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Abstract: Clay minerals in structurally complex settings influence fault zone behavior and
characteristics such as permeability and frictional properties. This work aims to understand the role
of fault zones on clay authigenesis in arkosic, high-porosity sandstones of the Cretaceous Rio do
Peixe basin, northeast Brazil. We integrated field, petrographic and scanning electron microscopy
(SEM) observations with X-ray diffraction data (bulk and clay-size fractions). Fault zones in the field
are characterized by low-porosity deformation bands, typical secondary structures developed in
high-porosity sandstones. Laboratory results indicate that in the host rock far from faults, smectite,
illite and subordinately kaolinite, are present within the pores of the Rio do Peixe sandstones.
Such clay minerals formed after sediment deposition, most likely during shallow diagenetic processes
(feldspar dissolution) associated with meteoric water circulation. Surprisingly, within fault zones
the same clay minerals are absent or are present in amounts which are significantly lower than those
in the undeformed sandstone. This occurs because fault activity obliterates porosity and reduces
permeability by cataclasis, thus: (1) destroying the space in which clay minerals can form; and (2)
providing a generally impermeable tight fabric in which external meteoric fluid flow is inhibited.
We conclude that the development of fault zones in high-porosity arkosic sandstones, contrary to
other low-porosity lithologies, inhibits clay mineral authigenesis.

Keywords: fault zones; deformation bands; clay authigenesis; shallow diagenesis

1. Introduction

Clay minerals have important economic applications in industry—e.g., [1]. Additionally, in most
geological settings clay minerals can occur in faults, thus influencing their permeability, frictional
properties [2–8] and subsurface fluid flow [4,9–14]. Therefore, the understanding of the feedback
between faulting and clay mineral authigenesis has important implications for seismicity, the migration
and accumulation of oil and gas in the subsurface, and contaminant transport in aquifers.
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Faults in high-porosity sandstones are generally considered as barriers to fluid flow, due to the
combined effect of grain size and porosity reduction within fault cores and associated deformation
bands in damage zones [15–22]. In this context, clay minerals are commonly described as mechanically
weak minerals, and because of this weakness their presence in faults commonly contributes to stable
sliding failures [23,24]. Furthermore, the origin and distribution of clays in sandstone are also important
in oil industry, because these minerals contribute to increases in the sealing potential of faults and can
determine reservoir compartmentalization [3,6,8].

Several studies have described the clay mineralogy of fault zones [24–26], however little attention
has been paid to the role of faults in determining the type and amount of clay mineral transformation in
faulted, arkosic sandstones. The goal of this study is to investigate how fault zones in arkosic sandstones
(composed of a fault core surrounded by deformation bands) modify grain-scale fabric and control
clay mineral authigenesis at shallow burial depths. We selected the Cretaceous Rio do Peixe basin in
northeast Brazil (Figure 1) as a case study, due to its excellent exposures of undeformed sandstones
and well-preserved fault zones. By integrating field analysis with laboratory data, we conclude that
deformation-band faulting in arkosic, high-porosity sandstones inhibits clay mineral authigenesis,
rather than promoting alteration and clay mineral formation.

2. Geological Background of the Rio do Peixe Basin

The Rio do Peixe basin (RPB) is a pull-apart Early Cretaceous basin situated in northeastern
Brazil. The basin was generated during the reactivation of Precambrian basement shear zones during
the opening of the South Atlantic Ocean [27–30]. The basin’s deeper depocenters were established
based on gravity data, and reach depths of ~2420 m [30]. These depocenters are filled by continental
siliciclastic sedimentary units which were deposited in fluvial and lacustrine depositional systems.
These deposits are divided into three main stratigraphic units, namely, from the base to the top: (1) the
Antenor Navarro Formation, represented by conglomerates and mudstones; (2) the Sousa Formation,
composed of mudstones; and (3) the Rio Piranhas Formation, composed of conglomerates and coarse
sandstones [31–33].

