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Abstract: Bauxite residue is treated for the recovery of aluminum and sodium by sintering with the
addition of soda, metallurgical coke and other reagents such as CaO, MgO and BaO. A thorough
thermodynamic analysis using Factsage 7.0™ software was completed together with XRD mineralogy
of sinters with different fluxes and reagents additions. Through both thermodynamic interpretation
and mineralogical confirmations, it was observed that the type of desilication product in bauxite
residue influences the total aluminum recovery through the sintering process and formation of sodium
aluminum silicate exists in equilibrium with sodium aluminate, unless silica is consumed by additives
(such as CaO, MgO, BaO etc.) forming other more thermodynamically favorable species and liberating
alumina. Addition of barium oxide improves the aluminum and sodium recovery to 75% and 94%
respectively. Complex sinter product formation that are triggered due to high calcium content in
the Greek bauxite residue reduces aluminum recovery efficiency. Optimised and feasible recovery
of aluminum and sodium for Greek bauxite residue was proved to be 70% and 85% respectively,
when sintered with 50% excess stoichiometric soda. It was observed that stoichiometric carbon
addition in inert atmosphere only assisted recovery up to 75% of aluminum and 83% of sodium,
though there are benefits gained from pre-reducing iron from hematite for downstream recovery.
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1. Introduction

The aluminum sector has seen an increase of demand and production within the recent years
with current annual estimate in 2017 being 132,390 thousand metric tonnes of alumina [1]. The global
market shows no signs of reduction with China’s competitive focus in alumina production estimated
surpassing more than half of annual global production in 2017 [1]. Meanwhile, West Europe reports
about 5,890,000 metric tonnes of alumina in 2017 with Aluminum of Greece contributing up to
820,000 metric tons of alumina in their yearly production [1,2]. However, as 1 tonne of alumina often
generates about 1–1.5 tonnes of bauxite residue (BR) during its production in the Bayer process route,
the uncertainty of effectively managing bauxite residue stockpiles in areas of increasingly tightening
regulations has encouraged further research efforts into total valorization. Power, Klauber and Gräfe
consolidated a series of papers that reviewed extensively towards methods of disposal, management
and best practices as well as options in the interim that dealt with the reuse of bauxite residue [3,4].
They have also reported that from the period of 1964 to 2008, patents relating to bauxite residue
filed in civil and building constructions consisted of about a third from the total amount, followed
by around equal amounts of catalyst and adsorbent patents; ceramics, plastics, coating or pigments,
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and wastewater treatment. Steel and slag patents and the recovery of major metals were around
7% and 9% respectively. With recent years sustainable economy focus, minor elements in enriched
secondary resource such as bauxite residue had gained larger traction in developing rare earth recovery
processes [5–8].

It is reported that iron often found in the range of 5–60% Fe2O3 depending on the mineral types
influencing bauxite residue in Bayer processing, followed by 5–30% of Al2O3, 3–50% of SiO2 and
0.3–15% of TiO2. Calcium and sodium averages about 2–14% of CaO and 1–10% of Na2O in bauxite
residue. Calcium’s addition also ranges from pre-desilication step, scales suppression up until mineral
retardations and transformations [9,10]. Mishra and Gostu published a recent review into several
different treatment options of the residue, with pyrometallurgical paths either involving smelting
or sintering-type processing [11]. High temperature smelting of bauxite residue for complete iron
reduction and removal and the subsequent conditioning of slag are commonly found in current
researches [6,12–16]. The sintering or reductive-sintering of bauxite residue has also been explored
in literature [7,11,14,17–19], but inefficient separation of varied magnetic iron phases often hinders
iron recovery. However, sintering and reductive-sintering are able to recover aluminum and sodium
without suffering sodium gaseous losses when smelted at high temperatures.

As bauxites contain an amount of reactive silica that is soluble in caustic conditions of the
Bayer process, desilication becomes necessary to reduce silica impurities and to avoid scale build-up
within the evaporator and digester units. A desilication product that is often formed is a type of
sodium aluminosilicate with a formula which may be represented as Na8(AlSiO4)6X2·nH2O where X
could be 1

2 CO3
2−, Cl−, OH−, and 1

2 SO4
2− [20,21]. The sodium aluminosilicate product often exists as

sodalite and cancrinite, expressed in similar stoichiometry, and sometimes substituting Na+ with K+,
Ca2+, OH−, SO4

2−, Cl−, CO3
2− and H2O in its framework [20]. If calcium is inherently abundant in

bauxite or if lime is added to aid the silica removal, tricalcium aluminate (Ca3Al2(OH)12) may also be
formed within the Bayer liquor, which transforms into hydrogrossular or hydrogarnet type species
(Ca3Al2(SiO4)3−x(OH)4x) [10]. Smith further characterizes the reactions and phase transformations that
occur with lime’s presence particularly in high temperature Bayer digestion condition. He observed that
lime addition encourages sodium recovery, suppressing the sodalite form in favor of hydrogrossular
products [10]. Rivera et al. adds that when bauxite residue is subjected to CO2 neutralisation,
cancrinitic and grossular phases is stabilized with carbonate ions, thus reducing alkalinity [22].
Meanwhile, the simple aluminum-bearing minerals are often originated from the unreacted boehmitic
(γ-AlO(OH)), diasporic (α-AlO(OH)) and gibbsitic (γ-Al(OH)3) minerals in bauxite ores. Through the
addition of soda and metal oxides, coupled with also a possible reductive stage of iron by adding
carbon, the aluminum-bearing minerals is then transformed into leachable sodium aluminate phase,
while suppressing reactive silica formation. This will also allow ease of the introduction of leachates
back again into the Bayer circuit.

