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Abstract: This study aimed to investigate the oxidation mechanism of pyrite crystallographic direction
by cutting pyrite samples to expose their (100), (110), and (111) planes. Differences in the oxidation
rates of pyrite planes in acid solution were determined. The morphological changes of pyrite
were evaluated by scanning electron microscopy and hyperdepth-3D microscopy. The oxidation
products of pyrite were examined by Raman spectroscopy and X-ray photoelectron spectroscopy.
Results showed that the aqueous oxidation of pyrite produced Fe(OH)3, Fe2O3, Fe2(SO4)3, and S8

on the surface. Moreover, the morphologies of corrosion patterns differed from one crystal plane to
another: square, rectangular, and triangular etch pits were found on the (100), (110), and (111) planes,
respectively. The corrosion patterns reflected the symmetrical arrangement of the crystallographic
planes in the lattice on which they formed.
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1. Introduction

Pyrite, accompanied with other sulfide ores, is considered the most abundant metal sulfide in the
Earth’s crust and is frequently found in massive hydrothermal deposits, igneous rocks, and sedimentary
beds [1–3]. Natural pyrite contains many heavy metals, such as Ag, Au, Cd, Co, Cu, Mo, Ni, Pb, Se,
Sb, Sn, Te, and Zn [4]. Thus, pyrite oxidation usually releases many heavy-metal ions. Furthermore,
pyrite oxidation involves water and oxygen consumption, in which sulfuric acid forms and acid
mine (or acid rock) drainage (AMD or ARD) subsequently occurs. AMD or ARD has become a
long-term environmental problem, affecting the ecological environment through the dissolution of
rocks, acidification of aquifers, and mobilization of heavy metals. Pyrite oxidation has attracted
considerable attention in the past decades [5–10]. For example, surface oxidation of pyrite aids in
the extraction of valuable metals from pyrite deposits. Meanwhile, pyrite oxidation in acid solutions,
which is the main source of AMD, should be investigated. However, the oxidation mechanism of pyrite
remains unclear. The reported results and conclusions do not conform with oxidation mechanism and
kinetics [11]. In general, several intermediate products, such as S2O3

2−, S0, and HSO4
−, are probably

formed during pyrite oxidation [12–15]. S8, Fe2O3, and Fe(OH)3 are also found [16]. Accordingly,
this study aimed to systematically investigate the surface oxidation of pyrite to understand its oxidation
mechanism and to find means to reduce the source of AMD.

The crystal structure of pyrite resembles that of NaCl. Pyrite belongs to the crystallographic space
group Pa 3 [17]. Dumbbell-shaped disulfide ions (S2

2−) and Fe atoms occupy the Cl and Na positions,
respectively. S2

2− is located at the center of the cubes and at the midpoints of the cube edges. Each S
atom is coordinated with three Fe and another S atom, and each Fe atom bonds with six S atoms
in a tilted octahedron [18]. Naturally-exposed crystal planes, such as cubic (100), octahedral (111),
and pyritohedral (210) planes, are some low miller index facets [19]. Few studies have focused on
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crystal direction properties during pyrite oxidation. Sit et al. [20] investigated the interaction of pyrite
(100) plane with water and oxygen molecules by using density functional theory (DFT). Zhu et al. [21]
evaluated the oxidation behavior of naturally existing (100), (111), and (210) planes by conducting
DFT calculations. All these studies provide detailed information about the atomic structure of crystal
directions and some possibilities in investigating the surface changes during pyrite oxidation.

In the present work, the directional oxidation rate and morphologies of pyrite surface were
investigated. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to detect the
surface oxidation products. The results on surface morphology can provide a complete understanding
of pyrite oxidation.

