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Abstract: The topic of this study is the archaeometric characterization of mortars from Villa del
Pezzolo, a Roman Villa located in Seiano (Napoli-Campania, Italy), dated between the 1st century
B.C. and the 3rd century A.D. Mortars were analyzed by means of a multi-analytical approach
(polarized optical microscopy, X-ray powder diffraction, scanning electron microscopy and energy-
dispersed spectrometry, thermal analyses and mercury intrusion porosimetry) according to existing
recommendations. Analytical results evidenced the use of local geomaterials composed of sedimentary
and volcanic aggregates in the mix design and confirmed the three distinct building phases identified
by archaeologists. Volcanic tuff fragments, identified in the 1st building phase can be ascribed to
Campanian Ignimbrite formation, widely cropping out in the Sorrento Peninsula, as confirmed by
the presence of glassy shards, partially devitrified and replaced by authigenic feldspar, a typical
feature of welded grey ignimbrite lithofacies (WGI). Volcanic aggregates in samples of the 2nd and
3rd building phases show, instead, the presence of leucite-bearing volcanic scoriae and garnet crystal
fragments related to Somma-Vesuvius products. Study of these mortars allowed us to: (1) understand
the production technologies; (2) highlight use of materials with hydraulic behavior, such as volcanic
and fictile fragments; (3) confirm the three building phases from compositional features of mortars
and (4) highlight the change over time of the volcanic aggregate for mortars mix-design.

Keywords: ancient mortars; archaeometry; multi-analytical characterization; sorrento peninsula;
Villa del Pezzolo; hydraulicity index; constructive phases; production technology; raw materials

1. Introduction

The Bay of Naples (Figure 1a) is characterized by the presence of several worldwide known
archaeological sites [1–4] and references therein, some of them are very interesting and well preserved,
among which Pompeii represents, by far, an almost unique example of a still-visible ancient town.
Nevertheless, minor, but not for importance, sites (villas, cisterns, thermae, necropolis, etc.) are
widespread all over the area.

Villa del Pezzolo is a Roman villa, located in Seiano, which represents a good example of a Patrician
villa (Figure 1a,b). The villa was inhabited throughout four centuries, between the 1st century B.C. to
3rd century A.D. During that period, there were more reconstruction phases following catastrophic
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events such as the 62 A.D. earthquake, the 79 A.D. eruption of the Somma-Vesuvius and subsequent
debris flow.
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archaeological site Villa del Pezzolo; (b) picture of Villa del Pezzolo.

The site is very interesting both for archaeologists and geologists, as it also represents one of the
few locations along Sorrento Peninsula coastline where the consequences of A.D. 79 Somma-Vesuvius
eruption are clearly visible, despite the distance from the eruptive center [5].

Like other remarkable examples existing in the Bay of Naples, this villa has been preserved until
now, even though located in an aggressive environment by the seaside, thanks to the construction
expertise of Roman workers. In particular, thanks to the use of hydraulic mortars. Ancient mortars
are composite materials with both crystalline and amorphous phases, containing inerts and reactive
aggregates in a calcitic binder [6], which were in use until the end of the 19th century, when Portland
cement first appeared [7]. The greatest interest on these artificial geomaterials is certainly due to
ancient Roman builders and, mainly, to their skills in using well-defined materials such as pozzolana
and fictile fragments in the mix design [8].

The main source of information about the Roman technical ability for manufacturing these
materials is the treatise “De Architectura” by Marcus Vitruvius Pollio (80–15 B.C.), dedicated to emperor
Augustus. This treatise, namely the second book, describes in detail the utilized materials in the
construction sector, including those necessary for mortars production.

The excellent conservation state of many products made in the Roman period demonstrates
the high technological level achieved by these builders. Roman builders knew that, thanks to the
combination of the lime with special volcanic deposits (pozzolana), mortar became hydraulic, and it
means allowing underwater hardening and also acquiring a greater mechanical strength [8–10].
Another very important skill was the possibility to use, whenever volcanic materials were not available,
fragments of artificial fictile fragments, such as bricks, pottery or shattered tiles, which have the same
hydraulic properties of pozzolana [8].

Studies on Roman mortars are very interesting to understand the “secrets” of such enduring
resistance because, as of today, the Villae or other Roman buildings have resisted over two thousand
years the impact of waves and weathering due to seawater [11–15]. Thus, Roman mortars represent a
tangible example of a long-lasting transformation product of geological raw materials.

Nowadays, the concept of “durability” is still of great interest. The modern concrete technologists
try to constantly improve their formulation to replicate Roman concrete features such as strength
and resistance against aggressive agents (i.e., seawater chemical and mechanical action, acid rains,
etc.; [16]).

This research aims to: (a) characterize the mortars used in the construction of Villa del Pezzolo in
order to improve knowledge about Roman construction material manufacturing by means of a detailed
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microstructural and compositional examination of the cementiceous binding matrix and aggregates,
(b) identify the mix design and provenance of raw materials; and (c) highlight the minerogenetic
secondary processes.

2. Geological and Archaeological Background

Villa del Pezzolo is placed in a pocket beach along the north shore of the Sorrento Peninsula in
a tiny bay called Marina di Equa (Seiano), in the northern flank of Lattari Mounts, constituting the
southern margin of the Campanian plain (Figure 2a), [5,17].

The geological evidence of the Campanian plain are mostly related to tectonic extensional
movements and volcanoclastic events [18]. The Lattari Mounts are placed 20 km south of the
Somma-Vesuvius volcano and 40 km south of Naples (Italy). This mountain ridge is composed by
Mesozoic limestones covered by late Quaternary ashfall deposits belonging to the A.D. 79 eruption of
Somma-Vesuvius (Figure 2a), [19].
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On the archaeological site, the impact of the A.D. 79 Somma-Vesuvius eruption is clearly visible.
This geographical area was affected by of two phases with relative different deposits: primary,
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the sedimentary records related to base surge events which caused the formation of pyroclastic deposits
(Figure 2b), [18]; secondary, the alluvial delta, called “Durece deposition” [19] by the local population,
caused by alluvial events, following the volcanic eruption. This event caused the erosion of volcanic
deposits [20] and the consequent burial of the villa. Later, the alluvial delta was broken down creating
a 6–8 m high “Durece” cliff, still present on the beach (Figure 2c) [19].