Previous Studies in Soda and Lime-Soda Sintering Processes

Soda sintering or lime-soda sintering process, began from Louis Le Chatelier’s work in 1855 in
obtaining aluminum hydroxide (Al(OH)3) from sintering bauxite with soda at around 1000 ◦C which
forms a leachable sodium aluminate species [23]. It was further improved by introducing a calcination
step to produce alumina (Al2O3) from Al(OH)3. Deville–Pechiney process also introduced lime and
coke into the sintering processes [24]. Therefore, soda often targets the aluminum-bearing mineral
species into sodium aluminate, as described in Reactions (1–3).

2AlOOH + Na2CO3→ 2NaAlO2 + CO2 + H2O, (1)

2Al(OH)3 + Na2CO3→ 2NaAlO2 + CO2 + 3H2O, (2)

Na6Al6Si6O24·2CaCO3·nH2O + Na2CO3 + Fe2O3 + 10CaO = 6NaAlO2 + 6Ca2SiO4+

2NaFeO2 + 3CO2+ nH2O.
(3)
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Literature leaning towards Bayer process efficiency often targets leaching conditions in Bayer
digestion and selectivity of aluminum precipitation species for activated alumina recovery, and from
the by-product valorisation, the sintering of bauxite residues for the recovery of aluminum and
sodium [25–28]. The scope of this work will be focused on the latter. Kaussen et al. explored a
wide range of methods in recovering aluminum from bauxite residue in the Lünen landfill [14,29].
This expounded from secondary Bayer leaching at higher temperature and pressures in concentrated
caustic solution [14], smelting to produce leachable calcium aluminate phases, sometimes coupled
with concentrated caustic leaching again [13,14], and soda/lime-soda sintering [14,19]. Here, along
with many other studies [30–33], it is noted that sodium ferrite species and sodium titanate species
are potentially transformed after sintering and leaching, into hematite and titanium oxide species
respectively. The converted salts of other present impurities in bauxite residue do not affect the sodium
recovery, with exception to sodium silicate which increases silica impurity into the leachate [29].
Bruckard et al. reports that a solid-solution series of sodium aluminate–carnegeite species formed
when bauxite residue is treated at high temperatures of 1400 ◦C with lime, and though it is a leachable
species, up to 55% Al and 90% Na recovery were achieved.

Previous attempts of the soda sintering process in Greek bauxite residue achieved the maximum
Al recovery of 76% [34], may be suggestive that the recovery of aluminum is inhibited greatly through
the bulk presence of hematite and aluminum-bearing mineral types existing in the system, which will
be followed up in another study. Tathavadkar et al. investigated soda sintering for three different
types of bauxite residues from Hungarian, Indian and UK origins [35]. By introducing soda to bauxite
residues, accounting for total silica, aluminum and titanate formations during the sintering process at
550–850 ◦C, they reported a varied recovery of aluminum ranging at a low 55–60% for MAL (Magyar
Alumínium Termelő és Kereskedelmi Zrt.), Hungarian refinery bauxite residue, followed by 83–95% in
ALCAN (Aluminum Company of Canada, Ltd., Toronto, ON, Canada), UK refinery bauxite residue and
77–84% in INDAL (Indian Aluminium Company, Pathalam, India), Indian refinery bauxite residue [35].

A major difference noted in Hungarian bauxite residue is the higher calcium content (5.7%)
compared to both ALCAN and INDAL bauxite residue (<1%), coinciding with the raised levels of
silica. Whittington [36] notes that Ajka’s refinery introduces lime addition to the causticization step,
where Ca(OH)2 interacts with desilication product (DSP) to form calcium aluminum hydrosilicate
or possibly hydrogarnet and calcium aluminum hydrates intermediate which then transforms
into calcite and recovered soda. AoG’s Greek bauxite residue behavior in the sintering process
is more comparable with MAL’s Hungarian bauxite residue due to similarities in the existing
calcium-bound aluminum bearing minerals i.e., hydrogarnet (Ca3AlFe(SiO4)(OH)8) and cancrinite
(Na6Ca2Al6Si6(CO3)2·O24·2H2O) [37]. Iron-to-aluminum ratio in INDAL bauxite residue (1.5) is lesser
compared to MAL and ALCAN bauxite residues (2.3–2.4), with sodalite phase as desilication product
in both INDAL and ALCAN bauxite residues.

Meher and coworkers investigated the effects of divalent alkaline earth metal oxides, such as lime
(CaO), barium oxide (BaO) and magnesium oxide (MgO), in soda sintering process using NALCO’s
bauxite residue from Damanjodi, India [31,32]. The introduction of these alkaline earth metals was
designed to capture the free and bound silica in bauxite residue, transforming them to its divalent
metal silicate (M2SiO4 or the less thermodynamically stable MSiO3 phase). NALCO’s bauxite residue
consisted of about 51–57% Fe2O3, 16–18% Al2O3 and 8–12% SiO2. In Meher et al.’s researches,
the addition of metal oxides was performed by weight basis, with 10, 15 and 20 g of either MgO, CaO
or BaO added to 100 g bauxite residue and fixed amount of Na2CO3 of 25 g. By adding minimal
amounts of metal oxide in a soda sinter system, optimized levels of alumina extraction was achieved
at 97.64%, 98.70% and 99.50% using CaO, MgO and BaO respectively [31,32]. Calcium levels in
NALCO’s bauxite residue were reported below 2.3% with about 34% aluminum trapped as muscovite
KAl2(Si3AlO10)(OH)2, sillimanite Al2SiO5, and kaolinite Al2Si2O5(OH)4, in bauxite residue, as reported
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by Mohapatra et al. [38]. The rest of aluminum was found in gibbsite, boehmite and alumo-goethite,
indicative of the 14% alumina losses within NALCO’s bauxite extraction process [38].

