
minerals

Article

Fe-Ni-P-S Melt Pockets in Elga IIE Iron Meteorite:
Evidence for the Origin at High-Pressures Up
to 20 GPa †

Konstantin D. Litasov 1,2,* , Svetlana N. Teplyakova 3, Anton Shatskiy 1,2

and Konstantin E. Kuper 4

1 Sobolev Institute of Geology and Mineralogy SB RAS, 630090 Novosibirsk, Russia; shatskiy@igm.nsc.ru
2 Department of Geology and Geophysics, Novosibirsk State University, 630090 Novosibirsk, Russia
3 Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, 119334 Moscow, Russia;

svun2002@mail.ru
4 Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia; k.e.kuper@inp.nsk.su
* Correspondence: klitasov@igm.nsc.ru
† The paper was presented at the 82nd Annual Meeting of the Meteoritical Society in Sapporo, Japan,

7–12 July 2019.

Received: 31 July 2019; Accepted: 3 October 2019; Published: 7 October 2019
����������
�������

Abstract: Here we report new data on high-pressure microstructures in Elga group IIE iron meteorites,
made of solidified Fe-Ni-P-S melt pockets and microcrystalline aggregates, which could be formed
only at high pressures and temperatures according to the experimental data. The bulk composition
of the melt pockets and crystals correspond to the Fe3P-Fe3S solid solution with the closure of an
immiscibility gap at pressures near 20 GPa in static experiments. Some other melt pockets fit with the
Fe2S-Fe2P compositions, which could also correspond to high pressures and temperatures. The results
suggest a late shock episode during the formation of the IIE iron parent body, which may be prior
or due to the final disruption that caused the meteorite arrival to Earth. It also has an important
implication to the shock features in other meteorites, such as ureilite.
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1. Introduction

The shock-melt veins and high-pressure minerals are common in chondritic and martian
meteorites and rare in other types of meteorites, including lunar samples [1,2]. Shock-induced
deformations, melt pockets, and other microstructural features are also common for iron meteorites [3–5].
However, there have been scarce findings of high-pressure minerals, including stishovite in group
IVA iron meteorite Muonionalusta [6], (Fe,Ni)2P-allabogdanite in anomalous Ni-rich ataxites Onello,
Santa Catharina, and Barbianello [7–9] and tuite in IIE iron Elga [10].

Elga represents IIE iron meteorite group, which contains 5–20% of silicate inclusions in the
metallic matrix [10–18]. In the studied samples, the metal part includes kamacite with rare taenite
inclusions and abundant zones with plessite textures. Large rounded troilite and irregular schreibersite
(Fe,Ni)3P inclusions are abundant. Rounded or irregular shape silicate inclusions caould be divided
into three major types, including (1) silicate glass with abundant large Cr-diopside and minor small
enstatite crystals; (2) silicate glass with tiny quenched crystals of enstatite, plagioclase, and cristobalite;
(3) silicate/phosphate inclusions with liquid immiscibility. One additional group of inclusions,
which consist of granular olivine, Cr-diopside, and enstatite were reported by Osadchii et al. [14].
The major phases of silicate inclusions are Cr-diopside and enstatite; accessory minerals are represented
by chromite, ilmenite, rutile, armalcolite, aenigmatite, and phosphate minerals [16–18]. Solidified
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shock melt is represented by an immiscible fine-grained mixture of silicate-phosphate and metallic
parts [10,13,17]. The metal captured to shocked zone appears as Fe-Ni-P or Fe-Ni-P-S-bearing
symplectite-like or cryptocrystalline melt pockets. Tuite was identified by Raman spectroscopy in
shock-melted zones at the boundary of silicate inclusions [10].

Here for the first time, we report new evidence for high-pressure microstructures in Elga, made of
Fe-Ni-P-S aggregates, which could be formed only at high pressures and temperatures according to
the experimental phase diagrams [19,20].

