drift, leaving a four-segment record of 8000 s duration within which the 
torque is switched at times ti, (i = 1, 2, 3, 4). The switching of the torque can be modelled as the 
superposition of Heaviside step functions of appropriate sign si (+1 at t1 and t4, −1 at t2 and t3) with 
rise times of order 1 s. 

The motion of the central transducer plate relative to the pair of fixed plates following each such 
switching of the steady torque is well approximated by the expression  

d(t) = d0[1 − exp(−κt) + γt]. (11) 

The force exerted by the gas medium on the moving plate is found from an analysis similar to 
that of [21] to be 

F(t) = −3πR4ηγd0/2h3 − πκ2ρR4d0exp(−κt)/{8h[(b/2)−1tan(b/2) − 1]} (12) 

with 

b = h/δ, and boundary layer thickness now δ = (η/κρ)1/2. (13) 

In Equation (12), the first term on the right-hand side is the force associated with the steady rate 
d0γ of plate separation, whereas the second term relates to the transiently enhanced rate κd0exp(−κt) 
of plate separation. Representative second-segment microcreep data have been fitted to Equation 
(11), allowing calculation of and correction for the influence of the forces (Equation (12)) exerted on 
the moving transducer plates. The resulting perturbations are of order 0.001 μm at t = 1 s—negligible 
when compared with displacement amplitudes of 50–100 μm. By comparison, the correction for 
forced-oscillation displacement amplitudes of similar magnitude at the shortest period of 1.28 s is of 
order 0.1 μm—large enough to justify their routine correction. 

Accordingly, the raw microcreep data are first processed to obtain a quantity termed the 
instantaneous torsional compliance Sspc(t), being the time-dependent twist (radian) per unit torque 
(Nm) for the specimen assembly containing the polycrystalline specimen sandwiched between 
torsion rods within the enclosing metal jacket. Subtraction of the corresponding twist per unit torque 
for the reference assembly, Sref(t), in which a control specimen (either LucaloxTM polycrystalline 
alumina or sapphire) of known properties is substituted for the specimen, eliminates the unwanted 
contribution from the steel and alumina torsion rods. The difference Srel(t) is thus the twist of the 
jacketed specimen relative to that of the jacketed control specimen, yet to be corrected for any (usually 
minor) differences in geometry. This difference signal Srel(t) is fitted to a function Sfit(t) that is the 
superposition of the responses to each of the torque switching episodes, prescribed by the 
appropriate creep function J(t′):  

Sfit(t) = Σi=1,k siJ(ti′) (14) 

where ti’ = t − ti is the time elapsed since the i-th switching of the torque, for time t belonging to the 
k–th (k = 1, 4) segment of the four-segment record. 

We have explored the option of weighting the fit by specifying an uncertainty in Srel(t) 
proportional to logtj′, tj′ being the time elapsed since the most recent (k–th) switching of the torque. 
The effect is to weight the data early in each segment relatively more heavily—in order to strengthen 
the connection with the forced-oscillation data. For the same reason, it may be desirable, as explored 
in the Results section, to fix certain parameters in the creep function model at values constrained by 
the forced oscillation data. For reasons of parametric economy, the Andrade creep function (Equation 
(3)) has thus far been preferred over the extended Burgers alternative (Equation (4)) for use in 
Equation (14) [16]. 

The Andrade creep function J(t) associated with this time-domain fit is then Laplace transformed 
to obtain the corresponding complex dynamic compliance at selected periods To (those of the forced-
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oscillation experiments within the range 1–1000 s, and similarly chosen periods within the range 
1000–10,000 s). The further processing of the microcreep data then proceeds exactly as for the forced-
oscillation data. For the purpose of reconciling the results of the forced-oscillation and microcreep 
tests, the critical step in the processing of the microcreep record is therefore the fitting of the 
differential compliance Srel(t) to Equation (14). 

