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Abstract: Elastic wave velocities are key parameters in geosciences. In seismology at a large scale, or
in seismic exploration at a more local and shallower scale, they were the main source of information
for a long time. At the time of the Apollo mission, Anderson explained the unexpected result of very
low velocities in Moon surface rocks by an intense cracking resulting from meteoritic impacts. Yet, it
was also known that the Q factor was high. This could appear as a paradox. In the shallow layers of
the Earth, rocks are porous. These shallow layers are of major importance in the Earth since they
contain fluids. This is why velocities are higher and Q values lower in the Earth’s shallow layers
than in the Moon’s shallow layers. Cracks have a determining effect on elastic properties because
they are very compliant. Fluids also play a key role. Combining poroelasticity and effective elasticity,
two independent theories much developed since the time of the Apollo mission, makes it possible to
revisit the contrasting results observed in the Moon case and in the Earth case. Experimental results
obtained on cracked synthetic glass show that dry cracks result in a strong decrease in velocity. On
the other hand, saturated porous limestones exhibit a strong frequency-dependent attenuation when
thermally cracked. The presence of fluid is the key factor.
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1. Introduction

In general, the heterogeneity of crustal rocks is mainly the result of variable mineral composition
and of the presence of pores and cracks. At all scales, from local to regional, rocks are heterogeneous.
The influence of heterogeneity in rock, as long as it remains moderate, can often be handled by
considering that the medium is statistically homogeneous on the local scale. That means that a
representative volume element (RVE) exists and that any part of the system with a volume much larger
than the RVE has identical physical properties.

Within this assumption, use of effective elasticity in order to predict elastic properties and, hence,
elastic wave velocities is of direct interest. In shallow conditions, rocks contain pores and cracks. These
“defects” were identified for a long time as having a major influence on elastic properties.

When fluids are present, frequency dependence is expected, and the combined use of effective
elasticity and poroelasticity allows accounting for it. This can be applied to the results described a long
time ago by Anderson [1], who reported that the average sound velocity of Moon rocks was close to
provolone cheese and very low in comparison to those found on Earth (Figure 1).
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Figure 1. Comparison between sound velocities for lunar rocks and for various earth materials, from 
Schreiber and Anderson [1]. 

2. Effective Elasticity of Cracked Rocks 

Effective elasticity allows one to derive the elastic moduli for a dry or saturated cracked rock in 
terms of the parameters defined below. Let us consider the simple, but interesting case of an isotropic 
distribution of three-dimensional (3D) identical circular cracks of radius r and aspect ratio 
ζ(thickness/diameter). The non-cracked matrix is assumed to be isotropic. Three groups of 
parameters are needed: (1) E0, Young modulus (or equivalently K0, the bulk modulus, or G0, the shear 
modulus) and υ0 Poisson ratio of the isotropic matrix; (2) Kf, the fluid bulk modulus (the fluid is taken 
below as liquid water); (3) crack density  = nr3/V, if an REV of volume V contains n cracks of radius 
r (this non-dimensional parameter is expected to vary between 0 and 1, but the model under the 
assumption of non-interactive cracks is accurate only if  is low enough). Because cracks are very 
compliant, the effect of dry cracks on the modulus is very strong. The bulk modulus is decreased in 
the dry case (compared to the intact matrix modulus), and so is the shear modulus. Within the 
approximation of very thin cracks (ζ < 10−3) [2,3], the following relationships exist: 
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where Kdry stands for the dry cracked rock bulk modulus (same notation for G). Using a standard 
value υ0 = 0.25, the above equations become K0/Kdry = 1+ 3.3 and G0/Gdry = 1 + 1.45. 

For a water-saturated rock, the effect is less important for the bulk modulus, and more important 
for the shear modulus. Note that, in (high-frequency) effective elasticity, fluid phases are considered 
to be immobile. This means that different cracks may experience different fluid pressures since fluid 
has no time to move. This justifies the name “unrelaxed” for the effective saturated moduli. 
Experimentally, the appropriate measurements are ultrasonic measurements, because they are very-

Figure 1. Comparison between sound velocities for lunar rocks and for various earth materials, from
Schreiber and Anderson [1].