2. Materials and Methods

The Elga meteorite was found in 1959 in Yakutia (Russia) [11,17]. The main mass of 23 kg is in the
Central Siberian Geological Museum, Novosibirsk. We studied six polished slices of the meteorite
from the working collection, 5–7 g each. Polished sample sections (Figure 1) were characterized using
a Tescan MYRA 3 LMU scanning electron microscope coupled with an INCA energy-dispersive X-ray
microanalysis system 450 equipped with the liquid nitrogen-free Large area EDS X-Max-80 Silicon
Drift Detector (Oxford Instruments) at the Sobolev Institute of Geology and Mineralogy, Novosibirsk.
The energy-dispersive X-ray spectra (EDS) were collected by sharp 1–2 µm or scattered over a sample
area electron beam at 20 kV accelerating voltage and 1 nA beam current. Counting times for spectra
collection were 30–60 s. No beam damage or change in measured composition with time was observed
when using the current setting. The EDS spectra were optimized for the quantification using the
standard XPP (exponential model of Pouchou and Pichoir matrix correction) procedure included in
the INCA Energy 450 software. Calibrated EDS spectra from the used device were reported to be of
the same or even better quality as the wavelength dispersive analysis in many recent work [21–23].
In addition to standard minerals, oxides, and metals, mentioned in these papers, we used synthetic
Fe3P, Ni3P, and FeS as internal standards for EDS analyses.

The crystal structure of the single crystal and nanocrystalline (Fe,Ni)3(P,S) was confirmed using
the Electron Backscatter Diffraction (EBSD) of the chemo-mechanically polished plates. Colloidal
silica was used for the final sample polishing. The EBSD data were collected on a Hitachi S-3400 N
scanning electron microscope equipped with an Oxford Instruments HKL detector with an accuracy
of misorientations of 0.5–1.0◦ at 20 kV accelerating voltage, 8 nA beam current, 15.5 mm working
distance, and 70◦ tilt angle. The Kikuchi patterns of individual points were automatically indexed by
the Oxford data collection software. The spatial resolution of EBSD was less than 1 µm.

3. Results

Schreibersite and troilite in Elga often form rim zones around silicate inclusions and located in
fractures along the metal sub-grains (Figure 1). Representative compositions of the primary phases are
shown in Table 1. In the fractures, schreibersite and troilite are severely crumpled and re-melted

Figure 1. Example of a polished fragment of Elga IIE iron meteorite. S-GL—silicate + glass inclusions,
Gl—felsic glass inclusion.
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Table 1. Average composition (wt.%) of primary minerals from the Elga meteorite.

Mineral n Cr Fe Co Ni P S O Total

Kamacite 124 91.91 0.77 7.08 0.17 99.93
SD 2.58 0.14 0.62 0.13

Taenite 60 76.22 0.48 23.10 0.05 99.85
SD 3.25 0.15 3.31 0.05

Schreibersite 56 61.16 0.41 22.66 15.35 0.02 0.22 99.82
SD 2.49 0.12 2.45 0.73 0.01 0.21

Troilite 60 0.13 63.08 0.01 0.07 36.25 99.54
SD 0.07 1.17 0.01 0.05 1.24

n—number of analyses. SD—standard deviation.

Various Fe-Ni-P and Fe-Ni-P-S melt pockets can be distinguished in the fractures and near silicate
inclusions (Figures 2–7). In this paper, we consider only Fe-Ni-P-S aggregates. They can be subdivided
into the following types according to their bulk compositions: (a) FN3–corresponding to stoichiometric
(Fe,Ni)3(P,S); (b) FN2–corresponding to stoichiometric (Fe,Ni)2(P,S); (c) FN3-Ox–partially oxidized
(Fe,Ni)3(P,S); (d) FN2-Ox–partially oxidized (Fe,Ni)2(P,S); (e) FNX–other compositions with the P and S
contents deviating from stoichiometric proportions; and (f) FNX-Ox – partially oxidized (Fe,Ni)n(P,S)
(Table 2 and Table S1 in Supplementary Materials).

Figure 2. Zone of high-pressure (Fe,Ni)3(P,S) between schreibersite (Sch) and troilite (Tro) (Table S2).
Squares show the positions of the EDS analyses: filled—FN3; half-filled—FN2, empty—others. The star
shows the position of the EBSD pattern. Kam—kamacite; Mt—magnetite.
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Table 2. Average compositions (wt %) of Fe–Ni–P–S melt pockets and crystalline aggregates from the
Elga IIE iron meteorite.