The Antenor Navarro Formation is the basal unit. It represents the main fill of the basin and
contains typical syn-rift deposits. The formation consists of siliciclastic fluvial deposits that are
exposed in large and continuous outcrops in different sectors of the basin (Figure 1). The sandstones
and conglomerates are composed of quartz, feldspars, rock fragments and biotite. Their matrix consists
of silt and dark brown clay (approximately 1–1.5%) [34]. The Souza Formation is the intermediate unit
and consists mostly of mudstones and a few occurrences of sandstones and marls. These units were
deposited in floodplains or shallow lakes on meandering rivers. The Rio Piranhas Formation is the top
unit and consists of conglomerates and coarse sandstones interfingered with sandy mudstones [32].
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Figure 1. Simplified geological map of the Rio do Peixe Basin, showing major faults and the
lithostratigraphics units. The location of the four selected outcrops is indicated. Modified from [27,29,35].

The sedimentary rocks of the Rio do Peixe basin were affected by two main tectonic phases:
an Early to Late Cretaceous NW–SE oriented extension [29] followed by a basin inversion in a strike–slip
regime from the Late Cretaceous to Cenozoic [35]. The extensional faults that developed during the
first phase are dominated by deformation bands, often associated with slickensided surfaces [34].
The deformation bands occur as cm-thick tabular structures developed in the fault damage zone,
and are arranged as single elements or in clusters. Within deformation bands, a cataclastic foliation
was formed by preferential grain alignment and the selective fragmentation of feldspar grains [34].

3. Methods and Materials

This study focused on the western side of the Rio do Peixe basin, both in its central part far
from major faults and in the proximity of the basin-boundary faults (Figure 1). Field analysis and
sampling were performed at four main outcrops: one represents undeformed host rocks (Site 1)
and the other three are deformed sites near major faults (Sites 2, 3 and 4). Site 1 is located in the
undeformed part of the basin, where the basal Antenor Navarro sandstones are not affected by faults
and fractures. In this site, we constructed a vertical sedimentary log to characterize the undeformed
rocks. Sites 2 and 3 are located along the major intra-basinal fault zones in the Rio Piranhas sandstones
and conglomerates, and are characterized by abundant fault zones with meter-scale offsets. Site 4 is
located in the hanging wall block of the major basin-boundary fault in the Antenor Navarro sandstones,
and has a displacement of ~170 m [36].

In the studied field sites, we collected a total of 95 samples of undeformed and faulted rocks,
from which we made 34 thin sections. In the lab, we examined the following materials: (1) undeformed
sandstones and conglomerates (i.e., host rocks); (2) deformed rocks collected within the fault zones,
consisting of both deformation bands (single or clustered) and foliated cataclasites (see Section 4.1 for a
description of fault zone structure). Thin section analysis was performed using an optical microscope,
and scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (EDS).
The thin sections were impregnated with stained blue epoxy to highlight porosity. For observations
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using the light petrographic microscope, we focused on grain size and roundness, sorting, packing,
porosity, mineral composition and amount of clay. We also described depositional and diagenetic
features in undeformed and faulted samples. Small representative samples were analyzed using
a scanning electron microscope (SUPERSCAN SSX-550, Shimadzu Corporation, Kyoto, Japan) to
improve clay mineral identification and textural analysis. EDS was used to identify the main chemical
elements and mineral composition of the samples. X-ray diffraction (XRD) analyses were performed
using a Bruker (Billerica, MA, USA) D2 Phaser powder diffractometer (CuKα radiation, voltage of
30 kV, current of 10 mA, step size of 0.018, interval of 1 s per step) on powdered bulk samples (n = 10)
and fraction samples <2 µm in size (n = 6) for clay mineral identification in undeformed and faulted
rocks. The oriented samples of the clay fractions were analyzed under three different conditions: air
dried; ethylene glycol saturated; and heated to a temperature of 550 ◦C. The powdered bulk samples
were measured in the range 2–80◦ 2θ, and the clay fraction samples were measured in the range
2–20◦ 2θ. Mineral phase identification and semi-quantitative estimations were performed using the
DIFFRAC.EVA suite software provided by Bruker Corporation (Billerica, MA, USA). The results of the
XRD analyses, together with sample description and location, are listed in Table 1.