2. Sample and Methods

2.1. Sample Preparation

Lump pyrite samples with approximately 1 cm3 and 4–6 g weight used in this study were natural
cubic pyrite obtained from Hunan Province, China. The samples were cut by using a diamond saw
parallel to the (100), (110), and (111) planes and were mounted with epoxy resin, where only the cut
surfaces are exposed [22]. Before each experiment, the cut surfaces were polished with abrasive paper
and diamond paste, washed with deionized water, and ultrasonically cleaned in ethanol for 30 min to
remove any soluble impurities. The polished samples were placed in a glove box (Mikrouna Super
1220/750/900, Mikrouna, Shanghai, China) to avoid oxidation in air. The chemical composition of
pyrite samples was analyzed by using an X-ray fluorescence (XRF, Shimadzu-1800, Shimadzu Corp.,
Kyoto, Japan) at 40 kV and 95 mA. The results listed in Table 1 show that the sample is a typical pyrite
with 44.86% Fe and 44.06% S, which slightly deviates from theoretical composition (Fe 46.6%, S 53.4%).
The main impurities are O, Si, Al, K, Ti, Ca, Zn, Ru, and Mg, all in trace amounts. The content of O
accounting for 8.45% is the highest among the impurities, which may be due to the surface oxidation
or S defect in the lattice.

Table 1. Chemical analysis for the pyrite sample.

Element Fe S O Si Al K Ti Ca Zn Ru Mg P Ni Cr

Composition (wt%) 44.86 44.06 8.45 1.07 0.72 0.33 0.12 0.09 0.09 0.09 0.07 0.02 0.02 0.01

2.2. Experimental

The matching surfaces of the (100), (110), and (111) planes were used in the experiments. Oxidation
experiments in acid solution were conducted at room temperature. The pyrite sample was placed in
an Erlenmeyer flask filled with 250 mL of 1 mol/L H2SO4 and 10 of mL 9.9 mol/L H2O2. The samples
were removed and were washed with deionized water and ethanol at certain interval. After drying at
room temperature, the morphology changes of samples were monitored by using a scanning electron
microscopy (SEM) (Jeol JSM-6490LV, Jeol Ltd., Tokyo, Japan) at a resolution less than 3 nm (30 kV,
high vacuum, tungsten filament, secondary electron). The surface element was analyzed by using an
energy-dispersive spectrometer (EDS).

A hyperdepth-3D microscopy system (Keyence VHX-5000, Keyence, Osaka, Japan) was used to
measure the depth and volume of etching pits on the pyrite surfaces under 500×. The hyperdepth-3D
microscopy system has a super high-resolution of z axis of ±1 µm. Autofocus can be realized in 3D
directions. The specific steps are expressed as follows: three to five different areas were selected for
observation under the hyperdepth-3D microscopy system for each sample. A total of 5–8 etching pits
were selected in each region, in which their depth and volume are measured, and their average values
are obtained.

The concentration of the total Fe ions (Fe3+ and Fe2+) was determined by using an
inductively-coupled plasma optical emission spectrometer with a Perkin–Elmer Optima 5300 DV
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(Perkin–Elmer, Inc., Waltham, MA, USA). Plasma power was 1300 W by using CHNS mode and
TCD detector.

Raman spectra data were recorded by using a Renishaw inVia (1800) instrument. The power of
He–Ne laser is 50 mW, and laser wavelength is 532 nm. The exposure time is 10 s, which is cumulative
three times. The analyzed surface size is approximately 2 mm.

XPS (ESCALAB250Xi, ThermoFisher-VG Scientific, Waltham, MA, USA) analysis was conducted
by using a Thermo Scientific Escalab-250 instrument. Al-Kα X-ray (1486.6 eV), which is used as the
source of radiation, was operated at 150 W (15 kV, 10 mA) and irradiating spot size of 500 µm on the
pyrite surface. The depth of surface information is approximately 10 nm. The best vacuum is greater
than 5 × 10−10 mbar at room temperature. The C1s spectrum of peak at 284.8 eV was used to correct
the data. XPS data were fitted in XPSPEAK4.0 software.