A normally very small correction is then applied to the Laplace transform of Srel(t) for any 
differences in geometry between the two assemblies, to obtain the relative dynamic torsional 
compliance Srl(To). Srl(To) is added to the dynamic torsional compliance Sjc(To) calculated a priori for 
the jacketted control specimen from forced-oscillation data for the relevant jacket metal, along with 
data concerning the viscoelasticity of polycrystalline alumina, or appropriate temperature-dependent 
elastic properties of single-crystal sapphire. The result is an estimate of the dynamic torsional 
compliance Sjs(To) of the jacketted specimen. The reciprocal of Sjs, the torsional stiffness (Nm rad−1), is 
then corrected for the stiffness of the jacket (inclusive of any foil wrapper used to control redox 
conditions), and inverted to obtain the (complex) dynamic torsional compliance Ss(To) of the bare 
cylindrical specimen from which its shear modulus G and dissipation Q−1 are calculated. At each stage 
of this process, conducted within the period domain, the dynamic torsional compliance, fitted to an 
Andrade creep function, allows the construction of an associated virtual microcreep record by 
superposition of the responses to the successive episodes of torque switching (through Equation (14)). 
The results for Srl(t), Sjc(t), Sjs(t) and Ss(t) are intended to provide a clear indication of the relative 
contributions of the control specimen and jacket (inclusive of any liner) to the observed behaviour. 

Concerning the recoverability of the strain, we first examine the use of the Andrade creep 
function in Equation (14) for the fit to the instantaneous torsional compliance within the second 
segment of the four-segment record as follows 

Sfit(t) = Σi=1,2 si−J(ti′) = β[(t − t1)n − (t − t2)n] + (t2 − t1)/η. (15) 

For t >> ti (i = 1, 2), this expression becomes approximately 

Sfit(t) ≈ nβ(t2 − t1)tn − 1+ (t2 − t1)/η. (16) 

Thus, as t → ∞, the first term in Equation (16) with n typically ~1/3 becomes vanishingly small, 
indicating that the strain associated with the βtn term in the Andrade creep function is ultimately 
recoverable. 

Accordingly, the fraction fR of the total inelastic strain βtn + t/η at time t that is ultimately 
recoverable following removal of the applied torque is [16]. 

fR = βtn/(βtn + t/η) = 1/(1 + t1 − n/βη) (17) 

Such an estimate can be made for the Andrade model Sfit(t) fitted to the compliance difference 
Srel(t) between the raw microcreep records right through to the Andrade model fitted to the final Ss(To) 
data—with closely consistent results concerning the fraction of recoverable strain. 

For the alternative extended Burgers model, the fraction fR of the inelastic strain that is 
recoverable varies with elapsed time t as  

R (ln )[1 exp( / ) ln / [ (ln )[1 exp( / )] ln / ]Mf D t d D t d tτ τ τ τ τ τ τ
∞ ∞

−∞ −∞

= Δ − − Δ − − +   (18) 

3. Results 

3.1. Reconciliation of Forced-Oscillation and Microcreep Data with the Andrade Model 

Our established procedure for the processing of forced-oscillation data was applied to 
representative results, obtained at 1200 °C and 200 MPa, for a specimen assembly containing an 
Ni70Fe30-sleeved Ti-doped Fo90 olivine specimen and for a reference assembly containing a similarly 
sleeved sapphire control specimen [23]. The fact that the forced-oscillation data best resolve the 
behaviour at relatively short periods was highlighted by the experience of fitting the Andrade model 
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to forced-oscillation data spanning the period range 1–1000 s. It proved possible to refine the values 
of the parameters JU, n, and β, but for the viscosity η, only a minimum value near 0.4 × 106 GPa.s 
compatible with the data could be established. The resulting period-dependent values of the shear 
modulus G and dissipation Q−1, thus derived from forced-oscillation data, will later be compared with 
the same quantities inferred from the microcreep records. 