2. Effective Elasticity of Cracked Rocks

Effective elasticity allows one to derive the elastic moduli for a dry or saturated cracked rock
in terms of the parameters defined below. Let us consider the simple, but interesting case of an
isotropic distribution of three-dimensional (3D) identical circular cracks of radius r and aspect ratio ζ
(thickness/diameter). The non-cracked matrix is assumed to be isotropic. Three groups of parameters
are needed: (1) E0, Young modulus (or equivalently K0, the bulk modulus, or G0, the shear modulus)
and υ0 Poisson ratio of the isotropic matrix; (2) Kf, the fluid bulk modulus (the fluid is taken below as
liquid water); (3) crack density ρ = nr3/V, if an REV of volume V contains n cracks of radius r (this
non-dimensional parameter is expected to vary between 0 and 1, but the model under the assumption
of non-interactive cracks is accurate only if ρ is low enough). Because cracks are very compliant, the
effect of dry cracks on the modulus is very strong. The bulk modulus is decreased in the dry case
(compared to the intact matrix modulus), and so is the shear modulus. Within the approximation of
very thin cracks (ζ < 10−3) [2,3], the following relationships exist:
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where Kdry stands for the dry cracked rock bulk modulus (same notation for G). Using a standard value
υ0 = 0.25, the above equations become K0/Kdry = 1+ 3.3ρ and G0/Gdry = 1 + 1.45ρ.

For a water-saturated rock, the effect is less important for the bulk modulus, and more important
for the shear modulus. Note that, in (high-frequency) effective elasticity, fluid phases are considered to
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be immobile. This means that different cracks may experience different fluid pressures since fluid has
no time to move. This justifies the name “unrelaxed” for the effective saturated moduli. Experimentally,
the appropriate measurements are ultrasonic measurements, because they are very-high-frequency
ones, so that the “unrelaxed” situation is obtained. Then, with the same approximations as above [2,3],
the following relationships exist:

K0

Kur
= 1 and

G0

Gur
= 1 +

32(1− ν0)

15(2− ν0)
ρ, (2)

where Kur stands for the unrelaxed saturated cracked rock bulk modulus (same notation for G). Using
a standard value υ0 = 0.25, the above equation becomes G0/Gur = 1 + 0.91ρ.

Saturation strongly modifies the dry results; the unrelaxed saturated bulk modulus has, under the
assumption of thin cracks, the same value as that of the intact matrix, but the saturated shear modulus
is decreased and different from the dry case. Using values reported by Anderson [1], (dry rock P-wave
velocity of the order of 2 km/s for lunar rocks instead of 6 km/s for Earth rocks), it is straightforward
to check that ρ should be higher than 1. The crack density is so high that the above model under
the approximation of non-interactive cracks is no longer quantitative, but the implication is that the
cracking is very intense. A very useful (but unavailable) complementary set of data would be the
velocity variation of lunar rocks with pressure. Since cracks close under pressure, one expects a strong
decrease in crack density at higher pressure, down to a crack density range where the above model
would be quantitatively applicable [2,3]. Differential [4,5] or self-consistent schemes [6] may also be
used beyond the limits of applicability of the non-interaction approximation.

As Anderson pointed out, this shows that lunar rocks are highly cracked and dry. If not dry, they
would exhibit a much higher bulk modulus and, hence, a much higher P-wave velocity.

3. Effective Elasticity of Porous Rocks

The situation is very different for terrestrial rocks. They can contain cracks, but with a much lower
crack density. Most importantly, in the crust, sedimentary rocks are porous and not dry. Pores are
not very compliant because they are approximately round-shaped. Then, the bulk modulus and the
shear modulus can be expressed approximately, in the dry case usually, in terms of porosity Φ [2,3]
as follows:

K0

Kdry
= 1 +

3(1− ν0)

2(1− 2ν0)
Φ and

G0

Gdry
= 1 +

15(1− ν0)

7− 5ν0
Φ. (3)

Using a standard value υ0 = 0.25, the above equations become K0/Kdry =1 + 2.25Φ and G0/Gdry =

1 + 1.9Φ.
For the saturated case, unrelaxed moduli are determined as follows:

K0

Kur
= 1 and

G0

Gur
= 1 +

15(1− ν0)

7− 5ν0
Φ. (4)

In contrast with the previous case (cracks), saturation does not modify the shear modulus
compared to the dry case. However, the most important result is that the effect of pores is less important
than that of cracks.

