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Abstract: The properties and preparation of talc have long been investigated due to its diverse
industrial applications, which have expanded recently. However, its comminution behavior is not yet
fully understood. Therefore, having better control of the particle size and properties of talc during
manufacturing is required. In this study, we investigate the effect of the ball size in a high-energy
ball mill on the comminution rate and particle size reduction. High-energy ball milling at 2000
rpm produces ultrafine talc particles with a surface area of 419.1 m2/g and an estimated spherical
diameter of 5.1 nm. Increasing the ball size from 0.1 mm to 2 mm increases the comminution rate and
produces smaller talc particles. The delamination of (00l) layers is the main comminution behavior
when using 1 mm and 2 mm balls, but both the delamination and rupture of (00l) layers occurs
when using 0.1 mm balls. The aggregation behavior of ground talc is also affected by the ball size.
Larger aggregations form in aqueous solution when ground with 0.1 mm balls than with 1 mm or
2 mm balls, which highlights the different hydro-phobicities of ground talc. The results indicate that
optimizing the ball size facilitates the formation of talc particles of a suitable size, crystallinity, and
aggregation properties.
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1. Introduction

Talc (Mg3Si4O10(OH)2) is a phyllosilicate mineral with a T-O-T layer composed of tetrahedral
silicon and octahedral magnesium, which share oxygen and are strongly bonded with each other.
The weak van der Waals bonds between the T-O-T layers is the origin of softness of talc. The silicon in
the siloxane sheet renders talc hydrophobic, since it cannot easily be substituted with aluminum [1].
Talc is physically easy to handle due to low hardness, does not react with acid due to its chemical
stability, and has high adsorptivity, low plasticity, and low thermal/electrical conductivity. Because
of these characteristics, talc is used as a coating, refractory, and additive in various industrial fields
such as paper, paint, rubber, ceramic, refractory material, and polymer manufacturing. Chemical and
pharmaceutical industries also require high-grade talc powders with high purity and uniform particle
sizes. The grade and usage of talc is classified considering the purity, whiteness, particle size, and
more. For example, talc with a particle size of 44 µm is used in ceramics and paints, 8–12 µm in paper,
7 µm in cosmetics, and 2 µm or smaller in rubber [2]. In addition, the nanoscale talc recently received
attention for its application in areas such as improving the heat resistance of nanocomposites, and for
use in waste water filter materials [3–5].

Given the importance of the above, various attempts have been made to produce ultrafine talc
powders and better understand their physicochemical properties [6–11]. Various processes, such as
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planetary ball milling, tumbling milling, stirred ball milling, and disk milling, have been used to grind
talc [10,12–17]. A reduction in particle size and the collapse of the crystalline structure of talc have
been observed in mechanical grinding studies [8,10,12,13,15,18–20]. Table 1 summarize the particle
size and/or surface area of ground talc with processed various milling methods. Delamination of
the layered structure in the direction of the (00l) surface is the predominant mechanism of grinding,
which, consequently, accompanies the breaking of individual plates and disordering in the talc
crystal [8,10,15,21]. Further excessive grinding generally causes the collapse of the crystalline structure
into the amorphous phase and the aggregation of ultrafine particles [13,14]. The degree of particle size
reduction varies depending on the type of milling machine and milling conditions such as duration
and rotating speed [11,21–26]. Besides the collapse of the crystalline structure, the physicochemical
properties of talc such as thermal and dispersion behaviors, cation exchange capacity, wettability, and
whiteness are also changed by mechanical grinding [6,10,12,14,27–29]. In accordance with the increasing
demand for high-quality and ultrafine talc powder, the importance of comminution technology, capable
of controlling crystallinity, particle shape, and particle size, is increasing.

Table 1. Specific surface area and equivalent spherical diameter of talc powder depending on the
milling condition.

Milling Machine Milling
Type

Rotation
Speed (rpm)

Grinding
Time (h)

Ball Size
(mm)

S.S.A †
(m2/g)

ESD ‡

(nm)
D50

(µm) References

Tumbling mill dry 86 116.6 - 14.0 153 - [13]
Planetary ball mill dry 1350 0.5 16 10.5 204 - [13]
Planetary ball mill dry - 0.5 - 109.7 20 - [14]
Planetary ball mill dry - 5 - 28 76 - [10]

Stirred ball mill wet 2500 3.5 - - - 0.2 [17]
Stirred ball mill dry 600 0.25 2.5–3.5 3.34 641 2.33 [16]

Disk mill dry 70 6 17.3 128 [15]

High energy ball
mill

wet 2000 12
2 419.1 5.1 0.37

This study1 365.1 5.9 0.44
0.1 171.7 12.5 7.96

† S.S.A. = specific surface area. ‡ ESD = equivalent spherical diameter.