The previously described procedure for the processing of microcreep data [16] was applied to 
the complementary microcreep record (Figure 1) for the same specimen and reference assemblies 
under the same conditions (1200 °C and 200 MPa). The viscoelastic behaviour, calculated a priori, for 
the jacketed sapphire control specimen (‘jc’ in Figure 1b) and the behaviour of the reference assembly 
as a whole (‘ref’ in Figure 1a) reveal a close approach to perfectly elastic behaviour. Small departures 
from the elastic ideal are attributable to the high-temperature viscoelasticity of the metallic materials 
of jacket and liner, and of the ceramic torsion rods. 

The Andrade creep function model was fitted through Equation (14) to the compliance 
differential Srel(t) between the two assemblies, with (‘w’) and without (‘u’) the weighting described 
in the Materials and Methods section, and with (‘f’) and without (‘ ‘) the exponent n fixed at the value 
provided by the Andrade fit to the forced-oscillation data. Overall, the resulting ‘u’, ‘uf’, ’w’, and ‘wf’ 
fits represent Srel(t) almost equally well. Accordingly, only the ‘wf’ fit is displayed in Figure 1.  

 
Figure 1. The processing of the four-segment microcreep record for a Ti-doped synthetic olivine 
polycrystal tested at 1200 °C [23]. (a) Instantaneous torsional compliances associated with raw 
microcreep data for the specimen (Sspc) and reference (Sref) assemblies, along with their difference (Srel) 

fitted with weighting described in the text to an Andrade model (Sfit) with exponent n from the 
Andrade fit to the period-dependent shear modulus and dissipation measured in the parallel forced-
oscillation tests (i.e., the ‘wf’ model). The curve labelled Srl represents the Andrade fit to the 
differential dynamic torsional compliance corrected in the period domain for minor geometrical 
differences between the two assemblies. Note that the Srel, Sfit, and Srl curves are very nearly 
coincident, but that the residuals Srel(t)-Sfit(t) for both the ‘wf’ and the other fits are plotted in Figure 
2. (b) Virtual microcreep records representing further stages in the processing of the microcreep data 
as described in the text: Srl as in panel (a), Sjc for the jacketed sapphire control specimen, Sjs for the 
jacketed specimen, and Ss for the bare olivine specimen. 

The optimal Andrade model (Sfit), thus fitted to Srel(t) was transformed to the period (To) domain 
for all steps in the further processing, as described previously. Sfit(To) was first corrected for minor 
geometrical differences between the two assemblies (Srl), and then added to the torsional compliance 
(Sjc) for the jacketed control specimen (Figure 1b). The result (Sjs) is thus a robust estimate of the 
behaviour of the jacketed specimen which then requires a modest correction for the contribution of 
the enclosing NiFe liner and steel jacket—modelled as mild steel—to isolate the behaviour (Ss) of the 
bare specimen. Although the processing of Sfit(t), to obtain ultimately the shear modulus and 
dissipation, was conducted within the period domain, at each step a virtual four-segment microcreep 
record (respectively labelled Srl, Sjc, Sjs, and Ss) was calculated by superimposing the appropriately 
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time-delayed versions of the Andrade creep function fitted to the period-dependent complex 
compliance Si(To) with i = ‘rl’, ‘jc’, ‘js’, and ‘s’ (Figure 1b). 

For the alternative ‘u’, ‘uf’, ’w’, and ‘wf’ Andrade models, the RMS misfits range narrowly 
between 0.67 × 10−5 rad/Nm and 0.72 × 10−5 rad/Nm—amounting to ~6% of the unrelaxed compliance 
JU. The associated residuals displayed in Figure 2 are dominated by offsets of order 10−5 rad/Nm 
between successive segments of the record and by noise, typically of 5–10 s period. Such noise on the 
raw displacement time series is attributed to imperfect discrimination by the pairs of displacement 
transducers against flexural disturbance of the assembly. Parallel experiments, in which the 
displacement transducers are configured for measurement of the flexural rather than torsional 
response, indicate that the convective motions of the dense gas pressure medium within the internal 
furnace result in flexural disturbance of the specimen assembly. 