4. Poroelasticity

As before, we consider a cracked isotropic rock, with an isotropic distribution of identical cracks.
This is a particular case of a porous medium, with a low porosity. The cracks are assumed to be
connected and water-saturated. Pores can be present as well. Then, porosity is higher, and cracks and
pores are assumed to be connected. For simplification, we consider below a case where only cracks
are present.
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4.1. Relaxed (Isobaric) Moduli

The assumption is that the fluid is isobaric within an RVE (a reasonable assumption at seismic
frequencies that are low enough). This is a different case from the one examined just above. Poroelasticity
applies [3]. The situation we are interested in is such that there is no macroscopic fluid flow between
RVEs, but the fluid pressure varies from one RVE to another. The bulk and shear moduli are called in
that case the undrained bulk and shear moduli Ku and Gu. They can be measured under any condition
where there is not enough time for the macroscopic flow to occur from one RVE to another. Then, the
following relationships apply:

K0

Ku
= 1 and

G0

Gdry
= 1 +

32(1− ν0)(5− ν0)

45(2− ν0)
ρ and

Gdry

Gu
= 1. (5)

This simple result means that cracks are “invisible” in that case for the bulk modulus. The cracks
affect only the shear modulus.

4.2. Unrelaxed Moduli

If wavespeed measurements are performed at ultrasonic frequencies, typical of laboratory
experiments, the RVE is not isobaric. This case is out of the validity range of poroelasticity since fluid
pressure is variable within an RVE. Of course, it is well within the validity range of effective elasticity
as described above (Equation (2)). Above a certain critical frequency, any experimental measurement
of wavespeeds corresponds to this non-isobaric situation. There exists a transition domain between
regimes of “low” (relaxed) and “high” (unrelaxed) frequency.

A key question regards the critical frequency fc value. In fluid-saturated cracked rocks, the effect
is called “squirt flow”. The critical frequency of “squirt flow” (or local fluid flow) fc is obtained by
calculating the time needed for local fluid motion between two neighbor cracks, as due to local pressure
gradients [7].

fc ∼
ζ3E0

20η
, (6)

where, typically, the crack aspect ratio ζ is ~10−3, Young’s modulus E0 is ~70 GPa, and water viscosity
η is ~10−3 Pa·s, resulting in fc ~3.5 kHz. This means that, typically, in cracked saturated rocks, one
expects to get the “unrelaxed” moduli from ultrasonic data, and the “relaxed” ones from seismic data.

5. Q Factor

It results from the above that, in a saturated cracked medium, wavespeeds are expected to be
frequency-dependent. If we use a viscoelastic framework [8], the frequency dependence effect is
accompanied by dispersion and attenuation, following the Kramers–Kronig relationships [9].

In the simple case considered above, the dissipation is in shear only. Using the previous parameter
values, one gets the following:

∆G
G

= 0.54ρ, (7)

where ∆G stands for the maximum variation of G (from the unrelaxed state to the relaxed one, in a
water-saturated cracked rock).

In the approximation of the simple linear viscoelastic body, Q−1
max = 0.5 ∆G/G, so that the squirt

flow effect is expected to produce an attenuation peak on shear waves at fc of

Q−1
max = 0.27ρ, (8)

and, similarly, will also produce some attenuation for the P-wave (Q−1
max = 0.09ρ).
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For a crack density of 0.2 (likely to be lower than that for Moon rocks, but in a range where the
above models are approximately valid), one gets an attenuation peak of Q−1

max = 0.05 for the shear
wave (Q−1

max = 0.02 for the P-wave). This is a high value, possible only if fluids are present.
The above model can be extended to porous rocks. In that case, it can be shown that crack–pore

flow also induces a strong bulk effect [10].
In the situation of dry cracks, no dissipation related to fluid flow is expected and Equation (1)

would apply both at low and high frequencies. In that case, ∆G/G = 0 and ∆K/K = 0, which results in
Q−1

max = 0, regardless of the crack density. This explains the apparent paradox between Moon (high
crack density, low attenuation) and Earth rocks (low crack density, high attenuation).