2MO/MO + SiO2→M2SiO4 /MSiO3 (where M represents metals such as Ba, Mg, Ca) (4)

Fe2O3 + 3C→ 2Fe + 3CO (5)

The addition of lime, and subsequently exploration of other metal oxides into the sintering
process through Meher and coworkers’ efforts [31,32,39,40], focuses on capturing the free silica
during sintering (Reaction (4)). Adding metallurgical coke into the system, such as Reaction (5),
can encourage the recovery of iron downstream by pre-reducing hematite and other iron species.
It may also suppress potential unwanted product formation such as complex garnet-type product
(e.g., 3(Ca,Fe,Mg)O(Al,Fe)2O3·3SiO2) that may entrap both iron and aluminum into its matrix.

Figures 1 and 2 reports the Gibbs free energy of formation of different silicate phases and titanate
phases at a range of temperature. Silica is more likely to be bonded together with barium or calcium
species and predicted to form the more stable species of Ba3SiO5 or Ca3SiO5, whereas titania is more
likely to form calcium-type bonds such as Ca3Ti2O7.
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Figure 1. Comparison of Gibbs free energy of phase formation of several silicate species throughout the
temperature range by Factsage 7.0™ database (Version 7.3, Thermfact/CRCT (Montreal, QC, Canada)
and GTT-Technologies (Aachen, Germany)), with silica notably favoring barium presence.
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Figure 2. Comparison of Gibbs free energy of phase formation of several titanate species throughout
the temperature range by Factsage 7.0™ database, with calcium titanate being most favourable.

2. Materials and Methods

2.1. Characterisation of Bauxite Residue

Bauxite residue (BR) from Aluminum of Greece’s (AoG) high temperature Bayer processing was
sampled, homogenised and ground to below 150 µm. Chemical analysis of the bulk elements in BR
is indicated in Table 1. This was performed using the XRF glass disk fusion method with lithium
tetraborate in AoG. 1 g of BR sample is fused as melt in platinum crucible with 1 g LiNO3 oxidizer,
and mixture of flux (8 g 83.33% LiT and 12.82% LO-KBr). X-ray diffraction (XRD) and mineralogical
analysis was performed using Brucker D6 Focus (XRD, Bruker, Billerica, MA, USA) equipment with
integrated EVA software (Version 10.0) for identification of minerals. SEM images were obtained using
Jeol6380LV Scanning Electron Microscope (SEM, JEOL, Tokyo, Japan) with INCA software for Energy
Dispersive X-Ray Spectroscopy (EDS, EVO MA15 (ZEISS, Oberkochen, Germany) coupled with AZtec
X-MAX 80 (Oxford Instruments, Abingdon, UK)) identification. Figure 3 shows the XRD identification
of mineralogical phases of AoG’s bauxite residue. AoG’s high temperature digestion process that
uses quick lime to suppress silica levels, indicated similar phase transformations by the identification
of hydrogrossular products in the bauxite residue as confirmed by literature. Diaspore, boehmite
and gibbsite have been identified as the simple aluminum-bearing minerals, whereas cancrinite and
hydrogrossular forms of desilication product are also detected. Chamosite mineral that exists originally
from the bauxite ore, reacts slowly in Bayer cycle and remains in bauxite residue [41]. The composition
of the Greek bauxite residue is representative of sampling of years 2010 to 2015 with an error margin of
1–10% for both chemical and mineral assays. Further variations of Greek bauxite residue is explained
by Vind et al. that further expresses the trace elements alongside bulk elements in his characterization
efforts [41].
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Table 1. Chemical analysis of AoG bauxite residue.

Oxides
Major Metals Others

LOI *
Fe2O3 Al2O3 SiO2 TiO2 Na2O CaO V2O5 SO3

wt % 43.51 19.26 6.50 5.49 2.81 9.59 0.17 0.47 9.40

* LOI: Loss on Ignition.

Minerals 2019, 9, x FOR PEER REVIEW  5 of 20 

 

2. Materials and Methods 

2.1. Characterisation of Bauxite Residue 

Bauxite residue (BR) from Aluminum of Greece’s (AoG) high temperature Bayer processing was 
sampled, homogenised and ground to below 150 μm. Chemical analysis of the bulk elements in BR 
is indicated in Table 1. This was performed using the XRF glass disk fusion method with lithium 
tetraborate in AoG. 1 g of BR sample is fused as melt in platinum crucible with 1 g LiNO3 oxidizer, 
and mixture of flux (8 g 83.33% LiT and 12.82% LO-KBr). X-ray diffraction (XRD) and mineralogical 
analysis was performed using Brucker D6 Focus (XRD, Bruker, Billerica, MA, USA) equipment with 
integrated EVA software (Version 10.0) for identification of minerals. SEM images were obtained 
using Jeol6380LV Scanning Electron Microscope (SEM, JEOL, Tokyo, Japan) with INCA software for 
Energy Dispersive X-Ray Spectroscopy (EDS, EVO MA15 (ZEISS, Oberkochen, Germany) coupled 
with AZtec X-MAX 80 (Oxford Instruments, Abingdon, UK)) identification. Figure 3 shows the XRD 
identification of mineralogical phases of AoG’s bauxite residue. AoG’s high temperature digestion 
process that uses quick lime to suppress silica levels, indicated similar phase transformations by the 
identification of hydrogrossular products in the bauxite residue as confirmed by literature. Diaspore, 
boehmite and gibbsite have been identified as the simple aluminum-bearing minerals, whereas 
cancrinite and hydrogrossular forms of desilication product are also detected. Chamosite mineral 
that exists originally from the bauxite ore, reacts slowly in Bayer cycle and remains in bauxite residue 
[41]. The composition of the Greek bauxite residue is representative of sampling of years 2010 to 2015 
with an error margin of 1–10% for both chemical and mineral assays. Further variations of Greek 
bauxite residue is explained by Vind et al. that further expresses the trace elements alongside bulk 
elements in his characterization efforts [41]. 

 
Figure 3. XRD (X-ray diffraction) mineralogical analysis of AoG bauxite residue. 

Table 1. Chemical analysis of AoG bauxite residue. 

