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Abstract: Novel collector lead(II)-benzohydroxamic acid (Pb(II)–BHA) complexes in aqueous
solution were characterized by using experimental approaches, including Ultraviolet-visible (UV-Vis)
spectroscopy and electrospray ionization-mass spectrometry (ESI-MS), as well as first-principle
density functional theory (DFT) calculations with consideration for solvation effects. The Job
plot delineated that a single coordinated Pb(BHA)+ should be formed first, and that the higher
coordination number complexes can be formed subsequently. Moreover, the Pb(II)–BHA species can
aggregate with each other to form complicated structures, such as Pb(BHA)2 or highly complicated
complexes. ESI-MS results validated the existence of Pb-(BHA)n=1,2 under different solution pH
values. Further, the first-principles calculations suggested that Pb(BHA)+ should be the most stable
structure, and the Pb atom in Pb(BHA)+ will act as an active site to attack nucleophiles. These findings
are meaningful to further illustrate the adsorption mechanism of Pb(II)–BHA complexes, and are
helpful for developing new reagents in mineral processing.

Keywords: Pb(II)–BHA; lead chemistry; metal–organic collectors; DFT calculation; surface activation

1. Introduction

Metal–organic coordination complexes have been widely used in the materials, chemistry.
Recently, their promising applications in mining have attracted research attention [1–8]. For instance,
lead(II)-benzohydroxamic acid (Pb(II)–BHA) complexes are effective collectors in the beneficiation
of oxide minerals, including tungsten minerals, cassiterite, and rutile [9,10]. Given the excellent
selectivity and good collecting ability of Pb(II)–BHA, the scheelite flotation process could be simplified
remarkably without the addition of sodium silicate, overcoming the shortage of heating in the routine
flotation of scheelite [9–11]. The beneficiation of scheelite is currently one of the most challenging
problems worldwide in the field of mineral processing. Conventionally, separating scheelite from
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calcium bearing minerals, such as fluorite and calcite, by using anionic collectors (especially for fatty
acid) is difficult due to their highly similar properties in calcium-bearing surfaces [12,13]. Fortunately,
our group first introduced the Pb complexes of benzohydroxamic acid (Pb(II)–BHA complexes) to
effectively separate scheelite from calcium-bearing gangues by properly regulating the Pb/BHA
ratio and pH [9,11]. Furthermore, as displayed in Figure 1a, the novel flotation scheme (Scheme i
in Figure 1b), with Pb(II)–BHA complexes used as the collector, has shown better performance than
the traditional activation flotation scheme (Scheme ii in Figure 1b), which first added Pb(II) as the
activator and subsequently added BHA as the collector [10,14–23]. The effective microstructures of
Pb(II)–BHA complexes in the solution, however, as well as their interaction mechanisms with oxide
minerals remain unclear. Considering the using of Pb(II) ions may result in environmental/public
health issues, a further understanding of this activating mechanism can be helpful for exploring the
alternative reagents.
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Pb(II) ion (1/2 in (a) represents the flotation scheme in i and ii in (b)); (b) two flotation schemes.

The hydroxamic acid group (–CO–NH–OH) is the functional group of the BHA [25–27].
The functional group has different properties that remain poorly characterized; in fact, a reliable
assignment of the correct structure is challenging because the several possible conformations strongly
depend on concentration, temperature, and the nature of the solvent [28]. The hydroxamate collectors,
such as benzohydroxamic acid (BHA), naphthenic hydroxamate, and amide hydroxamate, have been
useful as highly selective flotation collectors in recent years. The role to function as collectors in mineral
flotation has been documented by Lynch et al. [29]. The chelate between hydroxamic acids and the
metal ion, however, has remained poorly investigated. Currently, first-principle calculations based
on density functional theory (DFT) and some advanced experimental technologies are used to obtain
more information on the molecular structure of BHA [30]. Wander et al.’s benchmarking calculations
indicate that the DFT calculation can achieve near chemical accuracy of hydrolysis constants for metal
ions in most cases [31]. Nuclear magnetic resonance and DFT calculations performed by Garcia et al.
show that the adopted BHA conformation of BHA aqueous solution is a closed Z (cis) configuration in
aqueous solution [32]. Both Z (cis) and E (trans) conformations in Scheme 1 regularly co-exist in solvent.
The concentration and environmental factors determine the ratio of Z type to E type conformations to
some extent, and potential barriers are present among different conformations [33,34].Minerals 2018, 8, x 3 of 17 
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BHA can chelate with metal ions, such as copper(II) cadmium(II), cobalt(II), nickel(II),
manganese(II), lead(II), zinc(II), aluminum(III), iron(III), and bismuth(III), thus taking on diverse
chelate structures [26,35]. Very few heavy metal ion complexes of BHA chelates have been extensively
investigated for their special uses, such as the bismuth(III) complex that has activity against Helicobacter
pylori; however, reports about the novel Pb(II)–BHA complexes are also few. Understanding the
microstructures of Pb(II)–BHA complexes is essential to improve the technique working in flotation
practice and fundamental field of lead chemistry [36–39].