Moreover, the marine erosion processes seriously damaged the building, making it is impossible
to recognize the original construction plan. However, analysis of geological stratigraphy [5] and
masonry techniques confirms the archaeological hypothesis of three building phases (Figure 3), [21].

The first building phase was dated back from the 1st century B.C. to the 79 A.D. (Somma-Vesuvius
eruptive event; Figure 3b) and is identifiable by the presence of masonry works in opus vittatum and
opus reticulatum. The first opus became widespread during the Augustan age while the second one was
used in southern Italy between the 1st century B.C. and the 1st century A.D. [18,22].

The villa was built on a limestone flank with a staircase, descending to the seaside, deeply
damaged and buried by the eruptive products at the end of the first phase.

In the second phase, dated to the first half of 2nd century A.D. (Figure 3c), after a series of flood
events, the villa was completely buried and rebuilt and some rooms were restored using the opus
reticulatum with small elements [18–22]. This led to the creation of new spaces, different in form and
orientation with respect to the original core structure (Figure 3c) [18–23]. This information is supported
by the evidence that the walls of the second phase are not in line with the remnants of the first phase
structures (Figure 3a) [5].
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After this phase, new spaces were damaged and, in some cases, destroyed by sea action, probably
due to their position on an alluvial delta [18]. Finally, a third phase (3rd century A.D.; Figure 3d)
consisted in the building of a new access to the sea and in restoration of rooms resting on the terrace [18].
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The decoration of the roman villa is documented by some sporadic marble findings, now kept at
the National Archaeological Museum of Naples.

3. Materials and Methods

Sampling (20 mortars) was performed on several walls of the archaeological complex (Figure 3),
i.e., thanks and with the assistance of archaeologists of the former Soprintendenza per i Beni Archeologici
della Campania in order to take samples that were representative of the construction. The sampling
was carried out by hammer and criteria such as the type of mortar, the good state of aggregation,
the available quantities and little invasivity.

The collected samples consist of eighteen bedding mortars and two floor mortars (Figure 3a),
and were grouped following the building phases (group A—1st building phase, group B—2nd building
phase and group C—3rd building phase; Figure 3a; Table 1).

Table 1. List of the mortar samples with relative typology, group, building phase, and probable dating
defined by literature information.

Samples Typology Group Building Phase Probable Dating

VP1 bedding mortar A 1st I century B.C.-I century A.D.
VP2 bedding mortar A 1st I century B.C.-I century A.D.
VP3 bedding mortar A 1st I century B.C.-I century A.D.
VP4 bedding mortar A 1st I century B.C.-I century A.D.
VP5 bedding mortar A 1st I century B.C.-I century A.D.
VP6 bedding mortar A 1st I century B.C.-I century A.D.

VP7 bedding mortar B 2nd II century A.D.
VP8 bedding mortar B 2nd II century A.D.
VP9 bedding mortar B 2nd II century A.D.
VP10 bedding mortar B 2nd II century A.D.
VP11 bedding mortar B 2nd II century A.D.
VP12 bedding mortar B 2nd II century A.D.

VP13 bedding mortar C 3rd III century A.D.
VP14 bedding mortar C 3rd III century A.D.
VP15 bedding mortar C 3rd III century A.D.
VP16 bedding mortar C 3rd III century A.D.
VP17 bedding mortar C 3rd III century A.D.
VP18 bedding mortar C 3rd III century A.D.
VP19 floor mortar C 3rd III century A.D.
VP20 floor mortar C 3rd III century A.D.

The collected samples were characterized according to [24] European standard.
Macroscopic characteristics, such as color, presence of aggregates, and others, were observed in

order to identify materials and to plan the analytical approach, performed at DiSTAR (Dipartimento
di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II) laboratories and at
the Group Technical Center (CTG) of the company Italcementi Heidelberg Group in Bergamo (Italy).
Color was evaluated by comparison with the Munsell Soil Color Chart [25].

Polarized optical microscopy (POM) on thin sections was performed using a Leica DFC280
microscope (Leica, Wetzlar, Germany) to observe the textural features and the petrographic composition
of samples. The percentage of binder and aggregate was measured by modal analysis, counting at
least 1500 points for each section, using Leica Q Win image analysis software (version 3.2.1, Leica,
Wetzlar, Germany). This analysis can be considered representative since the maximum uncertainty of
percentage for a total amount of 1500 points is about 2.8% [26].

Mineralogical determinations were performed on different fractions: binder, aggregates and
fictile fragments, according to [24]. Mortars were gently disaggregated and separated in different
fractions using a binocular microscope (WILD M38, Heerbrugg, Switzerland). Each fraction was
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powdered in an agate mortar to obtain a homogeneous sample to acquire (particle size< 200 µm)
avoiding orientation related problems, primary extinction or crystallite size errors [27,28]. Qualitative
mineralogical analyses were performed by X-ray powder diffraction (XRPD) using a PANalytical X’Pert
PRO 3040/60 PW diffractometer (Malvern PANalytical, Almelo, The Netherlands) CuKα radiation,
40 kV, 40 mA, scanning interval 4–70◦ 2θ, equivalent step size 0.017◦ 2θ, with a step counting time
of 120 s). To identify the mineral phases, the PANalytical Highscore Plus 3.0e software (Malvern
PANalytical, Almelo, The Netherlands) with PDF-2/ICSD databases was used.

Micro-textural observations and quantitative micro-chemical analyses were carried out by Scanning
Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS; JEOL JSM-5310 (Jeol Ltd.,
Tokyo, Japan) coupled with a Oxford Instruments Microanalysis Unit (Oxford Instruments plc,
Abingdon, Oxfordshire, UK) equipped with an INCA X-act detector (ETAS group, Stuttgart, Germany).
Measurements were performed with an INCA X-stream pulse processor (ETAS group, Stuttgart,
Germany) using a 15 kV primary beam voltage, 50–100 µA filament current, variable spot size,
from 30,000 to 200,000×magnification, 20 mm WD and 50 s net acquisition real time. The INCA Energy
software (ETAS group, Stuttgart, Germany) was employed, using the XPP matrix correction scheme
and the Pulse Pile up correction. The quant optimization was carried out using cobalt (FWHM—full
width at half maximum peak height- of the strobed zero = 60–65 eV). The following standards from
the Smithsonian Institute and MAC (Micro-Analysis Consultants Ltd. St Ives, UK) were used for
calibration: diopside (Ca), fayalite (Fe), San Carlos olivine (Mg), anorthoclase (Na, Al, Si), rutile (Ti),
serandite (Mn), microcline (K), apatite (P), fluorite (F), pyrite (S), sodium chloride (Cl), benitoite (Ba)
and pure vanadium (V), [29]. The Kα, Lα, Lβ, or Mα lines were used for calibration, depending on the
specific element.