Planetary ball milling, which is one of the most frequently used lab-scale milling tools, has been
applied to increase the grinding efficiency of talc. The collision impact and friction between powder
samples and balls in a rotating jar grind the microscale talc into sub-microscale particles. The grinding
efficiency of ball milling is greatly affected by the jar rotation speed, ball size, and ratio of balls and
sample talc [22,24,25]. A faster rotation speed generally produces talc with a smaller particle size
and lower crystallinity [11]. Recently developed high-energy ball mills reach rotation speeds of up
to 2000 rpm and provide an opportunity to reduce the size of talc powder to the nanoscale level.
The high-energy ball mill system consists of turn discs and jars. The oppositely rotating jar and
turning disc produce highly energetic impact energy (Figure 1) [30]. However, while the ball size is an
important factor in ball milling, the effect of the ball size on the comminution of talc has not yet been
fully understood [31,32]. While the particle size is known to generally increase with an increasing ball
size, in 2013, Shin et al. showed that particle size decreased and then increased as the ball size increased
from 1 to 10 mm during the comminution of Al2O3 powder at low rotation speeds (50–153 rpm) [32].
The optimum ball size is dependent on the milling conditions and the properties of the mineral. Thus,
to obtain ultrafine talc powder while minimizing the loss of crystallinity, a systematic approach is
necessary to understand the effect of ball size in high-energy ball milling on the comminution of talc.

In this study, high-energy ball milling with high rotation speed of 2000 rpm is applied to obtain
the nanoscale talc powder. The effect of the ball size for planetary ball milling on the grinding rate and
behavior of talc is investigated with a varying ball size (2, 1, and 0.1 mm). Changes in the agglomeration
characteristics of mechanochemical talc and the relationship with the ball size is also investigated.
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Figure 1. Schematic view of the motion of the balls and powder in a jar during high energy ball milling.

2. Materials and Methods

2.1. Sample Preparation

A commercial talc powder with high purity (>99%, XTA-400, KOCH corp., Shenyang, China)
was used in this study. The mean particle size of an as-received powder is approximately 12 µm.
The sample was mechanically deformed using a high-energy ball mill (Emax, Retsch, Haan, Germany),
which generates ultrafine particles by combining impact and shear stress. Wet milling was performed
by loading the talc powder, distilled water, and zirconia balls in the volume ratio of 2:3:4 into a 50 mL
zirconia (ZrO2) jar. Rotation speed was fixed at 2000 rpm and grinding time varied from 10 to 360 min.
The time interval for grinding was selected by considering the trends in particle size and crystallinity
of the talc following preliminary experiments. Zirconia balls of various sizes (2, 1, and 0.1 mm) were
used. During grinding, the temperature of the milling jar was maintained at approximately 50 ◦C by a
water-cooling system.

2.2. Characterization Methods

2.2.1. X-Ray Diffraction Analysis

X-ray diffraction (XRD) analysis was performed with the Rigaku SmartLab X-ray diffractometer
(Rigaku, Tokyo, Japan) in the Korea Institute of Geoscience and Material Resources. Cu-Kα radiation
was used with a tube voltage of 40 kV and a current of 30 mA. The scan range was 3–90◦ (2θ) with an
interval of 0.02◦.

2.2.2. BET (Brunauer-Emmett-Teller) Specific Surface Area Analysis

The specific surface area of the talc sample was measured using the specific surface area analyzer
(Micromeritics ASAP-2420, Norcross, GA, USA) in the Jeonju Center of Korea Basic Science Institute.
Before the experiment, the adsorbed water on the talc particle surface was removed at 300 ◦C for 2 h,
and then the BET method involving nitrogen adsorption method at 77 K was used.
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2.2.3. Laser Diffraction Particle Size Analysis

The particle size was determined using a laser diffraction particle size analyzer (Mastersizer3000,
Malvern Panalytical, Malvern, UK) in the Korea Institute of Geoscience and Material Resources. The talc
in an aqueous colloid solution was dispersed for 10 min using a 28 kHz ultrasonic dispersing machine.