This current study aims to investigate configurations of Pb(II)–BHA coordination complexes in
aqueous solution. Accordingly, UV-Vis spectroscopy and electrospray ionization mass spectrometry
(ESI-MS) were performed to characterize the configuration of Pb(II)–BHA complexes. Furthermore,
first-principle DFT calculations were performed to understand the constituents and properties of
Pb(II)–BHA complexes at the molecular level. The frontier molecular orbital [40] and natural
atomic orbitals (NAOs) [41] were used to describe the reactivity of the studied Pb(II)–BHA complex.
This work has shed new light on effective microstructures of Pb(II)–BHA coordination complexes for
mineral flotation.

2. Methodology

2.1. Experimental Details

2.1.1. Materials

Analytical grade BHA (>98%) was purchased from Tokyo Chemical Industry Co., Ltd. in Japan.
Analytical grade lead nitrate (>99%) was used. pH regulators were prepared with the stock solution of
sodium hydroxide (>96%) and hydrochloric acid (36~38%). All purity is in mass percent. The 18.2 MΩ
pure water produced by Arium Mini Plus (Sartorius Weighing Technology, Goettingen, Germany) was
used in this work.

2.1.2. UV-Vis Tests

The UV-Vis spectrum of the Pb(II)-hydroxide system has been investigated elsewhere [42]. Here
we will not assign the characteristic peaks of the Pb(II)–BHA complex. The Job plot [43], proposed by
Job, provides qualitative and quantitative insight into the stoichiometry with the underlying association
of ligand- and solvent-dependent reaction rates. The Job plot was used to track the full reaction path.
Moreover, we changed the guest and host solution to comprehensively understand the stoichiometry of
the product. In this work, the concentration of the Pb(II)–BHA complex, as determined by integration
of the intensity of specific wavenumber, was plotted against the mole fraction XA (the guest solution is
BHA solution) and XB (the guest solution is Pb(II) ion solution). A Shimadzu UV2600/2700 Ultraviolet
spectrophotometer was used to obtain the UV-Vis spectra at a fixed concentration of Pb(II) ion at
0.1 mM using the equimolar continuous change method and molar ratio method.

2.1.3. ESI-MS Tests

ESI-MS patterns were collected in positive ion mode with a Bruker Q-TOF Qualification Standard
Kit, using solutions of the 0.1 mM/L mixture of lead nitrate and BHA. ESI-MS patterns were used to
obtain the proof of coordinated compounds of Pb(II)–BHA complexes at the molar ratio of 1:1 (v:v,
at the natural pH 4.4) and 1:2 (v:v, at pH 13.0). The natural pH was selected for exclusion of guest
species so that we can get a relatively simple Pb–BHA structure in aqueous solution. A high pH of 13.0
was selected in according to a report that high pH can result in more complicated solution species [10].
The two case studies, regarded as representatives of both acid and alkaline solutions, are supposed to
provide evidence of Pb–BHA complexes.
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2.2. Computational Methods

All calculations were performed with the Gaussian 09 (version D.01) quantum chemistry package,
based on the B3LYP method: A three-parameter hybrid functional by replacing a certain amount of the
PW91 generalized gradient approximation (GGA) correlation functional with the LYP GGA correlation
functional [44–46]. The implicit solvation effects were considered using the polarized continuum
models (PCM) in the calculation [47]. On the other hand, the water molecules in the first hydration
of Pb(II)–BHA complex were also considered with the explicit solvation model. The aug-cc-pVDZ
basis set was employed as all-electron basis set in all types of calculation on the light atoms H, C, N,
and O, except for the Pb atom in Pb(II)–BHA complex systems. The aug-cc-pVDZ-PP basis set with a
relativistic pseudopotential was used for the Pb atom. The basis set, obtained from EMSL Basis Set
Exchange web site, has already been verified as producing acceptable thermodynamic information of
hydrated Pb(II) ions [30,48,49]. The Los Alamos effective core potential double-ξ (LanL2Dz) was used
for the primary geometry optimization of modeled benzohydroxamic acid and its Pb(II) complex in
ionic form. LanL2Dz replaced 78 core electrons with relativistic effective core potential (RECP) [50];
therefore, only two valence electrons of Pb(II) ions were described [51]. To refine the structure and
calculate the molecular orbitals, we further used the larger aug-cc-pVDZ basis set for the light atoms,
such as hydrogen, oxygen, nitrogen, and carbon, and we used the aug-cc-pVDZ–PP with RECP of the
inner 60 electrons for Pb(II) ions to calculate the frequency [52]. The default convergence parameters
(with maximum force within 4.5 × 10−4, force RMS within 1.8 × 10−3) in the Gaussian 09 software
were retained to optimize the structure. All calculations were successfully converged, without virtual
frequencies in the vibration analysis.