Oxides 
Major Metals Others 

LOI * 
Fe2O3 Al2O3 SiO2 TiO2 Na2O CaO V2O5 SO3 

wt % 43.51 19.26 6.50 5.49 2.81 9.59 0.17 0.47 9.40 
* LOI: Loss on Ignition. 

The quantification of phases of AoG bauxite residue is given in Table 2, performed using XDB 
software designed by Sajó that uses a full-profile fit method that fits measured spectra to a simulated 
composite of mineral standards contained in the database [42]. This result was also verified in another 
study [43], where where minerals were quantified in different stages of soda sintering and leaching 
process. The mineral phases shown in Table 2 were utilized for the prediction of phases in sinter 
products by using the thermodynamic software Factsage 7.0™. However, the simplification of 
complex minerals with simpler ones existing in the software database was necessary.  

0
20
40
60
80

100
120
140

5 15 25 35 45 55 65 75

In
te

ns
ity

2-θ

H

H

Gr

GrRedmud G
o

D

HD
Gi

Gi
Cn

H
Ca H H

P H

H H

R
D GrQ

B
Cn K

GiA D AHK PP
Cn

D
Go

LEGEND
Gi: Gibbsite - Al2O3·3H2O
D: Diaspore - α-AlOOH
B: Boehmite - γ-AlOOH
Gr: Grossular (Ca₃FeAl(SiO₄)((OH)₄)
Ca: Cancrinite (Na₈(Al,Si)₁₂O₂₄(OH)₂.2H₂O
Ch: Chamosite (Fe1.8Mg0.2Al0.8(Si1.3Al0.7)O5(OH)4

H: Hematite - Fe2O3
Go: Goethite - Fe2O3·H2O
P: Perovskite- CaTiO3
Q: Quartz - SiO2
R: Rutile - TiO2
A: Anatase - TiO2
Ca: Calcite - CaCO3

Ch

Figure 3. XRD (X-ray diffraction) mineralogical analysis of AoG bauxite residue.

The quantification of phases of AoG bauxite residue is given in Table 2, performed using XDB
software designed by Sajó that uses a full-profile fit method that fits measured spectra to a simulated
composite of mineral standards contained in the database [42]. This result was also verified in another
study [43], where where minerals were quantified in different stages of soda sintering and leaching
process. The mineral phases shown in Table 2 were utilized for the prediction of phases in sinter
products by using the thermodynamic software Factsage 7.0™. However, the simplification of complex
minerals with simpler ones existing in the software database was necessary.

Table 2. XRD Mineralogical Quantification using XDB Software by Sajo [42,43].

Miner
alogy

Anat
ase

Boeh
mite

Gibb
site

Hema
tite

Goet
hite

Perovs
kite

Cancri
nite

Dias
pore

Cal
cite

Rut
ile

Gross
ular

Chamo
site

Phase
percentage

%
1.0 2.1 1.0 37.5 5.2 5.2 11.5 13.0 4.2 0.5 14.6 2.1

2.2. Laboratorial Methods in Sintering Optimisation

Figure 4 indicates the procedure of sintering and leaching in this lab-scale study. Lab-grade
reagents of Na2CO3 (99.8%, Chembiotin), CaO (>98%, Merck), BaO (99.5%, Alfa Aesar), MgO (>98%,
Sigma Aldrich) and metallurgical coke (80.3% C) were used as reactive additives to the bauxite residue
in this study. Dried homogenised bauxite residue (<150 µm) were mixed together with the additives
and placed into alumina crucibles. For the lab-scaled experiments, the muffle furnace (Tmax: 1700 ◦C)
shown in Figure 5 is as below.
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Figure 5. Temperature heating profile of muffle furnace.

The heating rate was kept to 30–35 ◦C per min, and after sintering within set holding time, indicated
in the plateau region of temperature profile in Figure 5, was then left to cool overnight. The cooling
kinetics were out of the scope of this study. Introduction of inert atmosphere for carbon-reduction
aided sintering process with 5 N L/min argon flow rate, where stoichiometric to 50% excess carbon
required to reduce iron were used. Current leaching conditions during sintering optimization were
kept at 80 ◦C for 4 h, at 240 rpm stirring rate, solid-to-liquid ratio of 1.5 g/100 mL (1:66) in 0.1 M NaOH
solution. Leachates were then filtered, diluted and sent to Atomic Absorption Spectroscopy (AAS,
Waltham, MA, USA) for chemical analysis of aluminum and silica. Leached residue was collected and
sent for XRF (Perform’X, Thermo Fisher Scientific™, Waltham, MA, USA) analysis, with mass balance
of filtered solids accounted for sodium analysis to reduce experimental error and interference during
AAS analysis when leached in 0.1 M NaOH. Two experimental series were performed. In the first the
soda sintering process was studied in the presence of 50% excess of soda over stoichiometric amount
required for sodium aluminate conversion and in the absence of any additives. In the second the
effect of additives was studied. Particularly, AoG’s bauxite residue was subjected to 20 g of additives
(divalent metal oxides) to 100 g of bauxite residue, with 25 g of Na2CO3 (~50% excess soda amounts
required to form NaAlO2).
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3. Results and Discussion

3.1. Effect of Sintering Temperature and Retention Time on Metals Recoveries

Figure 6 shows the thermodynamic predictions of solid phase’s evolution during sintering
temperature increase. For performing this thermodynamic analysis, the real desilication phases
existing in AoG’s Bauxite residue (namely, cancrinite, sodalite and hydrogrossular) were replaced
by ones (such as Ferrocordierite, Grossularite and Albite) which was available in the Factsage
7.0TM software.
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Figure 6. Thermodynamic predictions of sinter phase formations with different representatives of
desilication product such as (a) Ferrocordierite, Fe2Al4Si5O18 (b) Glossularite, Ca3Al2Si3O12 (c) Albite,
NaAlSi3O8 (d) Albite, NaAlSi3O8 with 50% excess of soda over stoichiometric amount.