2.2.4. Scanning Electron Microscopy

Scanning electron microscopy was performed using the high-resolution scanning electron
microscope (HR FE-SEM, TESCAN-MIRA3, Brno, Czech Republic) at the Kongju National University.
The sample was coated with platinum (Pt) using an ion-coating machine at an accelerated voltage of
10.0 kV.

3. Results

3.1. X-Ray Diffraction Analysis

Figure 2 shows the XRD patterns of talc ground for up to 360 min using different ball sizes, which
shows the effect of ball size on the crystallinity of ground talc.
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Figure 2. XRD patterns of talc powder upon grinding with (a) 2 mm, (b) 1 mm, and (c) 0.1 mm balls.
Chl: chlorite, Qtz: quartz.

In the as-received talc, (001), (002), and (003) peaks of talc with a narrow width were observed at
2θ angles of 9.4◦, 18.9◦, and 28.6◦, respectively [12]. The small peaks for chlorite and quartz were also
observed, which were often found with talc as a result of carbonate alteration [33]. Upon grinding, the
X-ray diffraction peak intensity gradually decreased while the peak width increased, which implied
the decrease in crystallinity of ground talc. The degree and rate of reduction in peak intensity varies
with the size of the balls used in grinding. When 2 mm or 1 mm balls were used for grinding, the peak
intensity of the talc markedly decreased until 60 min of grinding. After 120 min of grinding, most
diffraction peaks disappeared when the 2 mm balls were used. When 1 mm balls were used, small
diffraction peaks were still observed, even though their intensities are very small compared with prior
to grinding. A further change in the diffraction pattern was not observed for grinding by more than
120 min. These results indicated that ground talc for 120 min and more has a disordered or amorphous
structure when 2 mm or 1 mm balls were used for grinding. When 0.1 mm balls were used, the decrease
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in peak intensity was relatively sluggish. The peak intensity consistently decreased even after 120 min
of grinding, which was in contrast with the cases using 2 mm or 1 mm balls. The unique diffraction
pattern of talc was still apparent even after 360 min of grinding, which indicated a crystalline structure
of talc left after grinding.

To quantitatively compare the effects of the ball size on the crystallinity of ground talc, the change
in the relative height of the talc (001) peak, according to grinding, was analyzed (Figure 3). When 2 mm
balls were used, the peak height after 60 min of grinding decreased to approximately 9% compared
with the height prior to grinding.
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Figure 3. Changes in the relative intensities of (001) XRD peak of talc powder upon grinding with
varying ball sizes for high-energy ball milling. The relative peak intensities are normalized with the
(001) XRD peak of as-received talc.

Almost no peak was observed after 120 min of grinding. Similar results were obtained when
1 mm balls were used, but, after 120 min, the peak height decreased slightly to less than that obtained
using 2 mm balls. When 0.1 mm balls were used, the peak height showed a slight decrease, and
approximately 44% remained even after 360 min of grinding. These results indicate that the crystallinity
of talc decreases more when 2 mm and 1 mm balls are used than when 0.1 mm balls are used for
milling. As the ball size increases, greater size reduction of the talc particle and loss of crystallinity
occur during grinding. This is due to the reduced kinetic energy of collision between rotating balls in
the mill with 0.1 mm balls when compared with 2 mm and 1 mm balls [31,32].