 
Figure 2. The residual Srel(t) − Sfit(t) versus time t for the alternative ‘u’, ‘uf’, ‘w’, and ‘wf’ Andrade 
models described in the text for (a) the entire four-segment record, and (b) the first 100 s of the first 
segment. Note that the ‘wf’ fit and the results of its use in further processing are plotted in Figure 1. 

Divergence between the alternative Andrade models at short times (Figure 2b) reflects the strong 
covariance between the Andrade model parameters JU, n, and β with correlation coefficients > 0.9 in 
magnitude. The somewhat divergent behaviour amongst the various Andrade creep functions for t < 
50 s (Figure 2b) highlights the limited capacity of microcreep data to resolve mechanical behaviour 
at relatively short periods. 

The complex dynamic compliance for the bare specimen, ultimately derived from the microcreep 
data, provides estimates through Equations (6) and (8) of the shear modulus G and dissipation Q−1, 
which are compared in Figure 3 with the corresponding quantities from forced-oscillation data 
obtained for the same experimental assemblies at the same temperature. As expected, there is a broad 
consistency between the results obtained from the data acquired in the period (or frequency) and 
time domains—especially at the longer periods. The divergence at short periods between the results 
derived from forced-oscillation data and microcreep records is evidently reduced by according more 
weight to the Srel(t) observations soon after each torque switching event (Figure 3, ’w’)—more so than 
by using the forced-oscillation data to constrain the value of the exponent n for the fits to the 
microcreep Srel(t) (Figure 3, ‘uf’ and ‘wf’). 
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Figure 3. A comparison of (a) shear modulus G and (b) associated strain-energy dissipation Q−1 for 
the NiFe-sleeved synthetic Ti-doped Fo90 olivine specimen at 1200 °C—derived from forced-
oscillation data (solid symbols and curve labelled ‘fo’) and from the four-segment microcreep record 
(open symbols, appropriately labelled, representing the results obtained with the alternative ‘u’, ‘uf’, 
‘w’, and ‘wf’ Andrade fits to Srel(t). 

Accordingly, the shear modulus and dissipation deriving from forced-oscillation data and 
weighted microcreep records have been combined as follows for fitting an Andrade model to the 
composite dataset. The 1 Hz sampling of the microcreep record becomes more intensive than that 
(128/To) for forced-oscillation for periods greater than 100 s. Accordingly, modulus and dissipation 
inferred from the ‘w’ fit to the microcreep Srel(t) records for the chosen periods > 200 s are used to 
supplement the forced-oscillation data for periods within the range 1–1000 s. The forced-oscillation 
and microcreep datasets thus overlap for periods of 200–1000 s, beyond which period, information 
derives solely from the microcreep records of 8000 s total duration. The optimal Andrade model, 
indistinguishable from the Burgers model discussed below and shown in Figure 4, adequately 
represents the composite dataset spanning four decades in period. 

 
Figure 4. A comparison of shear modulus G and associated strain-energy dissipation Q−1 for the NiFe-
sleeved synthetic Ti-doped Fo90 olivine derived from forced-oscillation data (solid symbols) and the 
microcreep records (open symbols). The labels ‘mcp-w(A)’ and ‘mcp-w(B)’, respectively, relate to 
microcreep results deriving from the alternative weighted Andrade and extended Burgers fits to the 
four-segment differential compliance Srel(t) record (Figures 1 and 5) without forced-oscillation 
constraint on the exponent n. The curves represent the optimal extended Burgers fit to the 
corresponding combined dataset as explained in the text. (a) G and (b) logQ−1 versus log (period, To, 
s) at 1200 °C. 
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3.2. Reconciliation of Forced-Oscillation and Microcreep Data with the Extended Burgers Model 

The previously described processing with the Andrade creep function of complementary forced-
oscillation data and microcreep records for the NiFe-sleeved Ti-doped Fo90 olivine yields a composite 
(G, Q−1) dataset spanning four decades in period that is well represented by the final optimal Andrade 
model (Figure 4). However, because the Burgers model is regarded as physically more transparent 
than the Andrade model, if parametrically less economical, it is of interest to assess the feasibility of 
using the extended Burgers model throughout the parallel processing of forced-oscillation data and 
microcreep records. Because the focus here is on insight into the relatively long-period behavior at 
our highest routinely accessed temperature, we will use only the distribution DB(lnτ) of anelastic 
relaxation times (Equation (5)) corresponding to the high-temperature background.  