Type FN3 FN3 FN3-Ox FN3-Cryst FN2
Site 14-15 23-24 13 13 15,19

Fe 68.79 0.63 62.78 2.88 62.78 2.31 66.85 0.96 66.19 0.94
Co 0.55 0.07 0.49 0.13 0.66 0.16 0.50 0.09 0.45 0.07
Ni 13.79 0.39 19.60 2.61 15.85 0.55 15.04 0.79 11.16 0.48
P 10.31 0.50 9.26 0.10 10.15 0.39 11.06 0.11 5.44 0.20
S 4.88 0.55 6.15 0.18 4.69 0.21 4.36 0.15 16.07 0.32
O 1.13 0.14 1.18 0.11 5.65 2.38 1.53 0.06 0.44 0.49

Total 99.45 0.55 99.46 0.72 99.77 0.71 99.33 0.23 99.74 0.23
Atomic ratios per 12 atoms. M = Fe + Ni + Co

Fe 7.537 6.892 7.178 7.349 6.905
Ni 1.438 2.048 1.725 1.573 1.107
Co 0.057 0.051 0.071 0.052 0.045
P 2.037 1.832 2.093 2.192 1.023
S 0.931 1.177 0.933 0.834 2.919
M 9.032 8.991 8.974 8.974 8.057

P+S 2.968 3.009 3.026 3.026 3.943

Type FN3 FNX Fe-mix Fe-mix
Site 9,23a 8-9,23a 27 28

Fe 68.18 0.41 81.44 0.74 68.85 1.33 77.79 1.02
Co 0.56 0.11 0.77 0.09 0.54 0.11 0.70 0.07
Ni 14.88 0.06 10.64 0.45 15.47 1.65 11.49 0.43
P 6.53 0.30 3.60 0.20 8.18 1.40 4.71 0.41
S 9.00 0.27 3.29 0.24 5.50 1.71 4.08 0.69
O 0.91 0.21 0.59 0.13 0.98 0.08 0.72 0.11

Total 100.06 0.48 100.33 0.36 99.53 0.56 99.49 0.10
Atomic ratios per 12 atoms. M = Fe + Ni + Co

Fe 7.415 9.351 7.620 8.891
Ni 1.540 1.162 1.630 1.249
Co 0.058 0.084 0.056 0.076
P 1.281 0.744 1.633 0.970
S 1.706 0.658 1.061 0.813
M 9.013 10.597 9.306 10.216

P+S 2.987 1.403 2.694 1.784

FN3 = (Fe,Ni)3(P,S); FN2 = (Fe,Ni)2(P,S); FNX = intermediate alloy mixtures. Fe-mix = mixture with (Fe,Ni)-metal.
Ox = partially oxidized aggregate. Cryst—crystalline zone shown Figure 4. Next to the sample composition is one
standard deviation of several analyses listed in Table S1.

FN3 appears as a micro- or nanocrystalline mixture of two or three phases at the boundary
between schreibersite and troilite, where melt pockets could form zoned patterns with FN2 near troilite,
intermediate compositions between FN2 and FN3 (Figure 2 and Table S2), and FN3 aggregates partially
contaminated by metal. In the latter, FN3 is represented by cryptocrystalline zones surrounded by
FNX (Figure 3 and Table S1).

FN3 can also form crystal-like aggregates surrounded by a partially oxidized quenched zone
with the same composition (Figure 4). Preliminary transmission electron microscope data indicate the
nanocrystalline nature of this crystal-like aggregate. It consists of 10–20 nm crystals representing a
mixture of S-containing schreibersite and S-bearing area with unknown composition.
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Figure 3. Nanocrystalline (Fe,Ni)3(P,S) zones surrounded by non-stoichiometric FNX with clear
dendrites of (Fe,Ni)-metal (Site 10–12 in Table S1).

Figure 4. Crystal-like FN3 aggregate with average composition (Fe2.45Ni0.52Co0.02)2.99(P0.73S0.28)1.01

(a) coexisting with quenched oxidized FN3 aggregates (Site 13 in Table S1). Star shows position of
EBSD pattern. Bar shows location of focused ion beam film presented in (b). (c) and (d) secondary
electron image and elemental map for sulfur in the area shown by square in (b). (b–d) are based on our
preliminary transmission electron microscope data.