4. Results

4.1. Fault Zone Structure

The studied fault zones exhibit three major structural domains (Figure 2): (1) the host rock,
i.e., the undeformed sandstone and conglomerates without any significant deformational features;
(2) the fault core, where most of the fault slip is accommodated; and (3) the surrounding footwall
and hanging wall damage zones, interposed between the host rock and fault core, and composed of
deformation bands.
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Figure 2. Conceptual sketch showing the typical architecture of fault zones in the Rio do Peixe basin.
The host rock represents the sandstones and conglomerates with pristine textures and sedimentary
structures not affected by faults. The fault core is the most deformed part of the fault zone, where
slip surfaces were frequently developed and where several movements (different slicken lines) are
observed. The damage zone is the deformed rock volume next to the fault core that has single or
clusters of deformation bands (Sites 2, 3 and 4 in this study). Colors are indicative of the amount of
weathering observed in the field.
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Concerning the host rock, the original undeformed fluvial facies of the Rio do Peixe basin exhibit
a massive laminated structure with trough–festoon crossbedding stratification (Figure 3). These units
vary from silty sandstones to fine conglomerates. In a few cases, thin silt lenses are also observed
(Figure 3). The sandstones are generally clast-supported with a granular texture, and grains are locally
fractured. The grain sizes vary between silt and gravel.
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Figure 3. Schematic profile and compositional classification of the host rock (Antenor Navarro
Formation) in the Rio do Peixe basin, Site 1. (A) Outcrop photograph showing fluvial sedimentary
structures with tabular and lenticular shapes of fine sandstones and trough–festoon conglomerates.
Note the intense red-orange coloration of undeformed rocks. (B) Vertical sedimentary log showing
sampling position (Samples 1 to 9) in the fluvial succession. (C) Compositional classification of analyzed
Samples 1 to 9, based on [37]. Key: c—clay; s—sand; fs—fine sand; ms—medium sand; cs—coarse
sand; g—gravel; Qz—quartz; Fd—feldspar; Rf—rock fragments.

The fault cores range from 0.1 m to 0.3 m in thickness, whereas the width of the damage zones
broadly range from ~5 m to 10 m (in small faults of Sites 2 and 3) up to ~200 m (in the hanging wall
damage zone of Site 4). The fault cores and the inner damage zone generally form topographic relief
up to 1 m in height with respect to the surrounding undeformed rock (Figure 4A). The sandstones in
the fault core show a strong decrease in grain size and a preferential grain alignment, which forms a
tectonic foliation visible at the hand scale (Figure 4B). Most offsets are extensional or slightly oblique.
The footwall and hanging wall damage zones consist of clusters of anastomosing deformation bands
(Figure 4C) and isolated single deformation bands (Figure 4D). Deformation bands also form a small
positive relief. The fault cores and deformation bands exhibit lighter colors than surrounding host
rocks (Figure 4B–D) and in some cases an orange to red coloration is also observed.
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Figure 4. Field photographs showing the main structural features of studied fault zones in the Rio
do Peixe basin. (A) Example of an extensional fault zone with m-scale offset showing positive relief
with respect to the host sandstone, Site 2. The dotted line indicates the approximate position of the
fault core. (B) Foliated fault core rock (sample UT13 in Table 1) showing light grey to red colors, Site 2.
The diameter of the coin is ~2.5 cm. (C) Example of a 12.0 cm-thick cluster of deformation bands,
in positive relief, developed in the fault damage zone, Site 4. The length of the white scale is ~8.0 cm.
(D) Whitish single deformation band in positive relief developed in the damage zone, Site 2. The length
of the pen is ~14.0 cm. Key: FWDZ—footwall damage zone; HWDZ—hanging wall damage zone;
FC—fault core; DB—deformation band; CDB—cluster of deformation bands.