High-resolution imaging of surface morphology (backscattered images) was generated by
secondary electrons using the same instrument.

Micro-chemical analyses (EDS) were performed to determine chemical composition of binder and
lime lumps and to study volcanic fragments identified among aggregates (point data). The Hydraulicity
Index (HI) of binder and lime lumps was calculated according to Boynton [30] using (SiO2 + Al2O3 +

Fe2O3)/(CaO + MgO) ratio.
The thermal behavior of mortars was carried out with a Mettler Toledo TGA/SDTA 851e instrument

(Mettler Toledo, Columbus, OH, USA). The samples were heated from 40 ◦C to 1000 ◦C, with a heating
rate of 10 ◦C/min in nitrogen atmosphere (flow rate 60 mL/min), with the main goal of determining the
total (binder plus aggregates) hydraulic features of these materials. TG and DSC curves were acquired
and then processed with Mettler Toledo STARe SW 7.01 software (Mettler Toledo, Columbus, OH,
USA). Thermal analyses were performed on powered bulk samples and on their finer sieved fraction
(<63 µm); the latter can be considered as a binder-enriched specimen [31].

The pore system of samples was investigated by means of Mercury Intrusion Porosimetry (MIP).
Due to the scarce amount and small dimensions of samples, four samples, approximately 1 cm3 in
size, were selected on the bases of macroscopic and microscopic features. Analyses were performed
on three fragments for each sample, and average results are reported. These fragments were dried in
an oven for 24 h at 105 ◦C and then analyzed by Thermo Scientific equipment PASCAL 140 (Thermo
Fisher Scientific, Waltham, MA, USA) with a maximum injection pressure of 0.4 MPa and PASCAL 240
with a maximum injection pressure of 200 MPa. These instruments, used consecutively, allowed us to
assess (1) total volume of pores with a radius between 3.75 nm and 800 µm (mm3/g), (2) open porosity
(vol.%), (3) bulk density (g/cm3), (4) apparent density (g/cm3), and (5) specific surface (m2/g); graphical
and numerical representation of the distribution of pore size was also provided.

4. Results

4.1. Texture and Optical Microscopy of the Mortar

Mortar samples appear to be macroscopically intact and quite hard (Figure 4).
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Bedding mortars made evident yellow to dark greyish brown colors (Munsell 2.5Y 7/3 to 10YR
4/2), with coarse aggregates ranging from 2 mm up to 3 cm (Figure 4a). The aggregates were made of
volcanic and carbonate fragments and, only in samples of the group C, fictile fragments were recognized
(Figure 4b). Floor mortars showed a variability in color from very pale brown to reddish (Munsell
7.5YR-7/3 to 5YR-5/6). The aggregates mainly comprised of fictile fragments and subordinately by
volcanic and carbonate fragments, variable in size from 1 mm to 2.5 cm. All mortars contained lime
lumps (2–4 mm) that generally consisted of unreacted lime [31].
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Thin section observations showed that the mortars of group A were characterized by
cryptocrystalline and micritic binder, respectively (35.4 vol.%; 12.6 vol.%; Figure 5a). Small and
fractured lime lumps were also observed (3.0 vol.%; Figure 5b). The aggregates were constituted mainly
by pumice (13.3 vol.%), volcanic and carbonate fragments (10.6 vol.%; 2.1 vol.%), scoriae (3.7 vol.%),
and crystal fragments of plagioclase, clinopyroxene and sanidine (6.5 vol.%). The shapes of aggregates
were sub-angular, and their size distribution was moderately sorted.

Volcanic fragments were characterized by glassy shards partially devitrified (Figure 5c).
Group B includes mortars mainly characterized by cryptocrystalline matrix (43.8 vol.%) and a low

percentage of micritic matrix (4.9 vol.%; Figure 5d).
Aggregate fraction was characterized by altered pumice (with garnet and leucite crystal

fragments; 12.1 vol.%; Figure 5e), scoriae (1.2 vol.%), leucite-bearing scoriae (13.3 vol.%), volcanic
fragmemts (0.9 vol.%), carbonate fragments (5.3 vol.%; Figure 5f), and crystal fragments of plagioclase,
clinopyroxene (Figure 5d), sanidine, garnet and leucite (8.6 vol.%). The shape of aggregates ranged
from sub-angular to sub-rounded and their size distribution was moderately sorted.

Binder phase of samples from group C was composed of cryptocrystalline matrix (28.3 vol.%) and
micritic matrix (10.6 vol.%; Figure 5g) and some lime lumps (1.8 vol.%).

Aggregate fraction appeared moderately sorted and sub-rounded, composed of fictile fragments
(15.5 vol.%; Figure 5g), pumice (15.0 vol.%; Figure 5h), leucite-bearing scoriae (4.6 vol.%; Figure 5h),
volcanic and carbonate fragments (0.5 vol.%; 6.9 vol.%, Figure 5i), amphibole, garnet and leucite as
crystal fragments (7.1 vol.%).

The floor mortars VP19 and VP20 samples, belonging to group C, were identified as cocciopesto,
also called opus signinum, a typical building technique used in the ancient Rome for making floor and
waterproofing cisterns. The binder phase was composed mainly of micritic matrix (25.4 vol.%) and
lime lumps were also present (2.2 vol.%; Figure 5l).