As seen in Figure 6, at 50% stoichiometric excess of soda in sintering system achieves only
partial conversion into sodium aluminate species, and sodium aluminosilicate forms of nepheline
and carnegeite were still present in the system. NaAl9O14 and Na2Al12O19 represented unreacted
β-alumina and β”-alumina phases respectively. Silica presence was predicted to be a constraint for the
total transformation of aluminum bearing phases to leachable sodium aluminate which is in agreement
with previous studies on soda sintering at high temperatures [12]. It is interesting to note that despite
glossularite’s high calcium content when replaced as a desilication product, the result of the predictive
transformation was still the same. The calcium showed an affinity towards iron, with calcium ferritic
sinter products (CaFe2O4, CaFe4O7 and Ca2Fe2O5) formed instead of binding towards the available
silica. This agrees with Hodge et al., noting that calcium has the tendency to preferentially react with
iron phases instead of silica during bauxite residue soda sintering process [43]. In Figure 6d, albite
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was used as the extrapolative value of desilication product, and the addition of carbon as reducing
agent promoted iron reduction and was predicted to suppress the calcium–iron interaction, though it
presents only a slight increase of sodium aluminate phase over nepheline/carnegeite species.

Figure 7a shows the metal recoveries as a function of sintering temperature at 2 h retention time
and 5% stoichiometric excess of soda in bauxite residue. At 900 ◦C it reaches at 55% due to entrapment of
part of aluminum in sodium aluminosilicate and calcium aluminosilicate species which are by definition
very difficult soluble in diluted NaOH solutions. This conclusion is supported by the behaviour of silica
which was recovered at a value lower than 20% showing that the dissolution of silicate phases formed
during sintering is limited in diluted NaOH solutions hindering the alumina recovery. In Figure 7b,
once excess soda levels were investigated and 50% stoichiometric excess of soda in bauxite residue was
used, it was noted that increased retention time of sintering from 2 to 4 h displayed very slight change
towards recovery. Aluminum recovery agrees with the thermodynamic predictions.
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Figure 7. Recovery of Al2O3 and SiO2 for (a) temperature-variable sintering experiments with 5%
stoichiometric excess of Na2CO3, and (b) time-variable with 50% stoichiometric excess of Na2CO3.

3.2. Effect of Na2CO3 Excess on Metals Recoveries

Figure 8a shows the thermodynamic predictions of sinter phase formation when soda (Na2CO3)
is added in excess to stoichiometric amounts. The solid sinter phase distribution of sodium aluminate
when soda is introduced in excess is noted reach a plateau of equilibrium with nepheline phase
when the soda excess is equal or greater than 200%. The metastable states of Na2Ca3Al16O28 and
Na2Ca8Al6O18 were suppressed and excluded from the thermodynamic prediction in the software.
The calcium content was observed to partially form calcium aluminate and change into sodium calcium
silicate instead of beginning at 100% excess. Hematite is predicted to initially bind preferentially
towards calcium and then shift to sodium instead, forming potential soluble sodium ferrite phases.
Actual experimental results further confirmed the linear increase until reaching plateau, albeit at an
earlier range with levels of 67–70% being reached when 50% excess of stoichiometric soda required
was added.
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Figure 8. (a) Thermodynamic predictions of sinter phase formation and (b) results of experimental
recovery of Al2O3, SiO2, and Na2O at the range of excesses of stoichiometric Na2CO3 additions at
900 ◦C for 2 h.

Figure 9 shows the XRD mineral identification of sinters and leached residue at 50% excess
soda addition. Sodium aluminum silicate (NaAlSiO4) observations in leached residue and sinters
confirmed that the nepheline-sodium aluminate equilibrium does exist. The consumption of soda
reagent into iron products such as sodium iron titanium oxide (NaFeTiO4) and calcium products such
as harmunite (CaFe2O4) which were the unwanted side reactions further fortifies the existence of
nepheline-sodium aluminate equilibrium despite soda excess levels during sintering, though several
overlapping peaks of both species lean to a larger confirmed harmunite presence with peaks from
40–48 degrees. Though silica is observed to be within the range of 10–20%, silica dissolution is still
observed in the leaching system. Sodium recovery at 80% to 90% range throughout the experimental
data indicates that a variety of sodium-soluble products exists.
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3.3. Effect of Carbon Additions on Metals Recoveries

After fixing to 50% excess of soda which reduces the amount of soda required per aluminum
recovery, the study next focused on the suppression of side reactions through the reduction of
iron with metallurgical coke additions as a carbon source in inert conditions. The thermodynamic
prediction of sinter phases in Figure 10a indicates that the equilibrium that exists between leachable
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sodium aluminate and nepheline form still exists despite the conversion of hematite or goethite into
metallic iron.
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Figure 10. (a) Thermodynamic predictions of sinter phase formation and (b) results of experimental
recovery of Al2O3, SiO2, and Na2O at the range of excesses of stoichiometric carbon additions (based
on Carbon:Fe2O3 ratio from bauxite residue) with 50% excess soda, 900 ◦C for 2 h.

Figure 11 shows the XRD confirmations of mineral phases present in the sinter product and
leached residue. Part of the iron formed sodium iron oxide while hematite was partially reduced to
magnetite and wustite. Though the calcium iron oxide species were now suppressed, as it can be seen
from Figure 10a thermodynamic predictions, there was a secondary issue of gehlenite (Ca2Al2SiO7)
formation on top of nepheline throughout the range of stoichiometric carbon additions, causing
additional aluminum losses downstream.
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Figure 11. XRD of mineralogical phases for stoichiometric carbon addition needed to produce Fe from
Reaction (5), with 50% stoichiometric excess Na2CO3 at inert conditions at 900 ◦C and for 2 h. Red font:
Existing minerals in bauxite residue; black font: Transformed sinter and leached minerals.