3. Result and Discussion

3.1. Pyrite Surface Characterization

The morphology of freshly polished pyrite surface is shown in Figure 1. Generally, the surface of
pyrite is smooth and flat. Several small black spots are occasionally observed, which are probably due
to some impurities or defects on the pyrite surface. As shown in Figure 1, the element compositions of
fresh pyrite surface are Fe (45.79%) and S (54.21%) with high purity.
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Figure 1. Electron microprobe characterization of a polished pyrite surface.

3.2. Surface Topography Change

Pyrite samples were removed from the reaction vessel after oxidation for four or eight days. Then,
the corrosion patterns on the surfaces were observed. Different etching pits were observed on different
crystal directions. Figure 2 shows the typical etching pits on the exposed (100), (110), and (111) pyrite
surfaces after oxidation for four days. Figure 2a shows that the etching pits are generally square on the
(100) plane. Rectangle patterns appear on the (110) plane, as shown in Figure 2b, and the etching pits
on the (111) plane are triangular, as shown in Figure 2c. These etching pits usually aggregate together.
The etching pits are obvious after oxidation for eight days, as shown in Figure 3. The etching pits on
the (110) plane are linked together to exhibit elongated pits. These etching pits reflect the symmetrical
arrangement of crystallographic planes in the lattice. The point group of the crystal can be obtained
when all etching pits on different directions of the same crystal are combined. The symmetries of the
(100), (110), and (111) planes are 4 mm, 2 mm, and 3 mm, respectively. The etching pits in all directions
have the same symmetry. The same results are found in olivine and quartz [23]. These results indicate
that the corrosion patterns are closely related to the symmetry of the crystal structure.
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Figure 3. Corrosion patterns on different crystal directions after eight days: (a) (100); (b) (110),
and (c) (111).

3.3. Depth and Volume Analysis of Etching Pits

Figure 4a shows the depth changes of etching pits in different planes with time. As shown in
Figure 4a, the depth of etching pits increases with time. The depth of etching pits on the (110) plane is
larger than that on the (100) and (111) planes. However, the depth of etching pits cannot accurately
reflect the oxidation rate because it is related to the density and size of the pits. Then, their volumes
are investigated, where different crystal directions have different volumes, as shown in Figure 4b.
The volume of etching pits on the (110) plane is the largest, and the volumes of (100) and (111) planes
have a small difference. Moreover, the pits grow deep with a small number on the (110) plane. The pits
on (100) and (111) planes are small and many.
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3.4. Fe Ion Concentration

Considering the incomplete statistics of etching pits, the concentrations of “total iron” ion were
measured in different crystal directions. Figure 5 shows the variation of the “total iron” concentration
with time. This figure indicates that different oxidation rates are observed in different crystal
directions. The (111) plane shows a higher oxidation rate compared with the (100) and (110) planes.
The directional oxidation rate is r(111) > r(110) > r(100). This finding agrees with the results of
Ndlovu and Monhemius [22] and is probably due to the difference in geometric arrangement of
atoms in different crystal directions. The atomic arrangement of the pyrite (111) plane is –S–S–S–S– or
–Fe–Fe–Fe–Fe–, and the (100) plane is –Fe–S–S–Fe–. The S–S bond in pyrite is weaker than that of the
Fe–S bond [24]. Therefore, the (100) plane is more stable. The results indicate that the surface atomic
arrangement is important for the physical and chemical behavior of pyrite. Moreover, crystal growth
theory (periodic bond chain (PBC) theory) describes that the morphology of crystals is obtained from
the geometrical characteristics of the internal structure of crystals and the energy of particles. A PBC is
an uninterrupted bond chain with periodic repetition of the strongest bond in a certain direction of
crystallization. The plane refers to the F surface when more than two PBCs are parallel to a certain
plane, in which its mesh is dense and flat and its growth rate is small. The plane refers to the S surface
when only one PBC is parallel to it, which has a small and few secondary directions on the crystal.
This plane is also called the stepped face. The plane refers to the K surface when no PBC is parallel
to it, which is also called the kinked face. Its growth rate is the fastest and easier to disappear [25].
In pyrite, the Fe–S bond is stronger than that of S–S bond. Two periodic Fe–S bond chains are parallel
to the (100) plane, which belong to the F surface and indicate its stable property. The (110) plane has
one parallel PBC, which shows a fast oxidation rate. Meanwhile, the (111) plane without any parallel
PBC exhibits a faster oxidation rate. This theory perfectly explains our experimental results.
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3.5. Raman Spectra Analysis