Fictile fragments are different from each other, even if included in a single mortar sample.
In particular, fictile matrices can be either characterized by high (Figure 5g) or low (Figure 5l) optical
activity. In some fictile fragments, inclusions are mainly represented by tiny crystals of quartz, biotite,
clinopyroxene (Figure 5m), whereas, in other fragments, they are characterized by a prevailing volcanic
component (pumice and scoriae; Figure 5n).
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Modal analysis (Table 2) highlighted the differences in the aggregate/binder ratio, particularly
evident in group C. Mortars of this group showed a binder/aggregate ratio lower than 1, indicating a
higher percentage of aggregates than the binder phase.

Table 2. Petrographic features of the samples and their microscopic modal analysis—mineral
abbreviations from Whitney and Evans [32].

Mortars (Group A) (Group B) (Group C) (Group C-Floor Mortar)

Constituents (vol.%)

Feldspars (Sa, Pl) 3.4 2.6 2.3 3.1
Mafic Minerals (Cpx, Amp, Bt) 3.1 6.0 4.8 5.9

Garnets - 0.3 1.6 1.2
Volcanic fragments 10.6 0.9 0.5 0.8

Scoriae 3.7 1.2 1.3 0.7
Leucite-bearing scoriae - 13.3 4.6 3.7

Pumice 13.3 12.1 15.0 17.3
Fictile fragments - - 15.5 16.2

Carbonate fragments 2.1 5.3 6.9 4.5
Lime lumps 3.0 1.8 1.8 2.2

Micritic matrix 12.6 4.9 10.6 25.4
Cryptocrystalline matrix 35.4 43.8 28.3 11.3

Macroporosity 12.1 7.3 6.4 7.0
Others 0.6 0.6 0.6 0.7

Total points% 100.0 100.0 100.0 100.0
Total Binder% 51.0 50.6 40.6 38.9

Total Aggregate% 36.3 41.6 52.4 53.4
Binder/Aggregate ratio 1.4 1.2 0.8 0.7

Abbreviations: Sa: sanidine; Pl: plagioclase; Cpx: clinopyroxene; Amp: amphibole; Bt: biotite.
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Figure 5. Microphotographs of mortar components (in CPL: Cross Polarized Light; PPL: Plane
Polarized Light). Abbreviations: MM: micritic matrix; CM: Cryptocrystalline matrix; LL: lime lump;
Cpx; clinopyroxene; Bt: biotite; Qz: quartz. Group A: (a) micritic matrix and cryptocrystalline matrix
(CPL) in VP3 sample; (b) lime lump (CPL) in VP2 sample; (c) glassy shards in volcanic aggregates
(PPL) in VP3 sample; group B: (d) micritic matrix, cryptocrystalline matrix and clinopyroxene (CPL)
in VP8 sample; (e) pumice with garnet (PPL) in VP12 sample; (f) marble fragment (CPL) in VP7
sample; group C: (g) cryptocrystalline matrix, micritic matrix and fictile fragment (CPL) in VP15
sample; (h) leucite-bearing scoria and pumice (PPL) in VP17 sample; (i) carbonate rich sedimentary
rock fragment (CPL) in VP18 sample; group C-floor mortars; (l) micritic matrix, lime lump and fictile
fragment (CPL) in VP19 sample; (m,n) different types of fictile fragments (CPL) in VP20 sample.
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4.2. Mineralogical Analyses

The collected samples were separated into binder, aggregates, and fictile fragments, according
to [24] recommendation (mortar characterization) and then analyszd by XRPD. Results are shown in
Table 3 and in Figure 6.

Table 3. Qualitative mineralogical composition of samples, XRPD analysis—mineral abbreviations
from Whitney and Evans [32].

Samples Group Main Binder
Phases Main Aggregate Phases Main FictileFragments

Phases Other Phases

VP1 group A Cal Anl, Sa, Pl, Cpx, Mca, Cal Hl
VP2 group A Cal, Gp Cbz, Anl, Sa, Pl, Cpx, Mca, Cal Hl
VP3 group A Cal, Gp Anl, Sa, Pl, Cpx, Mca, Cal Hl
VP4 group A Cal, Gp Cbz, Sa, Pl, Cpx, Mca, Cal Hl
VP5 group A Cal, Gp Anl, Sa, Pl, Cpx, Mca, Cal Hl
VP6 group A Cal, Gp Cbz, Anl, Sa, Pl, Cpx, Mca, Cal Hl

VP7 group B Cal Anl, Lct, Sa, Pl, Cpx, Mca, Cal Hl
VP8 group B Cal Anl, Lct, Sa, Pl, Cpx, Mca, Cal Hl
VP9 group B Cal, Gp Anl, Sa, Pl, Cpx, Mca, Cal Hl

VP10 group B Cal Anl, Lct, Sa, Pl, Cpx, Mca, Cal Hl
VP11 group B Cal, Gp Anl, Lct, Sa, Pl, Cpx, Mca, Cal Hl
VP12 group B Cal Anl, Sa, Pl, Cpx, Mca, Cal Hl

VP13 group C Cal Anl, Lct, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx, Pl Hl
VP14 group C Cal,Gp Anl, Lct, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx, Pl Hl
VP15 group C Cal Anl, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Pl Hl
VP16 group C Cal, Gp Anl, Lct, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx, Pl Hl
VP17 group C Cal Anl, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx Hl
VP18 group C Cal, Gp Anl, Lct, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx, Pl Hl

VP19 Group C-Floor mortar Cal Anl, Sa, Pl, Cpx, Mca, Cal Qz, Cal, Hem, Sa, Cpx, Pl Hl
VP20 Group C-Floor mortar Cal, Gp Anl, Sa, Pl, Cpx, Mca, Cal Qz,Cal, Hem, Sa, Cpx, Pl Hl

Abbreviations: Cal: calcite; Gp: gypsum; Anl: analcime; Sa: sanidine; Pl: plagioclase; Cpx: clinopyroxene; Mca:
mica; Lct: leucite; Qz: quartz; Hem: hematite; Hl: halite.Minerals 2019, 9, x FOR PEER REVIEW 11 of 23 
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Figure 6. Qualitative mineralogical analysis of mortars. XRPD patterns of selected samples of mortars.
VP3b: VP3 binder fraction (Group A); VP6a: VP6 aggregates fraction (Group A); VP10: VP10 aggregates
fraction (Group B); VP19f: VP19 fictile fraction (Group C); VP3a: VP3 aggregates fraction (Group A).
Mineral abbreviations: Cal: calcite; Gp: gypsum; Anl: analcime; Sa: sanidine; Pl: plagioclase; Cpx:
clinopyroxene; Mca: mica; Lct: leucite; Qz: quartz; Hem: hematite; Hl: halite.
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The XRPD results showed that, in binder, calcite is the main phase with subordinate amounts of
gypsum. Regarding aggregates, sanidine, plagioclase, analcime, mica, clinopyroxene and calcite were
recognized; chabazite is also present in some samples of group A and leucite in samples of groups B
and C (Table 3; Figure 6).