That possibility is examined with reference to the same 1200 °C olivine dataset in Figure 5. As 
for the Andrade model, alternative extended Burgers fits to Srel(t) were explored—with (‘w’) and 
without (‘u’) weighting, and with (‘f’) and without (‘ ‘) forced-oscillation constraint of the parameter 
α. Again, the alternative models diverge significantly only for times < 50 s, and such divergence was 
minimised by weighting, more so than through imposition of a forced-oscillation constraint on α. The 
extended Burgers model ‘w’, with parameters JU, Δ, α, and τM (but not τL) each refined within a modest 
uncertainty, evidently provides a satisfactory fit to the Srel(t) record (Figure 5). The RMS misfit of 0.72 
× 10−5 rad/Nm is comparable with that for the Andrade mode. 

 
Figure 5. As for Figure 1, but now involving (a) the use of the extended Burgers rather than Andrade 
model for a weighted (‘w’) fit of Srel(t), and (b) in representation by virtual microcreep records of the 
derived quantities Srl(To), Sjc(To), Sjs(To), and finally Ss(To). Import revised figures. 

The values of shear modulus and dissipation deriving from the alternative ‘u’, ‘uf’, ’w’, and ‘wf’ 
fits of the extended Burgers model to the four-segment Srel(t) record are compared with the 
corresponding quantities from forced-oscillation data in Figure 6. As for the Andrade fit to Srel(t), the 
results are broadly consistent, especially at long periods. At short periods, the microcreep results 
diverge significantly from the forced oscillation data, but less so for the weighted fits. 



Minerals 2019, 9, 721 10 of 13 

 

 
Figure 6. As for Figure 3, but now involving the use of the extended Burgers rather than Andrade 
model for the alternative fits of Srel(t). (a) Shear modulus G and (b) associated strain-energy dissipation 
Q−1 vs log (period, s). 

The values of G and Q−1 for periods of 200–10,000 s derived from the microcreep records 
processed with the Burgers model (‘w’: weighted but with α unconstrained by forced–oscillation 
data) are combined with those from the forced-oscillation data to construct a composite (G(To), 
Q−1(To)) dataset. The optimal fit of the extended Burgers model to the composite dataset is compared 
with the constraining data in Figure 4. As for the Andrade model, the extended Burgers creep 
function provides a satisfactory representation of the composite dataset spanning four decades in 
period. 

The values of the various parameters for the optimal Andrade and extended Burgers models 
fitted to the composite (G, Q−1) datasets are assembled in Table 1. The values of the unrelaxed 
compliance JU for the two models, and the parameters n and α, each approximating ∂logQ−1/∂logTo, 
are consistent within the formal uncertainties. The Maxwell relaxation times τM = ηJU are 1.9 × 104 s 
and 1.2 × 104 s for the Andrade and Burgers models, respectively. The longer Maxwell time (higher 
viscosity) for the Andrade model reflects the fact that the distribution of anelastic relaxation times 
extends to ∞ for the Andrade model. Accordingly, more (less) of inelastic strain is treated as anelastic 
(viscous) for the Andrade creep function than for the Burgers model. As the ‘transient’ creep term βtn 
in the Andrade creep function is unbounded as t → ∞, there is no finite anelastic relaxation strength. 
Accordingly, we compare the anelastic relaxation strength Δ = 1.2 ± 0.2 for the extended Burgers 
model with the value (1.6) of βtn/JU evaluated at t = τM for the Andrade model. This comparison 
confirms the impression from comparison of the Maxwell times (or viscosities) that the Andrade 
model partitions the inelastic strain more strongly into the anelastic contribution than does the 
extended Burgers model.  