6. Experimental Data

Convenient examples to illustrate the above predictions are given by data obtained on glass and
Indiana limestone. A homogenous glass can be quenched, resulting in a connected network of cracks
(Figure 2a) [11]. As with most sedimentary rocks, Indiana limestone is porous (Figure 2b). Its crack
content can be modified by thermal cracking, but its porosity is a characteristic of the rock that cannot
be modified easily. The fact that pores are present is important. It implies that squirt flow can take
place not only from crack to crack like in the glass, but as also from crack to pore, resulting in bulk
dispersion together with shear dispersion [10]. Here, we present a glass sample that was quenched
from a temperature of 300 ◦C, and an Indiana limestone that was heated up to 500 ◦C for an hour prior
to a natural cooling.
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Figure 2. (a) Surface photography of cracked glass [12]. (b) SEM photomicrograph of Indiana
limestone [13]. Arrows show examples of thermally induced cracks.

As seen on the microstructures (Figure 2), the glass was composed of a network of cracks that
could be of a millimetric to centimetric scale (Figure 2a), whereas, in the Indiana limestone, the
cracks were essentially induced in the homogeneous intergranular cement, with sizes around 100 µm
(Figure 2b). The crack porosity of the thermally treated (TT) glass was measured around 0.24% using a
mercury porosimeter [14]. Overall, the Indiana sample bears a total porosity of Φ = 11.4%, measured
by the triple-weight method [13], essentially distributed between intragranular micropores and some
intergranular mesopores (Figure 2b).

Permeability of the cracked glass was measured using the pulse decay method with argon and
water [14], and it was found to decrease strongly from 8 × 10−17 to 4 × 10−21 m2 with an increase in
effective pressure from 2 to 20 MPa (Figure 3a). This is characteristic of crack closure with pressure, since
the hydraulic conductivity is solely controlled by crack porosity. On the other hand, the permeabilities
of the intact and the cracked Indiana limestones, measured with the steady-state flow rate method
with water, exhibited a much smaller variation with effective pressure, decreasing from an average
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of 2.3 × 10−17 to 1.4 × 10−17 m2 (Figure 3b). We can note that the results for the intact and cracked
limestone differed negligibly, leading to the belief that the pores were the main contributor to the
hydraulic conductivity, with a very small contribution of the microcracks (Figure 3b).Minerals 2019, 9, x FOR PEER REVIEW 6 of 9 
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Figure 3. (a) Permeability as a function of effective pressure for the cracked glass [14] and (b) for the
intact and cracked Indiana limestone [13].

Results of the elastic/acoustic properties are presented in Figure 4. For the glass sample, ultrasonic
P- and S-wave velocities were measured over a range of effective pressures from 2.5 to 20 MPa [14]
(Figure 4a). The intact sample exhibited no pressure dependence. For the cracked sample in dry
conditions, the P- and S-wave velocities increased with pressure, consistently with crack closure.
However, the water-saturated cracked sample exhibited no pressure dependence, and velocities were
close to the intact sample (Figure 4a). This is consistent with the high-frequency unrelaxed regime
when crack-to-crack squirt flow occurs (Equation (2)).
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Figure 4. (a) Ultrasonic P- and S-wave velocities on the glass sample, intact and thermally cracked
(TT) [14]. (b) Bulk dispersion and (c) attenuation of the intact and cracked Indiana limestone, at effective
pressures of 2.5 and 20 MPa. The samples were tested in dry and fluid-saturated conditions. “Apparent
frequency” is frequency normalized by the fluid’s viscosity, using water as a reference [15].
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The Indiana limestone was investigated using a specific apparatus at École normale supérieure
(ENS) Paris that measures the frequency dispersion/attenuation of elastic moduli over a broad frequency
range (0.004–100 Hz) using the forced-oscillation method [13,15]. Here, the results of the bulk modulus
dispersion and attenuation (Q−1