Fictile fragments, only present in mortars of group C, showed the occurrence of calcite, quartz,
mica, sanidine, clinopyroxene, plagioclase and hematite. All analyzed samples showed the presence of
halite (Table 3; Figure 6).

XRPD analyses also allowed for revealing the presence of amorphous fraction, recognized by
the rising of pattern background between 18◦ and 40◦ of a 2θ angle. This fraction is probably
related to (1) volcanic glass component (pumice and scoriae) and (2) C–A–S–H phases (calcium–
aluminium–silicate–hydrate).

4.3. Micro-Morphology and Chemical Analysis

SEM-EDS analyses on binder confirmed gypsum presence in some samples and demonstrated
the presence of hydraulic phases such as C–A–S–H gel, with their typical spongy morphology
(Figure 7a,b) [33–35].Minerals 2019, 9, x FOR PEER REVIEW 12 of 23 
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In order to obtain further information about the binder composition, SEM-EDS microanalyses
were carried out on polished thin sections both on binder and on lime lumps (Tables 4 and 5). Moreover,
HI was calculated, according to Boynton’s formula [30], to achieve information on hydraulicity grade
reached by mortars (Tables 4 and 5).

Lime lumps are composed mainly of CaO (91.15–95.10 wt.%), with very high values of CaO +

MgO (92.41–97.06 wt.%; Table 4). Chemical composition of binder (Table 5) showed higher values of
SiO2 + Al2O3 + Fe2O3 (9.06–19.54 wt.%) than that of lime lumps (1.90–4.97 wt.%), as well as lower
contents of CaO + MgO (78.50–89.27 wt.%).

HI of lime lumps is always lower than 0.10%, while HI of binder ranges between 0.10% and 0.25%
(Figure 7c; Tables 4 and 5). VP19 and VP20 (floor mortars) samples showed, for binder, the highest HI
of 0.22% and 0.25%, thus confirming their differences from all other samples.

As far as volcanic aggregates are concerned, SEM-EDS analyses highlighted for group A samples
the presence of glassy shards, partially devitrified and partially coated by micrometric sanidine crystals
(Figure 8a). Moreover, chemical composition of glassy shards and pumice (Supplementary Materials
1–S1) allowed us to classify them as trachyte according to the TAS diagram (Total Alkali vs. Silica) [36]
(Figure 8c).

The analyses of volcanic aggregates of the second and third building phase (both dated after A.D.
79 Somma-Vesuvius eruption) showed volcanic scoriae containing abundant leucite and garnet crystal
fragments (Figure 8b), both in pumice and binder. In this case, the chemical composition of pumice
(Supplementary Materials 2–S2) reported in the TAS diagram (Figure 8c), allowed us to classify them
as phonolite (Figure 8c).

Additional information was obtained by chemical composition of garnets that were classified as a
solid solution between andradite (48.98–58.38 mol.%) and grossular (25.91–30.46 mol.%), (calculated
following Locock, [37]; Supplementary Materials 3–S3).
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Table 4. Major element concentrations of lime lumps (L) in Villa del Pezzolo mortars (in wt.%; recalculated to 100%; bdl: below detection limits). SiO2 + Al2O3 + Fe2O3,
CaO + MgO, HI (Hydraulic Index) are also shown.

wt.% VP1 L VP2 L VP3 L VP4 L VP5 L VP6 L VP7 L VP8 L VP9 L VP10 L VP11 L VP12 L VP13 L VP14 L VP15 L VP16 L VP17 L VP18 L VP19 L VP20 L

SiO2 1.59 1.89 2.42 2.71 2.42 2.89 1.42 3.11 1.16 1.58 3.25 3.28 2.40 3.21 3.04 1.81 1.57 2.68 2.32 3.02
TiO2 0.24 bdl bdl bdl bdl bdl 0.35 bdl 0.80 0.35 0.30 0.15 0.35 bdl 0.02 bdl 0.07 bdl bdl 0.11

Al2O3 0.22 0.95 0.95 1.63 0.95 0.95 0.26 0.62 0.88 0.20 0.73 0.60 0.69 0.55 0.58 0.61 0.92 1.65 1.52 0.63
Fe2O3 0.80 0.65 0.07 0.52 0.07 0.65 0.16 0.18 0.52 0.37 0.31 0.29 0.26 0.20 1.35 0.07 0.17 0.23 bdl bdl
MnO 0.22 bdl bdl 0.12 bdl bdl bdl 0.23 0.16 0.31 0.24 0.16 0.21 0.23 bdl bdl bdl 0.06 bdl bdl
MgO 0.68 0.26 2.15 1.28 2.15 0.26 0.87 2.98 0.70 3.30 0.70 1.20 0.84 2.24 2.14 2.15 2.05 1.26 1.87 2.35
CaO 93.83 94.65 92.16 92.60 92.16 93.65 95.32 92.07 95.10 93.34 94.01 93.93 94.79 92.87 91.85 93.81 92.46 91.15 93.50 92.70