4.2. Petrography

4.2.1. Host Rock

The host rock comprises: (1) fine-grained sandstones with moderate sorting and angular grains
(Figure 5A); and (2) coarse-grained, generally poorly sorted sandstones with sub-rounded grains
(Figure 5B,C). Point, line and concave–convex grain contacts predominate, while floating and sutured
grains are rare. These grain contacts indicate that the sandstones have moderate packing and shallow
burial conditions. The sandstones are composed of feldspar, quartz, chert, metamorphic lithoclasts
and opaque minerals, although the percentage of these minerals varies in each sample. In thin sections,
feldspar is usually the most abundant constituent (~60%), followed by quartz (~40%), lithoclasts (up to
10%) and opaque minerals (~1%). Feldspar grains generally show microfractures and are often partially
to completely dissolved, while quartz grains are generally intact. The sandstones vary from arkose to
lithic arkose according to the Folk (1968) classification (Figure 3C). All analyzed samples commonly
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exhibit primary intergranular porosity and, subordinately, secondary moldic porosity associated with
the selective dissolution of feldspar grains (Figure 5E,F). Fracture porosity is also observed (Figure 5C),
although fractures are mostly filled by clay minerals. In thin sections, visual porosity was observed
to be 17% and 28% in fine and coarse sandstones, respectively. Generally, grains are coated by thin
layers of clay minerals; these are even more abundant within intergranular pores and microfractures.
In some samples, pores show shrinkage (Figure 5B,C). In rare cases, the porosity is almost entirely
filled by clay minerals (Figure 5A).
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of offset accommodated within the fault zones (Figure 6). The samples from single deformation bands 

Figure 5. Optical microscopic images of the undeformed Rio do Peixe basin sandstones at Site 1.
(A) Host rock, with very fine grains and abundant small pores which are frequently filled by clay
minerals (pore filling, PF). The porosity is mainly secondary porosity (SP). (B) Coarse-grained sandstone
showing sub-rounded grains and primary porosity, partially filled by smectite and illite. (C) Example of
a feldspar clast dissolved and replaced by abundant clays. (D–F) show intergranular primary porosity
(PP) between quartz grains (Qtz) and SP resulting from the dissolution of feldspar grains (Fsp).

4.2.2. Fault Rocks

The deformed sandstones show different degrees of deformation, most likely due to the amount
of offset accommodated within the fault zones (Figure 6). The samples from single deformation bands
exhibit a tight fabric and limited intergranular and secondary moldic (feldspar dissolution) porosity
compared to the host rock (Figure 6A,B). The visual porosity inside the deformation bands is around
11%, i.e., lower than host rock samples. Intragranular fractures are common in quartz and feldspar
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grains within the deformation bands (Figure 6C). In places, fractures are open and filled by fine-grained
angular cataclastic material (Figure 6D).

Samples from fault cores exhibit a strong reduction in grain size with abundant fractions ranging
from fine sand to silt (Figure 6E,F). In strong contrast to the undeformed host rock, fault core samples
are clearly matrix-supported and very poorly sorted (Figure 6E,F). The brown colored, fine-grained
matrix consists of crushed feldspar grains, in agreement with recent observations [34]. In the fault cores,
the visual porosity determined using the optical microscope is practically zero due to the presence of
the cataclastic matrix (Figure 6F).
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Figure 6. Fault rocks viewed under optical microscope. (A) Example of tight fabric in a deformation
band within the damage zone, Site 2. (B) Detail of primary porosity filled by small angular clasts
generated by the cataclasis process in a deformation band, Site 2. Note that feldspar grain dissolution
is limited. (C) Secondary porosity (SP) developed by intragranular microfractures in a deformation
band. (D) Detail of intragranular fractures filled by fine-grained angular cataclastic material in a small
fault core. (E) Fine-grained matrix in the fault core resulting from high grain comminution, in which
the pore space was completely destroyed, Site 3. (F) A high degree of cataclasis within the fault core,
showing a dramatic reduction in grain size and porosity, Site 4. The brown crushed material in (E) and
(F) mostly consist of very small feldspar grains developed during a cataclastic process cf. [34].
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4.3. Clay Minerals