Figure 4 shows the variation in relative peak intensities (It/I0) of talc’s main diffraction peaks such
as (001), (132), (003), and (020) upon grinding, which shows the effect of the ball size on the direction
in the fracture of talc. For 2 mm balls, the (001) and (003) lattice planes, which are perpendicular to
the c-axis of talc, decreased faster than the (132) and (020) peaks. In particular, the decrease rate of
(001) and (003) peaks was very high during the first 10 min and gradually slows at 60 min of grinding.
The (001) and (003) peaks mostly disappeared after 120 min of grinding. In contrast, the decrease
rate of the (132) and (020) peaks is relatively low and its peak intensities are approximately 20% after
360 min of grinding compared with that prior to grinding. The use of 1 mm balls yielded similar
results to those obtained using 2 mm balls. The decrease rate of (001) and (003) peaks was very high
in the early stage of grinding, and most of the peaks subsequently disappear. The (132) and (020)
peak intensities are approximately 50% after 360 min of grinding when compared with that prior to
grinding, which indicates less amorphization when using 1 mm balls than when using 2 mm balls.
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In contrast, when 0.1 mm balls were used, the decrease rate of (132) and (020) peaks was higher
than that of the (001) and (003) peaks, especially during the first 60 min of grinding. After 360 min
of grinding, all peaks except the (020) peak reached approximately 40% compared with that prior to
grinding. As the ball size increases, the reduction of peak intensity prior to grinding increases for
most peaks. The delamination of (00l) planes, in particular, are significantly affected by the ball size.
When 2 mm or 1 mm balls were used, the peak intensity of (00l) planes reduced to less than 5% of its
state prior to grinding, while it only reduced to 40% when using 0.1 mm balls. The relative intensities
of (020) plane after 360 min of grinding were approximately 20%, 55%, and 60% when using 2 mm,
1 mm, and 0.1 mm balls, respectively. These results indicate that the size reduction mechanism of talc
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changes with varying ball size. The contribution of delamination toward the decrease in particle size
is high when 2 mm or 1 mm balls are used but low when 0.1 mm balls are used. The particle size
reduction of talc occurred in all directions when using 0.1 mm balls.

3.2. Analysis of Specific Surface Area

Figure 5 shows the variation in the specific surface area of talc according to the ball size used
in grinding.
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As the grinding progresses, the increase in the specific surface area of talc is initially abrupt and
then becomes gradual. The overall tendency of the increase in the specific surface area is similar
for all ball sizes. However, the degree of increase varied according to the ball size. When 2 mm or
1 mm balls were used, the tendency was very similar until 60 min of grinding. The specific surface
area was slightly higher when 1 mm balls were used than when 2 mm balls were used. However,
since the grinding time is increased above 60 min, the specific surface area of the particles ground
using 2 mm balls increased more toward the end of the grinding period. The specific surface area was
approximately 6.1 m2/g before grinding and increased to approximately 419.1 m2/g for 2 mm balls
and approximately 365.1 m2/g for 1 mm balls after 360 min of grinding. The grinding efficiency when
using 2 mm balls was slightly lower than when using 1 mm balls for the first 60 min of grinding, but
prolonged grinding yielded a higher specific surface area when 2 mm balls were used. The 0.1 mm
ball showed the lowest grinding efficiency, with a specific surface area of only 171.7 m2/g even after
360 min of grinding. These results indicate that the use of 1 mm and 2 mm balls in grinding talc could
yield a larger specific surface area than the use of 0.1 mm balls could. In planetary ball milling, the
proper ball size could maximize the grinding efficiency with a balance of aggregation and particle size
reduction [32]. Our results indicate that the specific surface area eventually increases when the 2 mm
balls are used for grinding, even though it is not clearly observed during the early stage of grinding.

The estimated spherical diameters (ESDs) were calculated using the equation D = 6/ρS, where ρ is
the density of talc (2.8 g/m3), S is the specific surface area (m2

·g−1), and the constant 6 is the shape
factor assuming that the talc particles are spherical. The results are listed in Table 2.
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Table 2. Changes in mineralogical parameters as a function of grinding time.

Talc
Ball Size

(mm)
Grinding Time (min)

0 10 30 60 120 240 360

Relative
(001) Peak height

(%)

2
100

61.8 14.3 9.1 1.3 0.4 0.1
1 63.9 23.9 7.2 4.7 2.3 2.2

0.1 97.3 91.7 92.9 85.1 44.4 43.9

SBET (m2/g)
2
1

0.1
6.1

81.1
81.5
43.5

165.8
171.6
66.7

182.5
231.8
87.7

321.7
287.3
123.7

408.8
326.9
154.4

419.1
365.1
171.7

E.S.D. (nm)
2
1

0.1
351.3

26.4
26.3
49.3

12.9
12.5
32.1

11.7
9.2

24.4

6.7
7.5

17.3

5.2
6.6

13.9

5.1
5.9

12.5

Particle size
(D50, µm)

2
1

0.1
12.8

5.58
3.25
12.2

2.05
0.71
11.3

0.55
0.52
10.2

0.41
0.45
9.32

0.38
0.41
8.42

0.37
0.44
7.96

ESD, equivalent spherical diameter. D = 6 /ρ·S, where ρ is 2.8 g/cm3.