Figure 1 shows the mineralogy of sinter and leached residue, confirming the theoretical formations
of sodium aluminum silicates and gehlenite, though latter phases were minor. The suppression of
soluble sodium-iron products occurs past 0.7 stoichiometric ratio indicated that carbon addition is
favorable at stoichiometric ratio onwards. This was also confirmed in the experimental results in
Figure 10b, and an increase from 68% to 75% is observed in aluminum recovery, though sodium recovery
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reduces to 3% lesser amount that the previous soda excess additions in atmospheric environment.
Silica amount remains relatively unchanged within the range of 18% recovery.

3.4. Effect of CaO Additions on Phase Transformations during Sintering Process

Following soda and carbon additions, the addition of lime into the sintering process of 20 g CaO
to 100 g bauxite residue (80% excess to stoichiometric requirements to form Ca2SiO4) is necessary
to investigate the consumption of free and bound silica in desilication products, relying on higher
thermodynamic affinity with calcium. Figure 12 shows the thermodynamic predictions of sinter phases
at excess lime additions. The thermodynamic predictions made by Factsage 7.0™, however, shows that
calcium indeed reacts with iron to form CaFe2O4 and Ca2Fe2O5, when iron is available in atmospheric
conditions at 900 ◦C.
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Figure 12. Thermodynamic predictions of sinter phase formation (a) when monocalcium silicate is
expected or (b) when dicalcium silicate is expected, at excess of lime additions at 50% excess soda,
900 ◦C for 2 h.

Compared to Figure 8a, thermodynamics of soda only addition into the sinter of bauxite residue
notes that sodium preferably reacts to form nepheline species and sodium titanate species at lower than
50% soda excess levels, whereas, calcium is bound to either aluminum or iron initially. At between 50%
and 200% soda excess levels, sodium ferrite species of intermediate Na3Fe5O9 forms, transforming
into NaFeO2 at even higher soda concentrations. Sodium ferrite then dissolves back as sodium, hence
phases do not inhibit system. Also at higher soda levels (Figure 8a), soda and calcium is predicted
to preferentially react, still existing in equilibrium with nepheline species. In Figure 12, the excess
CaO predicted to be added in the sintering system is divided into two amounts, Figure 12a, one that
encourages monocalcium silicate formation and the other, Figure 12b, dicalcium silicate instead.
Increased additions of lime only encourage calcium to complex into Ca2Fe2O5 stable species instead,
with nepheline phase still existing in equilibrium amounts to sodium aluminate species. Grossular
species in the form of Ca2Al2SiO7 and sodium calcium silicate species (Na2CaSiO4) exists when CaO is
added in excess.

Figure 13 shows the XRD identification of the sinter phase and leached residue, whereas Figure 14
shows the SEM confirmations of minerals identified in the sinters and leached residue. The sinters
confirmed the presence of sodium aluminate, calcium ferrite and titanate peaks as well as dicalcium
silicate in both XRD and SEM. In Figure 13, both presence of harmunite (CaFe2O4) and srebrodolskite
(Ca2Fe2O5) were detected, where angular rods exist in both sinters and leached residue images in
SEM (Figure 14, (2) and (6), nano-rods, SEM empirical formula of CaFe6.9O10). Iron was found to be
entrained at varying levels throughout SEM-EDS element identification.
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Figure 13. XRD of mineralogical phases for lime additions (20 g CaO/100 g bauxite residue, equivalent
to 80% excess CaO addition for Ca2SiO4 formation), and 50% excess soda at 900 ◦C and for 2 h. Red
font: Existing minerals in bauxite residue; black font: Transformed sinter and leached minerals.
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Figure 14. SEM (scanning electron microscope) mineral identifications in CaO, Na2CO3 and bauxite
residue (a) Sinter product; (1) Sodium aluminate, (2) Calcium ferrite, Calcium titanate, (3) Calcium
silicate, sodium calcium silicate; and (b) Leached residue; (4) Calcium ferrite, calcium silicate, (5) Calcium
ferrite, grossular product, (6) Calcium ferrite (more details in Supplementary Materials).

Calcium sodium aluminum silicate (grossular, SEM empirical formula of
Ca2.23Na1.11AlSi1.15FeO9.6) trace remainder in both XRD and SEM images (Figure 14, (5))
confirms the thermodynamic inhibition of aluminum phase that converts from nepheline/sodium
aluminum silicate phases towards grossular products instead of sodium aluminate phases, indicating
incomplete recovery of aluminum. Meher et al. [31,44] also detected similar formations of minerals in
lime/calcite added soda sinter system, with calcium aluminum silicate detected instead of sodium
aluminum silicate type products, though alumina extraction was more favourable at 10 g CaO ratio at
900 ◦C [44]. Kirschsteinite (CaFeSiO4) was also detected in their paper [44] and it may exist in minimal
amounts that remained undetected in our sinter system.

3.5. Effect of MgO Additions on Phase Transformation during Sintering Process

Figure 15 shows the thermodynamic prediction of the effects of MgO added in excess of
stoichiometric amounts to form magnesium silicate product.
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Figure 15. Thermodynamic predictions of sinter phase formation (a) when monomagnesium silicate is
expected or (b) when dimagnesium silicate is expected at excess of MgO additions at 50% excess soda,
900 ◦C for 2 h.