The clay minerals observed in the undeformed host hock are smectite, illite and subordinately
kaolinite (Figure 7). These generally form a coating around clasts. The feldspars have a pore lining
with an arrangement similar to the surrounding clay minerals, indicating growth into an open void
(Figure 7A). The smectite and kaolinite exhibit a pore-filling texture (Figure 7B), while the illite shows
a pore-lining geometry on quartz (Figure 7C). The smectite is marked by contraction fractures, likely
due to sample drying (Figure 7D).
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Figure 7. SEM images of clay minerals in undeformed sandstones. (A) Feldspar grain surrounded by
fractured smectite. (B) Well developed smectite flakes inside a pore. (C) Pore-line illite coatings capping
quartz grains. (D) Mixed layers of smectite and illite. Key: Sme—smectite; Fsp—feldspar; Ill—illite.

4.4. XRD Data

XRD bulk analysis was carried out on 10 samples as listed in Table 1. The results show that
the main mineral phases identified in both undeformed and faulted sandstones are very similar
(Figure 8A–C). Undeformed and faulted sandstones contain mostly quartz and feldspar (orthoclase,
microcline and albite) and subordinately micas (Table 1). Hematite was only detected in three out of
five undeformed sandstones, and was not detected in faulted samples. At low 2θ values, when clay
minerals can be identified, undeformed sandstones show small spectral peaks (see enlargement in
Figure 8A) which have a very low intensity (or are absent) in faulted sandstones (see enlargements
in Figure 8B,C). Overall, semi-quantitative estimates based on XRD peak intensity, combined with
thin section observations, indicate that the amount of clay minerals is systematically <1–2%. In three
faulted samples (one of fault core rock and two of deformation bands), either no clay minerals were
detected or insufficient material was available for clay fraction analysis (Table 1).
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Table 1. Results of XRD analyses (bulk and clay fractions) performed in undeformed and faulted
rocks from Sites 1, 2 and 4. (I-S: illite-smectite; DB: deformation bands). Sample labels are the same as
Figures 8 and 9.

Sample # Site Formation Structural Domain Bulk Mineralogy Clay Mineralogy

SCP01 Site 1 Antenor
Navarro

Host rock
(fine conglomerate)

Quartz, feldspars,
muscovite, hematite Illite, smectite

SCP05 Site 1 Antenor
Navarro

Host rock
(fine sandstone)

Quartz, feldspars,
muscovite, hematite Illite, smectite

UT01 Site 2 Rio Piranhas Host rock
(fine sand)

Quartz, feldspars,
muscovite

Illite, smectite, I-S
mixed layers

UT11 Site 2 Rio Piranhas Host rock
(Fine sand)

Quartz, feldspars,
muscovite

Illite, smectite, I-S
mixed layers

UT13 Site 2 Rio Piranhas Fault core
(foliated cataclasite)

Quartz, feldspars,
muscovite

Not analyzed
(no enough clay)

UT14 Site 2 Rio Piranhas Fault core
(foliated cataclasite) Quartz, feldspars Illite, chlorite

SVEM1 Site 4 Antenor
Navarro

Host rock
(fine sandstone)

Quartz, feldspars,
muscovite, hematite

Illite, smectite, I-S
mixed layers

SVEF3 Site 4 Antenor
Navarro

Damage zone
(deformation band)