Na2O 0.52 0.59 0.56 0.52 0.56 0.59 0.14 0.33 0.23 bdl bdl bdl bdl 0.13 0.41 0.56 0.52 0.29 0.16 0.31
K2O 0.54 0.12 bdl bdl bdl 0.12 bdl 0.11 bdl bdl bdl bdl bdl 0.03 0.02 bdl bdl 0.12 bdl bdl
P2O5 bdl bdl bdl bdl bdl bdl bdl 0.18 0.25 0.27 0.24 0.17 0.10 0.18 bdl bdl 0.06 bdl bdl 0.23
V2O3 bdl 0.45 bdl bdl bdl 0.45 bdl bdl bdl 0.06 0.02 0.05 0.03 0.07 0.08 bdl bdl 0.06 bdl 0.39
BaO bdl 0.15 0.26 bdl 0.26 0.15 bdl 0.20 bdl bdl bdl bdl bdl 0.07 0.15 0.26 0.16 0.25 0.49 bdl
Cl− 0.18 0.12 0.52 0.18 0.52 0.12 0.81 bdl bdl 0.23 0.20 0.17 0.26 0.14 0.22 0.52 0.32 1.12 bdl bdl
SO3 1.18 0.18 0.91 0.43 0.91 0.18 0.67 bdl 0.22 bdl bdl bdl 0.07 0.09 0.16 0.21 1.70 1.14 0.13 0.27
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SiO2 + Al2O3 + Fe2O3 2.61 3.49 3.45 4.86 3.45 4.49 2.61 1.90 2.55 2.15 4.28 4.17 3.34 3.95 4.97 2.50 2.67 4.56 3.85 3.65
CaO + MgO 94.51 94.91 94.31 93.88 94.31 93.91 94.51 97.06 95.79 96.64 94.71 95.13 95.64 95.12 93.99 95.96 94.51 92.41 95.38 95.05

HI 0.03 0.04 0.04 0.05 0.04 0.05 0.03 0.02 0.03 0.02 0.05 0.04 0.03 0.04 0.05 0.03 0.03 0.05 0.04 0.04

Table 5. Major element concentrations of binder (B) in Villa del Pezzolo mortars (in wt.%; recalculated to 100%; bdl: below detection limits). SiO2 + Al2O3 + Fe2O3, CaO
+ MgO, HI (Hydraulic Index) are also shown.

wt.% VP1 B VP2 B VP3 B VP4 B VP5 B VP6 B VP7 B VP8 B VP9 B VP10 B VP11 B VP12 B VP13 B VP14 B VP15 B VP16 B VP17 B VP18 B VP19 B VP20 B

SiO2 9.56 9.52 7.60 9.60 9.73 10.32 5.84 5.72 3.36 6.79 8.81 10.00 9.74 10.17 9.98 8.59 9.84 7.85 12.70 13.81
TiO2 0.41 bdl bdl bdl 0.25 0.07 0.40 bdl bdl bdl 0.40 0.20 0.06 bdl 0.14 bdl bdl 0.27 0.44 0.42

Al2O3 5.65 3.13 3.95 4.61 2.48 2.14 3.16 3.20 5.58 3.77 1.69 1.96 4.16 2.51 3.19 6.01 3.17 4.42 3.82 5.73
Fe2O3 bdl 0.33 0.70 0.37 bdl 0.53 0.54 0.23 0.12 0.19 bdl 0.12 0.38 0.20 0.23 0.31 0.58 0.28 1.27 bdl
MnO bdl 0.11 bdl bdl bdl 0.08 bdl bdl bdl bdl 0.48 0.03 0.12 0.14 0.08 bdl 0.09 bdl bdl bdl
MgO 7.01 1.51 3.08 2.12 3.18 2.02 1.17 6.57 0.21 1.42 1.74 1.18 1.14 1.12 1.02 11.42 5.22 0.06 7.78 12.86
CaO 75.95 79.38 80.25 79.37 80.95 80.44 86.49 82.70 88.86 84.83 85.58 83.07 83.08 83.23 82.44 71.97 78.71 85.52 71.74 65.64

Na2O 0.23 0.88 0.56 0.36 0.83 0.28 0.41 0.24 0.23 0.89 0.37 0.53 0.88 0.08 0.28 0.17 0.87 0.03 0.53 0.19
K2O bdl 1.25 0.49 0.16 0.74 0.95 0.45 bdl bdl 0.43 0.24 bdl 0.08 0.06 0.07 bdl 0.13 bdl 0.30 bdl
P2O5 bdl 0.14 0.00 0.11 0.08 0.11 bdl bdl bdl bdl 0.30 0.08 0.14 0.09 0.11 bdl 0.09 bdl bdl bdl
V2O3 bdl bdl 0.44 bdl 0.13 0.24 bdl 0.23 0.29 bdl bdl 0.15 bdl bdl 0.14 0.07 bdl bdl bdl bdl
BaO bdl bdl 0.53 0.04 0.05 0.10 bdl bdl bdl 1.01 0.14 0.05 bdl 0.03 0.10 0.33 bdl bdl bdl bdl
Cl− 0.37 0.22 0.46 0.36 0.47 0.19 1.41 0.78 0.05 0.10 0.26 0.57 0.16 0.26 0.19 0.23 0.52 0.45 0.83 0.31
SO3 0.82 3.52 1.96 2.90 1.11 2.53 0.12 0.34 0.30 0.56 bdl 2.05 0.05 2.10 2.03 0.89 0.78 1.12 0.60 1.04
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SiO2 + Al2O3 + Fe2O3 15.21 12.98 12.24 14.58 12.21 12.99 9.54 9.15 9.06 10.76 10.49 12.08 14.28 12.88 13.40 14.92 13.59 12.55 17.79 19.54
CaO + MgO 82.96 80.89 83.33 81.49 84.13 82.46 87.66 89.27 89.08 86.25 87.32 84.25 84.22 84.35 83.46 83.39 83.93 85.58 79.52 78.50

HI 0.18 0.16 0.15 0.18 0.15 0.16 0.11 0.10 0.10 0.12 0.12 0.14 0.17 0.15 0.16 0.18 0.16 0.15 0.22 0.25
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Figure 8. (a) Backscattered SEM image of glassy shards partially coated by a thin layer of micrometric
sanidine in VP2 sample; (b) backscattered SEM image of leucite bearing pumice with garnet in VP14
sample; (c) classification of glassy shards and pumice fragments in Villa del Pezzolo mortars compared
with Campi Flegrei and 79 A.D. Somma-Vesuvius volcanic glasses (CI; NYT; 79 A.D.; [38], using a TAS
diagram [36]). Abbreviations: CI: Campanian Ignimbrite; NYT: Neapolitan Yellow Tuff; 79 A.D: 79 A.D.
Somma-Vesuvius eruption; VP: Villa del Pezzolo pumice.