The powder had ESD of approximately 350 nm prior to grinding, which decreased to 5.1, 5.9, and
12.5 nm after 360 min of grinding using 2 mm, 1 mm, and 0.1 mm balls, respectively. These are much
lower ESDs of talc than previously reported, as shown in Table 1 [10,14]. Data from previous reports
listed in Table 1 were generally acquired under dry conditions, unlike the wet milling performed in
this study.

We also obtained ground talc series with a similar specific surface area, even though the ball size
varied. Similar specific surface areas of 81.1, 81.5, and 87.7 m2/g (approximately 85 m2/g) were obtained
after 10 min of grinding with 2 mm and 1 mm balls and after 60 min of grinding with 0.1 mm balls,
respectively. Furthermore, similar specific surface areas of 165.8, 171.6, and 171.7 m2/g (approximately
170 m2/g) were obtained after 30 min of grinding with 2 mm and 1 mm balls and after 360 min of
grinding with 0.1 mm balls, respectively. These two series with a similar specific surface area will be
discussed below.

3.3. Analysis of Particle Size by the Laser Diffraction Method

Figure 6 shows the evolution of the talc’s particle size upon grinding, as measured by the laser
diffraction particle size analysis.

The as-received talc shows a single distribution with a mean particle size of approximately 12 µm.
With an increase in grinding time, the particle size generally decreased. However, the minimum
particle size and reduction rate varied according to the ball size. When 2 mm and 1 mm balls were
used, the particle size rapidly decreased to less than 1 µm for the first 60 min of grinding and did
not change much after 120 min. However, when 0.1 mm balls were used, the particle size gradually
decreases until 360 min of grinding, but the changes are relatively insignificant compared with the
changes when using 1 mm and 2 mm balls.

The distribution pattern of particle sizes also varies upon grinding. The particle size of as-received
talc shows a monomodal distribution ranging from ~3 to ~50 µm with a center at ~10 µm. As the
grinding proceeds, an increase in submicron particles appeared in addition to the existing predominately
micron-sized particles of approximately ~10 µm, which forms a bimodal distribution. In this case,
we refer to the two distribution groups as a microscale group and a sub-microscale group. When
using 1 mm and 2 mm balls, the sub-microscale group appears even after 10 min of grinding and
its population gradually increases until 120 min of grinding at the expense of the microscale group.
The mean particle size of the microscale group gradually decreases from ~10 to ~2 µm as the grinding
proceeds for up to 60 min. The microscale group is not observed after 120 min of grinding, which
indicates that talc powders are fully pulverized into sub-microscale after 120 min of grinding. However,
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re-aggregation occurred in some samples, and, thus, small amounts of ~4 and ~20 µm particles were
observed after 120 min of grinding. When using 0.1 mm balls, the population of the microscale
group does not show a significant reduction even after 360 min of grinding and the population of the
sub-microscale group is relatively insignificant when compared to the results when using 1 mm and
2 mm balls. We note that dispersion of the ground talc may be incomplete in aqueous solution and the
sizes of the aggregated particles can be measured by the laser diffraction method.
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particle size distribution, upon grinding, according to the ball size.
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When 2 mm balls were used, D50 decreased sharply to approximately 0.5 µm after 60 min of
grinding, but did not show significant changes until 360 min. Similarly, when 1 mm balls were used,
D50 decreased to approximately 0.7 µm in the first 30 min of grinding, but it did not change significantly
after that. These results show that the particle size rarely decrease after approximately 60 min of
grinding, which indicates that it reached the grinding limit under the grinding condition employed
in this study. Until 60 min of grinding, the grinding efficiency of the 2 mm balls was slightly lower
than that of the 1 mm balls. However, beyond this time frame, the D50 was smaller and the particle
size distribution was narrower. In contrast, when 0.1 mm balls were used, the particle size steadily
decreased until 360 min from the beginning of grinding. The final D50 was approximately 7.9 µm,
which is approximately 7 µm larger than that obtained using 2 mm or 1 mm balls. These results
indicate that, when 0.1 mm balls are used, the pulverization rate is slow and showed a lower grinding
efficiency compared with the 2 mm and 1 mm balls.