Quartz, feldspars,
muscovite No clay phase

SVEA1 Site 4 Antenor
Navarro

Damage zone
(cluster of DB) Quartz, feldspars Illite, smectite

SVEB2 Site 4 Antenor
Navarro

Damage zone
(cluster of DB) Quartz, feldspars No clay phase
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XRD analyses of clay fractions, performed on the six samples which had sufficient clay minerals in
bulk analyses, indicate that the main types of clay minerals in both undeformed and faulted sandstones
are smectite and subordinately illite (Figure 9), as indicated by the comparison between the XRD
spectra of air-dried, glycolated and heated samples. Based on spectral peak intensities, in all the
spectra the amount of illite was found to be less than that of smectite. Both illite and smectite occur as
both distinct phases and mixed layers (Figure 9). In undeformed samples (Figure 9A–D) the spectral
peaks of illite and smectite have greater intensities than in faulted samples (Figure 9E,F). Smectite
is absent in the foliated fault-core rock (Figure 9E), which also shows the lowest amount of illite of
all the analyzed samples; this is consistent with the non-weathered, whitish foliated cataclasites that
are often observed in the field (e.g., Figure 4B) and the observed lack of clay minerals in thin sections
(Figure 7E,F). A very small amount of chlorite is also observed in the fault core rock sample (Figure 9E).
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Figure 9. XRD diffractograms of aggregates of clay-size fractions of undeformed (A–D) and fault core
(E) rocks, and a deformation band in a fault damage zone (F). Air-dried (in grey), heated at 550 ◦C
(in red), and treated with ethylene glycol (in blue) conditions are shown.

5. Discussion

It is well known that the development of fault zones in sandstones can significantly modify fluid
circulation pathways e.g., [12], thus influencing a variety of shallow diagenetic processes [21,24,38].
In this study, fault zones that developed in high-porosity arkosic sandstones are found to have
the typical architecture described in other settings [9,24,38], being organized in a foliated fault-core
surrounded by a damage zone hosting cataclastic deformation bands [34].
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5.1. Origin of Clay Minerals

In the analyzed samples, illite and smectite were found to be the most abundant clay minerals
(Figures 9 and 10) that typically occupy the spaces of the intergranular porosity of undeformed
sandstones (Figures 5 and 7B). These phases are not easily distinguishable from one another under
optical and electronic microscopy, however the results of XRD analysis on clay fractions indicate that
illite and smectite occur both in mixed layers and as independent phases (Figure 9). Illite and smectite
are among the most common clay minerals in sedimentary rocks. These minerals may form under
diagenetic conditions at low pressure and temperature at near-surface conditions [5,8,24], typical
of the shallow crust of the studied Rio do Peixe basin. The shallow burial depth during faulting
(<1–2 km) is attested by the following conditions: (1) the syn-rift nature of extensional faults; (2) poorly
lithified lithology; (3) the high-porosity framework in thin sections of undeformed sandstones; (4) the
absence of high temperature mineral phases; and (5) the absence of quartz overgrowth in thin sections.
Therefore, we interpret the occurrence of illite and smectite as the result of the partial weathering of
K-feldspar and plagioclase grains during shallow early diagenesis under meteoric conditions [14].
This interpretation is strongly supported by the intense and selective dissolution of feldspar grains
observed in thin sections (Figure 5). A detrital origin of the clay minerals in the studied samples is
excluded since such clays are much more abundant in undeformed (porous) sandstones than in their
faulted (non-porous) counterparts (Figure 10A–C), as discussed below.

5.2. Timing Between Clay Authigenesis and Faulting

The greater presence of clay minerals in the host rocks, and their scarcity or absence in the fault
zone domains (both in thin sections and in X-ray diffractograms) indicates that, in the Rio do Peixe
basin, clay authigenesis mostly occurred after the formation of faults. This interpretation implies that
the studied fault zones acted as barriers to weathering meteoric fluids rather than preferential conduits,
which is consistent with previously published data in similar lithologies. This hydraulic behavior
is in agreement with pervasive grain fragmentation and cataclasis, as documented in thin sections
(Figure 6), which provides a more compact, tight and impermeable fabric within the fault zones cf. [34].
Accordingly, when the studied extensional faults and deformation bands were formed at shallow
burial depth, the rock volume incorporated into the fault zones could not provide an effective pathway
for meteoric influx, thus compromising the process of clay authigenesis and limiting the development
of clay phases. This is also consistent with: (1) the presence of Fe-oxides in the host rocks, and not in
their faulted counterparts (Table 1); and (2) the intense reddish coloration of host rocks and the orange
to whitish coloration of faulted rocks observed in the field (as shown schematically in Figure 3).