Viscosities of order 1015 Pa s (Table 1) have thus been inferred in this study from torsional forced-
oscillation tests at maximum shear strain amplitudes of (0.9–1.3) × 10−5 for periods of 1–1000 s, along 
with complementary microcreep experiments reaching somewhat larger strains (~2.5 × 10−5). It is 
appropriate to compare such viscosities with those measured at the much larger stresses and strains 
of steady-state diffusional creep. At the same shear stress (0.44 MPa), temperature (1200 °C), and 
average grainsize (25 μm), the diffusional-creep flow law of Faul and Jackson24 established in 
compressive testing to strains of order 10% for similar synthetic sol-gel-derived olivine predicts a 
shear viscosity η = 5 × 1016 Pa s. The lower viscosities of the tests at 10−5 strain amplitude may reflect 
transient rather than steady-state creep [24]. The effect of the constraint τH = τM on the inferred value 
of η in the extended Burgers model will be examined in future work involving the systematic 
application of the method described here. 
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Table 1. Parameters of the optimal Andrade and extended Burgers creep function models fitted to the 
composite datasets comprising N = 16 (G, Q−1) pairs for a Ti-doped Fo90 specimen tested at 1200°C [15]. 
For the Burgers fit, log τL was fixed at −2.5. The assigned a priori uncertainties are σ(G)/G = 0.03 and 
σ(logQ−1) = 0.05. The quantities in parentheses are formal uncertainties in the last decimal place. 

Andrade     
JU 

10−1 GPa−1 
n β 

10−2 GPa−1s−n 
η, 

106 GPa.s 
(χ2/2N)1/2 

0.186(3) 0.25(2) 0.26(2)  1.0(6) 0.27 
Burgers     
JU, GPa α Δ log(τM,s) (χ2/2N)1/2 
0.191(2) 0.26(2) 1.2(2) 4.1(2) 0.35 

3.3. Recoverability of the Inelastic Strain 

Of the inelastic strain at time t following the application of a steady torque, the fraction fR that is 
ultimately recoverable following removal of the applied torque has been evaluated through 
(Equations (17) and (18)) for the Andrade and extended Burgers models, respectively. Consistent with 
the conclusion in the previous section that more (less) of the inelastic strain is attributed to the 
anelastic (viscous) terms in the Andrade creep function, fR(t) is consistently higher for the Andrade 
than for the extended Burgers model (Figure 7). 

 
Figure 7. Variation with elapsed time of the fraction of inelastic strain that is ultimately recoverable 
on removal of the applied torque for the optimal Andrade and extended Burgers models (Table 1) 
fitted to the respective composite (G, Q−1) datasets. 

4. Discussion and Conclusions 

It has been demonstrated that complementary forced-oscillation and microcreep data can be 
processed with either the Andrade or extended Burgers creep function models to yield consistent 
composite [G(To), Q−1(To)] datasets. Such a parallel processing of forced-oscillation data for periods of 
1–1000 s and microcreep records of 10,000 s total duration serves to extend from three to four decades 
the effective range of periods over which the modulus and dissipation are constrained. Despite such 
consistency between the composite (G, Q−1) datasets, the Andrade and extended Burgers models 
differ substantially in their attribution of strain between the transient and steady-state terms in the 
respective creep functions. Because the transient creep and associated anelastic strain extend to 
infinite time in the Andrade model, relatively more of the inelastic strain is attributed to the anelastic 
term, with a correspondingly higher viscosity and longer Maxwell time than for the Burgers model. 
The extended Burgers model is preferred for its greater clarity in prescribing a finite range of anelastic 
relaxation times and accordingly a finite anelastic relaxation strength. 

The method developed and demonstrated here has the potential for routine application in the 
parallel processing of forced-oscillation data and microcreep records obtained in our laboratory with 
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substantial benefit in better constraining microstrain viscoelastic behaviour at relatively long periods. 
Improved understanding of viscoelastic behaviour is critical not only for the interpretation of long-
period (normal-mode) seismological models25, but also for the interpretation of strain-energy 
dissipation at the even longer periods/timescales of tidal forcing26,27 and glacial rebound [25–27]. 
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