3.4. Aggregation of Ground Talc

Laser diffraction particle size analysis and BET-specific surface area analysis are general methods
to analyze the changes in particle size upon grinding. Though the calculated ESD based on the
BET-specific surface area is much smaller than the results of particle size analysis because the shape of
phyllosilicate talc and the increase in specific surface area generally indicates the decrease in particle
size. According to the laser diffraction particle size analysis, the particle size of talc ground using 2 mm
and 1 mm balls significantly decreased until 60 min of grinding, and further size reduction was not
subsequently observed. On the contrary, BET-specific surface area continuously increases after 60 min
of grinding. In addition, the significant difference in a specific surface area between talc powders
ground using 2 mm and 1 mm balls is observed while the result of the particle size analysis shows only
a trivial difference. These differences between the laser diffraction particle size and surface area analysis
can appear when the ultrafine talc particles are aggregated by grinding [12]. In the BET-specific surface
area analysis, there is a rare effect of aggregation because the N2 gas is adsorbed to the particle surface.
However, in the particle size analysis using laser diffraction, the size of aggregates can be measured
rather than the individual particles. These results indicate that aggregation of ultrafine talc powder
occurred as a result of grinding.

The aggregation of ground talc particles can be observed in SEM images of the talc particles
grounded using 1 mm balls (Figure 8).

Before grinding, a unique laminar structure of talc is clearly observed with a size of tens of
micrometers. With increasing grinding time, the particle size decreases to approximately 5 µm after
30 min, less than approximately 1 µm after 240 min, and approximately 200–300 nm after 360 min of
grinding. The aggregation of ultrafine particles is clearly observed after 240 min of grinding, which is
consistent with results of the laser diffraction particle size and BET-specific surface area analysis.
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In order to understand the effect of ball size on the aggregation of ground talc, Figure 9 compares
the particle size analysis results of talc powders with similar specific surface areas. As described
above, we obtain the ground talc series that have a similar specific surface area of talc particles that are
approximately 85 m2/g and 170 m2/g. The laser diffraction particle size of the ground talc using 2 mm
and 1 mm balls showed similar particle size distribution when compared with the case of using 0.1 mm
balls. In both series, the intensity of the sub-microscale group was larger when using 2 mm and 1 mm
balls than when using 0.1 mm balls, which indicates a larger particle size when using 0.1 mm balls.

The different particle size distributions with similar surface area could be observed if the
aggregation of ultrafine particles occurred as a result of grinding. The larger particle size distribution
indicates the more aggregated status of talc powder. In this study, the ground talc powder using
0.1 mm balls shows a larger particle size than other talc powders with similar surface areas, which
indicates that it is easily aggregated due to grinding.
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The increased aggregation of ground talc with 0.1 mm balls than with 1 mm or 2 mm balls
could be related to the degree of dispersion in the aqueous solution used in the particle size analysis.
The aggregation of ultrafine particles generally occurs in order to reduce the high surface energy [34,35].
The talc powders with a similar surface area and different aggregation behavior indicate that these
ground talc powders have a different surface energy and/or property. The results of XRD analysis
showed that different crystallinity of ground talc powder depends on ball size. The crystallinity of
ground talc is higher when using 0.1 mm balls than when using 1 mm and 2 mm balls. Crystalline
talc is hydrophobic due to the siloxane sheet of the T-O-T layer. Hence, it aggregates well in aqueous
solution [1,36]. On the other hand, disordered talc with lower crystallinity due to grinding is
delaminated. Breakage of the layers exposes the hydroxyl groups in the octahedral layer. As a result,
the talc is less hydrophobic due to the loss of crystallinity [8,37,38]. In an aqueous solution, the more
hydrophilic talc is better dispersed.

As shown in Figure 3, the crystallinity of ground talc prepared using 0.1 mm balls during grinding
is higher than that using 1 mm and 2 mm balls even though these talc powders have similar surface
areas. The ground talc with relatively higher crystallinity (i.e., when using 0.1 mm balls for grinding)
has higher surface energy than other ground talc powders (i.e., when using 1 mm and 2 mm balls for
grinding). Thus, increased aggregation could occur in ground talc using 0.1 mm balls due to the loss of
crystallinity and hydrophobicity.