Therefore, we believe that no significant amount of detrital clays was present in the sandstone
before deformation, due to their absence in faulted samples. If clay minerals were present in the
host sandstones at the time of faulting, they would have certainly been incorporated into the fault
zones, probably reducing the friction between grains and preventing (or at least hindering) both
cataclasis [23,24] and the development of deformation bands. In summary, we suggest that when
the diagenetic process of clay authigenesis occurred in the high-porosity undeformed sandstones,
there was no significant porosity and sufficient permeability within the fault zones for meteoric fluid
circulation and intense alteration of feldspars.

5.3. Evolutionary Model

Based on field observations and laboratory results, we propose the following evolutionary model
for the generation of clay minerals after sediment deposition in the following sequence: (1) the syn- to
post-sedimentary formation of extensional faults and deformation bands in poorly lithified sandstones,
inducing localized grain compaction and early comminution within the fault zones; (2) the further
evolution of failure and the generation of low-permeability cataclastic fault zones; (3) the beginning
of the weathering process during shallow diagenesis and meteoric fluid circulation; (4) the selective
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weathering and dissolution of feldspar grains in a semi-arid environment (as shown by moldic
porosity in thin sections) and clay mineral authigenesis in the high-porosity undeformed sandstones
and conglomerates; (5) the exhumation of faults during regional basin inversion and the formation of
positive reliefs of fault zones (due to differential surface erosion) caused by a tight cataclastic fabric.
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Figure 10. Summary diagrams showing a comparison between diffractograms of undeformed host
rocks (green lines) and faulted rocks (red lines). (A) Bulk XRD analysis indicating that that the amount
of clay minerals in the undeformed samples is higher than that in faulted samples. (B) The relative
abundance of smectite in undeformed and faulted samples. (C) The relative abundance of illite in
undeformed and faulted samples.

6. Conclusions

We studied clay mineral assemblages in faulted, high-porosity arkosic sandstone of the Rio do
Peixe basin (northeast Brazil) to understand the role of faults in clay mineral authigenesis. We integrated
field observations with analysis of microstructures, optical and scanning electron microscopy and XRD
(bulk and clay-fraction) mineralogy. The results obtained in this study indicate the following conclusions:
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(1) The bulk mineralogy of the Rio do Peixe sandstone does not change significantly between the
undeformed and faulted domains, consisting of lithic arkose with feldspar grains generally
comprising >50%.

(2) In both undeformed and faulted domains, clay minerals are <1–2% and consist of smectite and
illite, and subordinately illite–smectite mixed layers. Despite the similar mineralogy, the amount
of clay is systematically less in the faulted domain than in pristine rocks and in some cases is not
observed at all.

(3) Clay minerals in the studied arkosic sandstones most likely developed during feldspar weathering
processes in a shallow meteoric environment. A detrital origin of clay is excluded in the analyzed
sandstones and conglomerates.

(4) Contrary to the results of other fault rock studies in similar lithologies, clay is found to be less
abundant in the faulted domains (fault core and damage zone) than in the host rocks. We conclude
that this is due to the tight fabric that developed in the faulted porous sandstone, which inhibited
meteoric fluid circulation and clay mineral authigenesis.

We conclude that, contrary to several other faulted settings which have a high abundance of
authigenic clays, the development of fault zones in high-porosity arkosic sandstone in semi-arid
regions prevents the authigenesis of clay minerals. Consequently, clay authigenesis is more efficient in
undeformed sandstones than faulted domains, which has important implications for oil and water
reservoir quality in siliciclastic rocks and fault behavior in structurally complex settings.
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