Figures 16 and 17 shows the XRD identification and SEM confirmations of minerals identified in
the sinters and leached residue respectively. The effect of the addition of magnesium oxide in the soda
sintering system of 20 g MgO to 100 g bauxite residue (130% excess to stoichiometric requirements to
form Mg2SiO4) when thermodynamically interpreted, is limited and not able to push the nepheline
product reaction towards sodium aluminate. Any calcium existing in the system is said to change
into CaFe2O4 product in Figure 15, and sodium reacts with iron and titanium to form Na3Fe5O9 and
Na4TiO4 preferentially.
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Figure 16. XRD of mineralogical phases for MgO additions (20 g MgO/100 g bauxite residue) at
atmospheric conditions at 900 ◦C and for 2 h. Red font: Existing minerals in bauxite residue; black font:
Transformed sinter and leached minerals.
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Figure 17. SEM mineral identifications in MgO, Na2CO3 and bauxite residue (a) sinter products;
(1) Calcium iron aluminum sodium oxide, (2) Magnesium oxide, (3) Calcium magnesium iron aluminum
sodium oxide (4) Magnesium iron oxide, Calcium titanate, Calcium magnesium silicate, and (b) Leached
residue; (5) Magnesium oxide coating, (6) Calcium magnesium iron oxide (7) Calcium magnesium iron
aluminum sodium oxide (more details in Supplementary Materials).

This contrasts with the XRD of experimental results of 20 g MgO additions in 100 g bauxite residue in
Figure 16, where complex sinter mineral formations such as magnesioferrite (Mg(Fe3+)2O4), bredigite
(Ca2Mg2SiO4)8) and brownmillerite (Ca2(Mg,Al,Fe)2O5) were detected in addition to unreacted
magnesia. Leached residue indicates that excess MgO as well as these complex phases remains as
part of the leftover residue and that aluminum remains trapped still from the conversion towards
these complexes.

SEM mineral identifications in Figure 17 confirms a series of complex compound containing
calcium iron aluminum sodium oxide and calcium magnesium iron aluminum sodium oxide
(SEM empirical formulas of CaFe2.4AlNa1.6O9 and CaFe4.5Mg7Al1.2Na1.6O13). Complex sinter area
that contains calcium magnesium iron aluminum and silicon (Total SEM empirical formula of
Ca1.8Fe11.6SiTi1.48Mg6.7Al2.6O44.7) indicates that the sinter product becomes a heterogenous mix of
elements that are harder to distinguish from topographical SEM-EDS method. In Figure 16, they appear
as bredigite and brownmillerite species instead.

A combination of calcium magnesium iron oxide (SEM empirical formula of CaMg8.9Fe11O16)
contains minute traces of distributed calcium, and empirical formula indicates that particles such as
Figure 17 (6) suggests that magnesioferrite species are present in the system, with partial calcium
substitution in the species. Overall, adding MgO does not aid the sinter reactions as they still contain
unfavourable complex garnet-type products. Meher and Padhi reports cancrinite and bayerite mineral
identifications in their XRDs of MgO and Na2CO3 sintered bauxite residue system, though magnesium
was found to be bound with ferrite, titanate and silica forms [40].

3.6. Effect of BaO Additions on Phase Transformations during Sintering Process

By introducing barium oxide into the soda sinter system, the thermodynamic prediction of
minerals changes to improve the recovery of aluminum via sodium aluminate phases. Figure 18 shows
that in the thermodynamic predictions, barium favourably reacts towards the available silica and
preferentially binds them into either Ba2Ca2Si4O16 or Ba2SiO4 forms, pushing also the equilibrium of
reaction from sodium aluminum silicate product towards sodium aluminate product, especially when
added in excess of 100% stoichiometric requirements for Ba2SiO4 formation.
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Figure 18. Thermodynamic predictions of sinter phase formation (a) when monobarium silicate is
expected or (b) when dibarium silicate is expected at excess of BaO additions at 50% excess soda, 900 ◦C
for 2 h.

Unlike calcium-added sinter system, where the addition of excess causes potential unwanted
formation of grossular-type products that inhibit aluminum recovery, barium preferentially reacts with
calcium during the sintering, leaving aluminum component to bind with sodium instead. Meher et al.
reduced the amount of barium-to-silica mol ratio requirements to 1, and encouraging the formation of
sodium barium silicate to allow for sodium and aluminum extraction (99% recovery) with decreased
BaO reagent usage [39].

They also detected varying degrees of barium ferrite, Ba2Fe2O5 and BaFe12O19, and barium
silicate products, as calcium is low in NALCO’s bauxite residue system. In the AoG bauxite residue
system, the addition of 20 g BaO to 100 g bauxite residue (25% excess to stoichiometric requirements
to form BaSiO3), is investigated. XRD mineral identifications in Figure 19 indicates that batiferrite
(Ba(Fe10Ti2)O19), ankangite (BaTi8O16) and trasicite (Ba9Fe2Ti2Si12O3(OH)) were the favorable phases
that were formed experimentally, indicating that experimentally barium prefers to react with titanium
instead. This indicates a selective titanium recovery into the sinters and residue, though iron’s presence
can result into the complex Ba–Fe–Ti product instead. It is recommended to combine barium with
carbon reduction sintering to further improve the selectivity of BaTi8O16, as titanium could potentially
be a valuable commercial product downstream.
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Figure 19. XRD of mineralogical phases for BaO additions (20 g BaO/100 g bauxite residue) at
atmospheric conditions at 900 ◦C and for 2 h. Red font: Existing minerals in bauxite residue; black font:
Transformed sinter and leached minerals.
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In Figure 20, the SEM identification of barium titanate is visibly large tetragonal-type particles
(1) with SEM empirical formula of Ba3.2TiO10, confirming barium affinity to titanium species.
More complex agglomerates such as Figure 20 (2) that SEM empirical formula of the area is distributed
as BaTi1.2Fe5.9Ca1.5AlSi1.5O24.3 and (3) as Ba3.7Fe3Ca1.2AlSi1.4O20.9 shows that there are partial losses
of aluminum within the sinter product, though XRD only picks up trace amounts of existing sodium
aluminum silicate as opposed to the complex product types.
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Figure 20. SEM mineral identifications in BaO, Na2CO3 and bauxite residue (a) sinter products;
(1) Barium titanate, and (b) Leached residue; (2) Barium titanium iron calcium aluminum silicon oxide
(3) Barium iron calcium aluminum silicon oxide (more details in Supplementary Materials).