Raman spectra on different crystal directions of pyrite were measured before and after oxidation
in acid solution to obtain the oxidation products of pyrite, as shown in Figure 6. Before oxidation, three
peaks are found on the (100), (110), and (111) pyrite planes, which are located at 342, 380, and 430 cm−1,
respectively. These peaks can be attributed to the deformation vibration of S-S and stretching vibration
peak of Fe–S and S–S. New peaks appear or some peaks disappear after eight days. As shown in
Figure 6a, the stretching vibrational peaks of S–S disappear, and other products on the surface are
not detected through Raman spectroscopy, which show that the S–Fe bond is more stable than that
of the S–S bond. For the (110) plane in Figure 6b, new peaks at 226 and 410 cm−1 appear, which can
be ascribed to Fe(OH)3. The weak peak at approximately 244 cm−1 belongs to the Fe–O stretching
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vibrations of Fe(OH)3 or S. The peak at 290 cm−1 is the symmetric stretching vibration of the Fe–O
bond of Fe2O3. The weak peak at 609 cm−1 is the bending vibration of the Fe–O bond of Fe2O3 or
Fe(OH)3. This spectrum shows that Fe2O3 and Fe(OH)3 are definitely formed on the pyrite surface,
which agrees with the results of Tu et al. [16]. However, the peak of S is not evident, which is probably
because S is oxidized to sulfate. The reaction equation is expressed as Equation (1)

2S0 + 3O2 + 2H2O→ 2SO2−
4 + 4H+ (1)

The Raman spectra for the pyrite (111) plane in Figure 6c exhibit two weak and broad peaks.
The first peak is located at 220–234 cm−1, which is possibly due to the mixture of Fe(OH)3 and S on the
pyrite surface. The second peak is located at approximately 280 cm−1, which can be ascribed to Fe2O3.
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3.6. XPS Analysis

The spectra of pyrite (100), (110), and (111) are shown in Figures 7 and 8. The common binding
are determined based on the literature in Table 2. As shown in Figure 7a, the S(2p) peaks of pyrite
are concentrated on 162.3, 163.4, and 168.5 eV. The major peak at 162.3 eV is assigned to the disulfide
of lattice pyrite [16,26]. The peak at 163.4 eV is S8 [7,16]. The small peak at 168.5 eV is attributed to
Fe2(SO4)3, which shows that the pyrite surface is slightly oxidized by air. The Fe(2p) peaks of pyrite is
shown in Figure 7b. The peaks at 707.2 eV and 720.0 eV are Fe(2p3/2) and Fe(2p1/2) of pyrite(FeS2),
respectively [16,26,27]. The other weak peaks at 710.7, 713.2, 724.7, and 732.7 eV belong to Fe(OH)3,
Fe2(SO4)3, and Fe2O3 [16,26]. The peak at 732.7 eV is the satellite of Fe2O3 [26,28]. The S(2p) spectra
in Figure 8a are similar to those of primitive pyrite but with slightly broader peaks. Figure 8a shows
the S(2p) peaks of pyrite (100), (110), and (111) planes after oxidation for eight days. The primary
peak with a binding energy of 168.5 eV assigned to Fe2(SO4)3 remarkably increases on the (111) plane,



Minerals 2019, 9, 7 7 of 9

indicating that the oxidation rate of (111) plane is fast. This finding is consistent with the result of
Raman spectra analysis.
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Table 2. Binding energy of Fe(2p) and S(2p) after oxidation for eight days.