Another appearance of FN3 is connected with quenched textures, which may have crystallized
from the melt (Figure 5a). Finally, it can form interstitial zones in non-stoichiometric mixtures with
(Fe,Ni)-metal (Figure 5b,c). The composition of FN3 varies from (Fe,Ni)3P0.8S0.2 to (Fe,Ni)3P0.4S0.6

(Figure 6, Table 2). The EBSD analyses on nanocrystalline aggregates of FN3 and single crystal-like
areas of FN3 indicate the presence of a phase with the I4 schreibersite-type structure [24] and mean
angular deviation (MAD) of measurements between 0.1◦ and 0.3◦ (Figure 7). No troilite or kamacite
could be identified in such aggregates suggesting the presence of crystalline FN3 or a nanocrystalline
mixture with the FN3 composition. In Figures 2 and 4, we could recognize two phases in the BSE
images of Fe-Ni-P-S aggregates. It is obvious that one needs to add 20 to 60 mol.% (Fe,Ni)-metal to fit
the compositions of FN3 (Figure 6), which is not the case. The FN3 compositions were also observed in
some microcrystalline Fe-Ni-P-S aggregates with a grain size of 0.1–2.0 µm, where we could identify
schreibersite, troilite, and kamacite (e.g., Figure 5a). In this case, it is difficult to suggest that this is a
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former high-pressure FN3 phase; however, a close resemblance to the stoichiometric compositions may
not be accidental.

Figure 5. Fe-Ni-P-S aggregates from Elga meteorite. (a) Sites 14–15, FN3 represented by quench
aggregates of three phases, schreibersite (Sch, grey), troilite (dark), and kamacite (Kam, white); (b) Sites
8–9, 23a, interstitial FN2 aggregate in FNX nonstoichiometric matrix; (c) Site 28, zone of deformation of
plessite with mixed FNX aggregates, some areas shown in (d) have compositions corresponding to FN3.
Pls—plessite. Black squares show the position of the inserts. See Table S1 for chemical compositions.

FN2 form micro- and nanocrystalline mixtures of dendritic crystals and appears near the boundary
with troilite along with FN3 aggregates (Figure 2) or as interstitial pockets in the non-stoichiometric
FNX zones (Figure 5b). Sometimes FN2 looks like a mechanical mixture of troilite and schreibersite
crystals (Figure 8). Its composition varies from (Fe,Ni)2P0.5S0.5 to (Fe,Ni)2P0.2S0.8 (Figure 6, Table 2),
and it is easy to identify troilite microcrystals by EBSD measurements.

The oxidized regions of FN3 and FN2 appear due to partial oxidation of the metal or alloy with
the formation of magnetite or trevorite (Figure 9, Table S3). In this case, the stoichiometry could remain
the same or slightly deviate from the original FN3 or FN2 (Figure 6). The composition of the various
FNX and FNX-Ox aggregates deviates from stoichiometric FN3 and FN2 due to the admixture of the
metallic phase (Figure 6). Some of them correspond to the composition of the miscible Fe-Ni-P-S melts
(Figures 5 and 6) and could be formed at low to zero pressures [25,26].
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Figure 6. Phosphorus vs, sulfur contents in (Fe,Ni)3(P,S) melt pockets from Elga meteorite. Ox–partially
oxidized melt pockets. Others correspond to intermediate non-stoichiometric FNX compositions. “Zone”
shows the compositional variation of Fe–Ni–P–S alloy from schreibersite to troilite (see Figure 2 and
Table S2). Pressure values in GPa correspond to maximum S solubility in Fe3P1-xSx alloys [20]. Black
dashed line shows compositions of mechanical mixture between schreibersite and troilite. Grey dashed
lines are same with an addition of 20, 40, and 60 mol.% of (Fe,Ni)-metal. Dotted lines show the limit of
liquid immiscibility in the Fe–P–S system after Raghavan [25] (R-88) and Chabot and Drake [26] (Ch-00).

Figure 7. Representative EBSD patterns from (Fe,Ni)3(P,S), indexed with the schreibersite-type structure
shown in Figures 2 and 4.
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Figure 8. Sites 15 and 19, FN2 at the boundary between troilite (Tro) and schreibersite (Sch). Troilite
contains nanocrystalline inclusions of FN3. See Table S1 for chemical compositions (Site 19).

Figure 9. Oxidized quenched textures of Fe–Ni–P–S aggregates (FNX) near a crack in kamacite (Kam)
matrix. (a) Site 15, general view, (b–d) enlarged areas. (b) Site 16, intergrowth of kamacite and FN2;
(c) Site 17, intergrowth of FN3 (white), FN2-Ox (black) and FNX-Ox (grey). (d) Site 18, intergrowth
of FN2-Ox and spinel. Cmt—chromite, Mer—merrillite; Mt—magnetite; Sp—trevorite-like spinel.
See Table S3 for chemical compositions.
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4. Discussion