4.4. Thermogravimetric Analysis

Thermal analyses evidenced, for all samples, presence of: (1) carbon-dioxide content, derived
from the dissociation of carbonatic phases and (2) structural bound water (SBW), which represents the
amount of OH groups occurring in the silicate framework and inside the thinnest ultramicropores [29].

The highest SBW content was reported for sample VP17 (10.6%), while the lowest SBW was
reported in samples VP19 and VP20 (3.94–3.45% respectively), also showing the lowest total LOI
(Loss On Ignition; 23.76–24.09%); the latter samples were, in fact, floor mortars different from other
bedding mortars.

CO2 values ranged from 4.33% (sample VP13) to 8.02% (sample VP17), except once again for
samples V19 and VP20, which highlighted very high CO2 values (15.82–16.99%, respectively).

According to the Moropoulou et al. [31] diagram (Figure 9) and the CO2/SBW ratio (lower than
3%; Table 6), all mortars could be defined as natural pozzolanic mortar (Figure 9).
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Pezzolo mortars (VP samples; dark grey diamonds) and those of Moropoulou et al. [31]; (NPM: natural
pozzolanic mortars; APM: artificial pozzolanic mortars; HLM: hydraulic lime mortars; LM: lime
mortars).

Table 6. Thermal analysis features of investigated samples. Abbreviations: SBW: Structural Boundary
Water; LOI: Loss on Ignition.

Sample SBW% CO2% CO2/SBW LOI

VP1
T range (◦C)

8.72
200–675

7.69
675–780 0.89 25.23

25–1000
VP2

T range (◦C)
8.07

200–670
5.93

670–760 0.73 26.39
25–1000

VP3
T range (◦C)

10.38
200–660

5.40
660–740 0.52 28.39

25–1000
VP4

T range (◦C)
9.14

230–640
6.69

660–750 0.73 29.06
25–1000

VP5
T range (◦C)

10.32
235–610

7.89
650–750 0.77 26.35

25–1000
VP6

T range (◦C)
8.12

200–570
6.17

640–760 0.76 27.45
25–1000

VP7
T range (◦C)

6.07
180–560

8.52
560–780 1.40 26.31

25–1000
VP8

T range (◦C)
7.49

200–640
5.13

640–745 0.69 27.25
25–1000

VP9
T range (◦C)

7.33
180–620

5.15
620–760 0.70 28.10

25–1000
VP10

T range (◦C)
8.35

200–570
6.77

570–750 0.81 29.25
25–1000

VP11
T range (◦C)

7.64
200–650

5.69
650–780 0.74 32.47

25–1000
VP12

T range (◦C)
10.05

210–630
7.63

630–780 0.76 35.22
25–1000

VP13
T range (◦C)

9.77
180–630

4.33
630–740 0.55 30.21

25–1000
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Table 6. Cont.

Sample SBW% CO2% CO2/SBW LOI

VP14
T range (◦C)

8.98
220–600

6.02
600–740 0.67 26.76

25–1000
VP15

T range (◦C)
9.15

220–640
6.42

640–760 0.70 29.90
25–1000

VP16
T range (◦C)

9.35
240–630

6.31
630–750 0.67 25.50

25–1000
VP17

T range (◦C)
10.67

240–650
8.02

650–740 0.76 29.36
25–1000

VP18
T range (◦C)

8.80
230–620

7.35
620–750 0.84 25.69

25–1000
VP19

T range (◦C)
3.94

240–650
16.99

650–740 4.31 24.09
25–1000

VP20
T range (◦C)

3.45
160–540

15.82
540–780 4.59 23.78

25–1000

4.5. Mercury Intrusion Porosimetry

The porosity was determined on fragments of selected mortars (VP1, VP8, VP11, VP20) due to
the scarcity of available material. Table 7 summarizes the parameters, such as cumulative volume,
bulk density, apparent density, open porosity and specific surface, provided by MIP. For each sample,
the representative pore size distribution is also shown (Figure 10).

Table 7. Porosimetric features of Villa del Pezzolo mortars.

Sample VP1 VP8 VP15 VP20

Cumulative volume (mm3/g) 262.11 284.97 307.29 282.37
Bulk density (g/cm3) 1.64 1.52 1.46 1.50

Apparent Density (g/cm3) 2.74 2.66 2.65 2.62
Open porosity (vol.%) 40.42 42.96 44.65 42.46
Specific surface (m2/g) 24.25 31.02 15.68 20.06

As regards the relative volume curves, pore radii mainly range between 5 and 100 nm, except
for VP20, where a displacement of the pore access radius towards larger sizes (1000–10,000 nm) was
recognized (Figure 10).

The open porosity is very similar for all samples, ranging from 42.46 to 44.65 vol.% (Table 7) with
unimodal and broadened shape of the cumulative pore size distribution. Once again, the curve for
sample VP20 is more irregular (Figure 10).
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5. Discussion

This research represents a first archaeometric study on mortars from Villa del Pezzolo and provides
some useful information about mix-design, provenance of raw materials and reconstruction of
building phases.

Analytical results allowed for identification of two different mix designs, for bedding and floor
mortars, respectively. Bedding mortars were characterized by a mixture of lime, fine volcanic materials,
different type of aggregates and water, while floor mortars represent the cocciopesto, due to the addition
of fictile materials both as binder and aggregates. Cocciopesto, also known as opus signinum, represents
the typical mix design used during the Roman age for waterproof mortars in water tanks, thermal
pools, and in the caverns of aqueducts and for flooring [8].

As far as provenance of raw materials is concerned, the minero-petrographic and chemical analyses,
along with the surrounding geological setting, confirmed a local origin and also the hypotheses of the
three building phases of Villa del Pezzolo [18,21].

Volcanic fragments used as aggregate in the first building phase can be related to Campanian
Ignimbrite formation, cropping out in the same geographical area (Figure 11). This hypothesis was
also confirmed by the presence of specific zeolitic phases (chabazite and analcime; Table 3) and of
glassy shards, partially devitrified and replaced by authigenic feldspar (Figure 8a), a typical feature of
the welded gray Campanian Ignimbrite lithofacies (CI-WGI; [39]).

Furthermore, chemical composition of glassy shards and pumice fragments follows the compositional
trend of CI (Figure 8c).