Spectrum Unreacted
Pyrite

Binding Energy(eV) (2p)
Species

(100) (110) (111)

S2p

162.3(2p3/2) 162.3(2p3/2) 162.3(2p3/2) 162.3(2p3/2) FeS2 [16,26]
163.4(2p3/2) 163.5(2p3/2) 163.5(2p3/2) 163.5(2p3/2) S8 [7,16]
168.5(2p3/2) 168.6(2p3/2) 168.6(2p3/2) 168.4(2p3/2) Fe2(SO4)3 [16,26]

Fe2p
707.2(2p3/2)
720.0(2p1/2)

707.0(2p3/2)
719.8(2p1/2)

707.0(2p3/2)
720.0(2p1/2)

706.9(2p3/2)
719.7(2p1/2) FeS2 [16,26,27]

Satellite

710.7(2p3/2) 710.3(2p3/2) 711.1(2p3/2) 710.8(2p3/2) Fe(OH)3 [16]
724.7(2p1/2) 724.7(2p1/2) 724.8(2p1/2) 724.7(2p1/2) Fe2O3 [26,28]
732.7(2p1/2) 732.2(2p1/2) 732.1(2p1/2) 731.8(2p1/2)
713.2(2p3/2) 713.2(2p3/2) 713.5(2p3/2) 713.5(2p3/2) Fe2(SO4)3 [26]

Figure 8b shows the Fe(2p) peaks of (100), (110), and (111) planes after oxidation for eight
days compared with the primitive pyrite. The peak at 710.9 eV is considered to be Fe(2p3/2) of
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Fe(OH)3. The peak at 713.2 eV is the Fe(2p3/2) of Fe2(SO4)3. These findings are in agreement with
the abovementioned S(2p) spectra results. The peak at 724.7 eV is attributed to Fe(2p1/2) of Fe2O3.
The Fe(2p1/2) of Fe2O3 satellite binding energy is 732.2 eV [26]. The XPS spectra of the (110) and (111)
planes are similar. However, the Fe(2p3/2) peak of FeS2 on the (111) plane is weaker than that of (110)
and (100) planes. The Fe(2p1/2) peak of Fe2O3 is obvious on the (111) plane. These conditions verify
that the oxidation rate of the (111) plane is faster than that of the (110) plane. Meanwhile, Fe(OH)3 and
Fe2(SO4)3 are found on the (110) and (111) planes. Fe2(SO4)3 was detected based on the XPS spectra,
which is different from the Raman spectra.

Based on the Raman spectroscopy and XPS analyses, the following reactions are proposed to
have occurred:

FeS2+3.5O2 + H2O→ Fe2+ + 2SO2−
4 + 2H+ (2)

Fe2+ + 3H2O→ Fe(OH)3 + 3H+ + e− (3)

FeS2 → Fe2+ + 2S0 + 2e− (4)

FeS2 → Fe3+ + 2S0 + 3e− (5)

2Fe3+ + 3H2O→ Fe2O3 + 6H+ (6)

4. Conclusions

This work investigated the differences in the directional oxidation rates of pyrite in acid solution,
which order is r(111) > r(110) > r(100). The (110) plane appears more reactive than that the (100) plane.
These conclusions can be explained by the surface atomic arrangement. The (111) plane is –S–S–S–S– or
–Fe–Fe–Fe–Fe–, and the (110) plane is –Fe–S–S–Fe–. Considering that the S–S bond is weaker than the
Fe–S bond, the (100) plane is more stable. Different etching pits formed on different crystal directions.
A square etching pit was formed on the (100) plane. Rectangular and triangular etching pits formed on
the (110) and (111) planes, respectively. The different corrosion patterns suggested that the shapes of
etching pits were consistent with the symmetry of the crystal direction. Raman spectra and XPS results
further indicated that pyrite was oxidized under acid condition to form Fe2O3, Fe(OH)3, Fe2(SO4)3,
and S.
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