3.7. Experimental Results of Leaching Tests from 50% Excess Soda Sinters with CaO, MgO and BaO Additions

The results of the leaching tests of Na2CO3 only system, CaO + Na2CO3 system, MgO + Na2CO3

system and BaO + Na2CO3 system as shown in Figure 21, further confirms the outcomes of the
thermodynamic and experimental analysis. Aluminum recovery of the systems was in the range of
64% to 75% in total, with the highest to lowest recovery coming from BaO > Na2CO3 > MgO > CaO
added systems. The co-recovery of silica was higher in both Na2CO3 only and MgO added system,
at about 20%, indicating that existence of partially leachable silica phases was formed during sintering.
These phases were most like Na2SiO3 phase, as part of the soda added reacted preferentially with the
available silica instead. In the CaO and BaO systems, the thermodynamically favourable formations
of Ca2SiO4 and Ba2SiO4, and, the formation of a myriad of components such as sodium calcium
silicate, grossular and garnet complex phases, locked silica into the matrix and hindered silica leaching
from sinters.
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Figure 21. Results of experimental recovery of Al2O3, SiO2, and Na2O with CaO, MgO and BaO added
with 50% excess soda, compared to only 50% excess soda, Na2CO3, at 900 ◦C for 2 h.
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The sodium recovery increased to 94% in systems that managed to stop silicon from turning into
leachable products, whereas Na2CO3 only system exhibited the least amount of soda recovery. Barium
oxide addition in the soda sintering system assisted the best recovery for both aluminum and sodium
while suppressing silica in system, however, the price of barium oxide (US $300–$500/metric tonne)
when compared to lime (US $50–200/metric tonne), magnesium oxide (US $80–$200/metric tonne)
and soda (US $210–$250/metric tonne), becomes considerably more expensive, for the aluminum and
sodium recovered in bauxite residue.

A simplified mass balance of the laboratory scale experiment of optimised recovery at 50% excess
soda (soda only) and stoichiometric carbon with 50% excess soda (carbon + soda) is presented in
the flowchart (Figure 22) and mass balance (Table 3). The recovery of an optimised sintering process
will be be 70% and 75% for aluminum (0.2 g Al/L) and 85% and 83% for sodium (~1 g Na/L) for
soda only system and carbon with soda system respectively. The recovery of silica is kept below 20%
(~0.02 g Si/L) when washed with solid-to-liquid ratio of 1:66. The leaching optimisation of the system
is recommended to be investigated following this research. The proportion of leached residue to sinter
product is 68.2% and 58% for soda only system and carbon with soda system respectively. The latter
will experience higher gaseous carbon monoxide/dioxide losses and reduce Fe2O3 in residue into FeO
or Fe3O4, and therefore decreasing load for downstream processing.
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Table 3. Mass balance of input and output from sintering system (Soda only vs Carbon + Soda).

Mass Balance
(kg)

Bauxite
Residue Na2CO3 Sinter CO2/CO NaOH Leached

Residue
Metallurgical

Coke

Soda only 1 0.3 1.08 0.22 0.288 0.737 -

Carbon +
Soda 1 0.3 0.905 0.318 0.288 0.6325 0.122

4. Conclusions

The recovery of aluminum from Greek bauxite residue was found to reach a plateau of 70–75%
when excess soda, retention time of sintering and temperature of sintering were investigated. This was
confirmed in both thermodynamic and experimental results, whereas sodium recovery levels were
optimized at 85–90%. It is recommended that the minimum amount of soda reagent required to convert
sodium and aluminum into leachable products, through this optimized study, should be used at 50%
excess soda levels, aiding sodium-aluminum recoveries at feasible amounts and thus, processing and
conditioning residue for use downstream.

Thermodynamic study of the bauxite residue notes that the type of complex desilication products
that aluminum remains trapped in bauxite residue, such as sodium-based cancrinite or sodalite,
or calcium-based grossular and garnet type product or cancrinite with calcium inclusions, transforms
into equilibrium amounts of sodium aluminate and sodium aluminum silicates converted during
sintering. Additional additives such as CaO, MgO and BaO are also tested to consume silica
from adhering to sodium and aluminum, forming other thermodynamically favourable and stable
silica-bound species and liberating the main elements for recovery.



Minerals 2019, 9, 571 19 of 21

The addition of barium oxide aids the recovery to achieve leachate containing 75% of recovered
aluminum and 94% recovered sodium respectively while keeping silica levels suppressed. The presence
of calcium existing in the Greek bauxite residue prevents the recovery of aluminum due to
NaAlSiO4/NaAlO2 sintered equilibrium formations. Increased lime additions will preferentially
react with iron in this system. Addition of carbon within inert conditions assisted aluminum recovery
to 75% and sodium recovery to 83%. The benefit of addition of carbon and in inert system, however,
is to assist pre-reduction of iron and its recovery downstream. Optimal recovery of aluminum and
sodium for Greek bauxite residue is recommended to be 70% and 85% respectively, when sintered with
50% excess stoichiometric Na2CO3.

Overall, soda sintering with other additional reagents may be more suitably adapted towards
pure sodaline/cancrinite products as opposed to a calcium-rich desilication product. Depending on
the different types of bauxite residues and desilication minerals present in it after Bayer processing, a
mineral characterization and understanding of thermodynamic equilibrium system is important for
the improved recovery of aluminum and sodium.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/10/571/s1,
In supplementary details titled “Additional Information_SEM Details”; EDS details for Figure 14: SEM mineral
identifications in CaO, Na2CO3 and bauxite, Figure 17: SEM mineral identifications in MgO, Na2CO3 and bauxite,
Figure 20: SEM mineral identifications in BaO, Na2CO3 and bauxite residue.
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