4. Discussion

As described above, the grinding of talc using a high-energy ball mill results in differences in
crystallinity, particle size, specific surface area, and aggregation behavior. Figure 10 shows the changes
in the crystallinity, particle size, and specific surface area of talc, according to the ball size used
in milling.
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4.1. Effects on Crystallinity of Ground Talc

The crystallinity of talc decreased upon grinding, and the degree of decrease varied depending
on the ball size (Figure 10a). When 1 mm and 2 mm balls were used in grinding, the crystallinity
decreased rapidly within 60 min of grinding, and delamination of (00l) planes mainly occurred. After
120 min of grinding, almost all XRD peaks disappeared. In contrast, when grinding was performed
using 0.1 mm balls, not only was there a reduction in the crystallinity decrease, but also crystal surfaces
other than the (00l) surface were fractured together. The crystallinity decreased continuously even
after 120 min, but it was still much higher when compared with the case of using 1 mm and 2 mm
balls. Compared with it prior to grinding, the (001) peak heights of XRD decreased to 91.7%, 23.9%,
and 14.3% of the original size after 30 min of grinding when 0.1 mm, 1 mm, and 2 mm balls were used,
respectively. After 120 min of grinding, it decreased to 85.1%, 4.7%, and 1.3%, respectively, and, after
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360 min of grinding, it decreased to 43.9%, 2.2%, and 0.1%, respectively. When comparing the XRD
patterns of ground talc with a similar specific surface area, the smaller the ball size used, the higher the
final crystallinity of the talc is. These results indicate that the smaller ball size is appropriate to grind
the talc while retaining the crystalline structure.

4.2. Effects on Comminution Rate and Limitation

The ball size in ball milling also affects the comminution rate and the limitation in particle size
reduction. The increase in the comminution rate is clearly observed in the variation of particle size
and BET-specific surface area, according to the ball size (Figure 10b,c). The BET-specific surface area
of ground talc powders for 360 min shows approximately 419.1, 365.1, and 171.7 m2/g using 2 mm,
1 mm, and 0.1 mm sized balls, respectively. The ESD for those talc powders correspond to 5.1, 5.9, and
12.5 nm, respectively. The particle size measured by the laser diffraction method also corresponds to
the submicroscale when using 1 mm and 2 mm balls, but to the microscale when using 0.1 mm balls
after grinding for 360 min. According to the variation of BET-specific surface area, the comminution
rate increased with increasing ball size. At the early stage of ball milling, the comminution rate
difference between using 1 mm and 2 mm balls is insignificant. The comminution rate when using
1 mm balls is slightly faster than when using 2 mm balls at the early stage of grinding, but both the
comminution rate and the limitation in particle size reduction are more effective when using 2 mm
balls in prolonged grinding.

4.3. Effects on Aggregation

The ball size used in ball milling also affects the aggregation properties of talc. The larger the ball
size used for grinding, the less aggregation occurred for talc powders with similar specific surface
areas. When 1 mm and 2 mm balls were used, aggregates of submicron particles were formed in
most cases, as observed in laser diffraction particle size analysis. However, when 0.1 mm balls were
used, aggregates of several micron particles were formed, as shown in Figure 9. The differences
between the particle size analysis and the specific surface area analysis would be caused by the
formation of aggregates of the sample due to ongoing grinding. This means that, as the ball size
increases, the aggregates are formed more easily. When talc powders with similar specific surface areas
were compared, the smaller the ball size is, the larger the aggregates formed are. The aggregation
behavior of ground talc varies with the ball size used during milling, which is the result of different
talc crystallinities. The loss of talc crystallinity results in a loss of hydrophobicity [8,37,38] and,
consequently, better dispersion in an aqueous solution. The ground talc exhibits more hydrophilic
properties when larger balls are used during milling.

5. Conclusions

In this study, talc was ground at a fast rotation speed of 2000 rpm using a high-energy ball mill, and
ultrafine talc particles were obtained. Furthermore, the effects of ball size on the grinding efficiency and
crystallinity of talc were investigated. When a larger ball size was used in ball milling, the crystallinity
decreased faster, and the grinding efficiency and the specific surface area of the talc increased. In the
case of crystallinity, the smaller the ball size was, the smaller the decrease in crystallinity was. Therefore,
using a small ball size can produce talc nanoparticles with higher crystallinity. Upon the progress of
milling, the aggregation of talc particles occurs and the degree of aggregation shows the relations with
crystallinity of talc. Comparing the ground talc with similar specific surface areas, the more disordered
the structure of the ground talc is, the fewer aggregation and more hydrophilic properties are observed.
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