K ) are presented (Figures 4b and 4c, respectively), as induced from pure
hydrostatic conditions over an experimental frequency range of 0.004–1 Hz and effective pressures of
2.5 and 20 MPa. The frequency was normalized by the dynamic viscosity of the saturating fluid/gas
(η), using water as a reference, in order to visualize the results in terms of “apparent frequency” (f * =

f × η/ηwat). With the use of glycerin ηgly = 1000 mPa·s) instead of water (ηwat = 1 mPa·s), one can
investigate the bulk dispersion/attenuation in the apparent seismic frequency range (4–1000 Hz) of a
water-saturated rock (Figure 4b,c), as long as solely viscous-driven fluid-flow processes occur such as
squirt flow (Equation (6)).

Both the intact and cracked Indiana samples were non-dispersive in the absence of fluid and
showed no attenuation (Figure 4b,c); the glycerin-saturated intact sample also showed no attenuation.
On the other hand, the glycerin-saturated cracked sample at low effective pressure (2.5 MPa) exhibited
a strong bulk dispersion (Figure 4b) in the seismic range, associated with a strong attenuation peak
(Figure 4c) around 100 Hz. This dispersion/attenuation was absent for a high effective pressure
(20 MPa), related to crack closure. Therefore, the observed dispersion was likely to be related to
crack-to-pore squirt flow, with a transition between the relaxed (<10 Hz) and unrelaxed regimes
(>1000 Hz). Similarly to the glass sample, the “unrelaxed” elastic properties of the cracked limestone
had low sensibility to the effective pressure, contrarily to the dry case.

One may ask if the cut-off frequency of the squirt flow may be predicted. In order to use the
prediction given by Equation (6), one must obtain an estimate of the crack aspect ratio (ζ). The skeleton
parameters of the glass were given by the intact sample (E0 = 84 GPa, υ0 = 0.27), and, for the Indiana
limestone, one can take the properties of calcite in carbonates (E0 = 83 GPa, υ0 = 0.32, [16]). The
pressure closure of a crack is given by Pclose = E0πζ/

(
4(1− ν0

2)
)

[17], and the valu was found to be
around 20 MPa for both the glass and the Indiana limestone, which would give an aspect ratio around
ζ ≈ 2.8 × 10−4 for both samples. Therefore, the predicted cut-off frequency for squirt flow (Equation (6))
would be around 92 Hz, under water-saturated conditions (η = 10−3 Pa·s), which seems in agreement
with the results obtained on the cracked limestone (Figure 4b,c).

One interesting alternative method to determine ζ is to use the pressure dependence of the
permeability. In a cracked medium, permeability may be calculated as follows [18]:

k = k0e−aP, (9)

where k0 is the unconfined permeability. Moreover, the aperture (w) of the crack varies with pressure
according to Equation (10) [19].

w ∼ w0

(
1−

P
E0ζ

)
, (10)

where w0 is the unconfined aperture. If we assume that the variations of k and w3 with pressure
are proportional, from Equations (9) and (10), we obtain a = 3/(E0ζ). This method applies only to
a cracked medium and not to a mixture of cracks and pores. For the glass sample, the slope of the
permeability versus pressure in Figure 3a (considering the log scale) gives us a ≈ 1.8 × 10−7, from
which we finally obtain ζ = 3/(E0a) ≈ 2× 10−4, consistent with the previous method.

7. Conclusions

Simple models of isotropic cracked dry rocks show that the elastic wave velocities can decrease
substantially if crack density is high. However, P-wave velocities are not really affected in the saturated
case (because only the shear modulus is modified). Shear attenuation is predicted if cracked rocks are
saturated. This fits well with Moon surface rocks, where a strong velocity decrease is expected for dry
cracked rocks, but no strong attenuation.
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In the Earth case, rocks are often saturated but crack density is low, implying a small velocity
decrease. Attenuation and frequency-dependent behavior are expected because of the fluid and the
possible presence of pores. Experimental results documented the squirt-flow effect.

Effective elasticity and poroelasticity provide a satisfactory theoretical background to explain
these contrasting situations, and revisit the results obtained long ago by Anderson.
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