4.1. High-Pressure Origin of (Fe,Ni)3(P,S)

Fe3P and Fe3S are isostructural at high pressure and form a complete solid solution
at P > 20 GPa [19]. This may indicate partial solubility of sulfur in Fe3P at lower pressures.
Gu et al. [20] calibrated the pressure dependence of sulfur solubility in tetragonal Fe3P and argued
that it could be used as a pressure marker for natural Fe–Ni alloys containing P and S. They predicted
that this solid solution could be found in meteorites, as it is the case in the studied Elga sample.
We plotted calibration of Gu et al. [20] in Figure 6 and argue that most FN3 crystals and nanocrystalline
aggregates correspond to pressures of 10–20 GPa according to the static high-pressure experiments.
This calibration may be slightly distorted by the addition of Ni to the system since Ni3S, isostructural
with schreibersite, appears at pressures about 5 GPa [27]. There is no experimental data to evaluate the
pressure effect of Ni substitution for Fe in Fe3(P,S). However, assuming a linear relationship between the
stability pressures of Ni3S and Fe3S, we can suggest that 20 mol. % of Ni in (Fe,Ni)3(P,S) would reduce
the estimated pressures for 2–3 GPa [28]. Thus, the pressure estimations for the FN3 aggregates would
be at least 7–17 GPa. Previous findings of tuite, which is stable at pressures above 12 GPa [29,30] in the
shocked zones of silicate inclusions in Elga are consistent with the data for the FN3 aggregates.

The origin of FN2 is presently not clear. Gu et al. [20] reported that Fe2P dissolves S at high
pressures. However, quantitative data on the S solubility in Fe2P as a function of pressure are not yet
available. The close textural relations between FN3 and FN2 in the Elga meteorite and the lack of
stable sulfides with the Fe2S stoichiometry in the studied pressure range [31,32] indicate the possibility
of a high-pressure origin for FN2. In this regard, the stoichiometric composition of these aggregates is
unlikely to be accidental (Figure 6).

4.2. The Implication of the Results for Putative Impact Events during the Formation of IIE Iron Meteorites
and Ureilites

Silicate-bearing iron meteorites are important for understanding the early evolutionary processes
in the solar system that affected planetesimals and small bodies. Group IIE iron meteorites often
contain 5–20% of silicates as inclusions, varying in composition from mafic to felsic and ultrafelsic.
These inclusions show genetic relations to H-chondrites, as revealed by their isotopic and geochemical
characteristics [33,34]. The origin of IIE irons with fractionated (non-chondritic) silicate inclusions,
such as Elga meteorite, is best explained by a model of disruption and reassembly of partially molten
asteroids with complex impact history, when some impact events are related to the formation of
silicate inclusions and some to deformation and recrystallization along narrow zones in meteorites [34].
The formation of high-pressure minerals on a microscopic scale could be related to the late impacts.
However, presumable extremely high-pressures exceeding 15 GPa recorded by Fe-Ni–P–S aggregates in
the Elga indicate that the impact events were almost as intense as during the formation of high-pressure
minerals in chondrites, where pressures exceeding 25 GPa were recorded [2].

S-bearing inclusions (S/(S + P) ≈ 0.12) with a bulk composition close to the (Fe,Ni)3(S,P)
stoichiometry were found inside the diamond grains in Almahata Sitta ureilite [28]. These inclusions
are interpreted to have been recrystallized to nanocrystalline aggregates of troilite, kamacite,
and schreibersite by decompression. The authors relate the origin of these inclusions to pressures
above 20 GPa inside the ureilite parent body. We show that these phases could be formed by the
shock processes and do not support the idea about the origin of ureilites and their diamonds under the
static high-pressure and high-temperature conditions. In our opinion, the FN3 aggregates in ureilitic
diamonds, as well as diamonds themselves, were formed dynamically during a strong disruption
impact event. This strong impact could cause the formation of enlarged diamond crystals (up to 100 µm)
that exceed the normal size of impact diamond crystals (<5 µm) and is considered to be important
evidence for the formation of ureilite diamonds in the deep interior of the ureilite parent body [35].
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Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/10/616/s1,
Table S1: Representative compositions (wt %) of Fe–Ni–P–S aggregates from the Elga IIE iron meteorite. Table S2:
Composition (wt %) of Fe–Ni–P–S alloys across the shocked boundary between schreibersite and troilite.
Table S3: Detailed analyses (wt %) of Fe–Ni–P–S S dendritic aggregates subjected to oxidation or mixed with
oxidized materials.
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