Regarding the volcanic aggregates used in the mix design of the second and third building phases
(after A.D. 79 Somma-Vesuvius eruption), some differences can be evidenced, mostly related to the
mineralogical composition and aggregates shape (from angular to sub-rounded). The presence of
leucite-bearing scoriae and crystal fragments of garnet, both in binder and pumice, allowed us to relate
these materials to eruptive products of Somma-Vesuvius. Chemical composition of garnets (solid
solution between andradite 52.99–57.29 mol.% and grossular 25.64–28.65 mol.%) is fully compatible with
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Somma-Vesuvius garnets (andradite 46–70 mol.% and grossularia 16–45 mol.%; [41] and unpublished
garnets analyzed by Melluso from intrusive Somma-Vesuvius rocks; S3). Moreover, the chemical
analysis of pumice, reported in the TAS diagram (Figure 8c) is likely that of Somma-Vesuvius products.Minerals 2019, 9, x FOR PEER REVIEW 19 of 23 
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Figure 11. (a) distribution of Campanian Ignimbrite (CI) and Neapolitan Yellow Tuff (NYT) pyroclastic
density current (PDC) deposits and fall deposits (modified after Scarpati, and Perrotta, [40]). Inset
(left) shows their source area (Campi Flegrei) and presumed vent locations (black star—NYT vent;
gray star—CI vent; red star—Villa del Pezzolo location); (b) CI-WGI cliff, Piano di Sorrento.

Furthermore, the presence of sub-rounded shaped aggregates allowed us to also hypothesize
the use of “Durece” formation, an alluvial delta lithofacies formed by the products of debris- and
mud-flows emplaced after strong rainfalls following the Somma-Vesuvius eruption [5].

The samples from the third building phase showed the presence of fictile fragments that are
absent in the other building phases. POM observations evidenced that the fictile fragments are very
different from each other in terms of matrix, textural and petrographic features. For these reasons,
their provenance was hard to define; however, these differences suggest a recycling of building
materials. These fictile fragments also have a technological role because they were used to provide
hydraulicity to mortars [8,42], as also confirmed by the HI evaluation.

There is no specific information about the provenance of lime and carbonatic aggregates can be
provided, but it is reasonable to suggest a local provenance due to the geographical position of the
villa, very close to the northern flank of the Lattari Mounts (Mesozoic limestones; Figure 2a).

Composition of the cementiceous binding matrix, in some samples, showed the ubiquitous
presence of lime lumps, gypsum and C–A–S–H gel, the latter derived from lime and pozzolanic
material reactions (volcanic and fictile materials, [43]); its formation testifies to the achievement of
mortar hydraulicity [23,44]

Lime lumps are likely connected to not-well-reacted lime, the origin of which has to be searched
in the properties of slaked lime (calcium hydroxide) and in the water/quicklime ratio [10,45]. Chemical
analysis of lime lumps (CaO more than 92%) testified to the good nature of limestone used for
lime production.

Gypsum can be ascribed to late sulphation of calcite or even reaction between sulfate and hydrated
lime [46,47]. Halite in all samples can be easily related to interaction with seawater due to site location.

A common feature of the investigated mortars is the hydraulicity features, confirmed by SEM-EDS
and thermal analyses. The evaluated HI index allowed us to consider all mortars as hydraulic exclusively
thanks to the addition of materials with pozzolanic activity (volcanic and fictile materials). The role
of pozzolanic materials was evident by the HI values evaluated on lime lumps (<0.10%) and binder
(0.10–0.25%) that can be classified as quicklime and weakly-moderately hydraulic materials [30,48].

Differences among HI index values (Tables 4 and 5; Figure 7c) further confirmed three building
phases, evidencing a low value of HI (0.11–0.14%) for mortars of group A, average values (0.15–018%)
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for mortars of group B, and high values (0.15–0.25%) for group C. The higher HI index of group C is
due to use of fictile fragments that improve the hydraulicity of mortars.

Hydraulicity of mortars was also further established by the results of thermal analyses,
which showed weight loss of Structural Bound Water (SBW, 200–600 ◦C), generally related to the
presence of hydrated compounds such as C–A–S–H, and the decomposition of calcite and other
carbonates, usually occurring between 600–850

◦

C with a consequent release of CO2 (Table 6; [29,49]).
According to the literature data [31,50], the binary diagram CO2/SBW vs. CO2 (Figure 9) classified all
analyzed mortars as natural pozzolanic.

The high concentration of secondary mineralogical phases, the C–A–S–H gel, was supported by
porosity tests, which showed a maximum in pore radius distribution between 5 and 100 nm and an
open porosity between 40–45 vol.% (Figure 10; Table 7). Small dimension of pore radius is due to
the formation of C–A–S–H gel that fills the pores enhancing bonding in pumice clasts and improving
resistance to weathering [9,34,51]. According to Sutter [52], the pore radius range is important for
material durability: the range between 5 and 100 nm is considered not detrimental for durability,
while the range 1000–10,000 nm, detected for sample VP20, can promote weathering [53,54].

The analyses of the mortars used in the construction of Villa del Pezzolo revealed important
evidence with regard to reconstruction of building phases according to the hypothesis performed by
archaeologists and geologists [5,19,21].

Generally, this analytical approach can provide important information about techniques used in
the preparation of ancient mortars, and thus they can be used as references for future comparative
studies, also involving other buildings in coeval constructions.

This research demonstrates that studying minor sites such as Villa del Pezzolo is very important and
useful as, similarly to Pompeii, they experienced the effects of the A.D. 79 Somma-Vesuvius eruption
and of debris and mud flows generated after this event. It is also very important to focus the attention
to this kind of archaeological sites in order to improve the conservation state and fruition by the public.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/10/575/s1.
S1 Major element concentrations of glassy shards and pumice fragments in Villa del Pezzolo mortars of group
A (in wt.%, recalculated to 100%; bdl: below detection limits). Na2O + K2O (in wt.%) also shown; S2: Major
element concentrations of pumice fragments in Villa del Pezzolo mortars of groups B and C (in wt.%, recalculated to
100%; bdl: below detection limits). Na2O + K2O (in wt.%) also shown; S3: Representative chemical composition
of garnets.
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