There are three protonation sites in the BHA molecule. The carbonyl oxygen site is found to be
the preferred site for protonation by Arora et al. [53] in aqueous solution. In the building of BHA anion
models [54], the proton at the carbonyl oxygen was removed according to the preferred deprotonation
site reported by Begoña et al. [32]. The Pb(II) ion was set as the metal center ion which would be the
coordination center of the bidentate BHA anions. The envisaged conformations were ligated by two,
three and four BHA anions. Thermodynamic values for Gibbs free energy [55] were obtained using
the PCM with the context:

∆Gr = ∑ Gprod −∑ Greact (1)

where Gprod and Greact are the free energy or the products and the reactants included in the
reaction, respectively.

The Gauss View was used as a visualization tool in this paper. In addition, all calculations
including the mapped molecular orbitals in this work were performed at the theory level of
PCM-B3LYP/aug-cc-pVDZ on light atoms (C, H, O, and N) and PCM -B3LYP/aug-cc-pVDZ-PP
on Pb atoms [56]. Molecular orbital contours for the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) of the cluster model were computed at the same
theoretical level. The contributions of the Pb atom to the frontier molecular orbitals were calculated
with a multifunctional wave function analyzer Multiwfn [57] based on the NAO method.

3. Results and Discussion

3.1. Experimental

3.1.1. UV-Vis Results

Because of the superposition of UV-Vis absorbance peaks of the products and the reactants,
carefully processing the collected UV-Vis data is essential. Initially, the first and the last points were
fixed at zero absorbance because the complexity of the product might be different when one component
is in excess, and the further fitting procedures would exclude the two points [58]. The starting second
point and the last second point were connected to form a background. After deducing the background
absorbance, the Job plots were plotted, as shown in Figure 2b,d. Here, Job plots were fitted using
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the method of initial tangents using experimental data close to the beginning points (the first and
last points were not included due to the formation of hydrated Pb complexes and the solvation of
BHA) [59]. As illustrated in Figure 2, XA and XB were the mole fractions of Pb(II) ions and BHA
according to dosing method 1 and 2, respectively. The wavelength at 230 nm represents the significant
changes in the solution components. The same trends can also be obtained by using other wavelengths
between 230 nm and 240 nm (Figure 3).
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Figure 2a,c shows that the increasing dosage of Pb(II) ions and BHA has strengthened and
extended the absorbance peaks. Job plots have been obtained from the newly mixed Pb(II)–BHA
mixture, with the collected characteristic absorbance peaks of UV-Vis spectra in aqueous solution
having both dosing methods. The absorbance peak at 230 nm has been plotted with respect to the range
of the molar ratios of Pb(II):BHA from 1:9 to 9:1. The obtained Job plots show that the stoichiometry of
the complexes for the first one with BHA as a guest solution is XA = 0.42 (Figure 2b), which supports
a stoichiometry of Pb(II):BHA between 1:1 to 1:2. Meanwhile, the reversing dosing method with
the Pb(II) ion solution as the guest solution obtained XB = 0.67 (Figure 2d), clearly indicating that a
stoichiometry of 1:2 corresponds to the structure of Pb(BHA)2. These results support the formation of
Pb(BHA)2 complex when excessive BHA solution is added.

At the natural pH value of 4.4, the main components of Pb2+ solution are the Pb2+ cations [42];
as for the BHA solution, the mean components are BHA− anions [60]. Hence, both Pb2+ and BHA−

should be the main reactants involved in the coordination reaction. In addition, the stability constants
obtained in our previous work [10] for the Pb–BHA complexes are 9.14 ± 0.05 ((Pb)(BHA)+) and
12.63 ± 0.01 ((Pb)(BHA)2). Apparently, these experimental results support the existence of Pb(BHA)+

and Pb(BHA)2. Considering the order that we prepared the mixture for the UV-Vis tests can influence
the reaction paths, the accepted potential reaction mechanism are described as follows:

BHA− + Pb2+ → Pb(BHA)+
BHA−→ Pb(BHA)2 (2)

2BHA− + Pb2+ → Pb(BHA)2 (3)

where Equation (2) can be explained as the stepwise formation of the single coordinated Pb(BHA)+

complex, when a small quantity of BHA− solution is used as a guest specie, and Equation (3) is ideal
for interpreting the formation of Pb(BHA)2, when Pb(II) solution is used as a guest specie. The water
molecules and other ions are excluded to better identify the highest coordination number of BHA with
Pb(II) as central metal ion.

Figure 3 shows the continued UV-Vis test results at the characteristic peaks of 221, 230, 235,
and 240 nm that can explain the mechanism of forming high coordination complexes. These drawn
curves show a consistent trend. For a clear illustration, we have divided these curves into three stages.
At the beginning stage, the absorbance increases rapidly. At the end of the rising stage at 1 mM/L of
BHA, a 1:1 (v:v) Pb(II)–BHA complex is formed, which is consistent with both the obtained result of the
Pb(BHA)+ complex in the Job plots and the computational section. Afterward, the curves show a slow
rising stage region with a small slope from 1 mM/L to 2.5 mM/L. The fluctuation of these collected
data suggests that the component in the solution should be intricate. Interestingly, these trends end
with the same proportion of Pb:BHA = 1:2.5, at which the Pb(BHA)2 complex can exist as indicated by
the Job plots. When increasing the BHA concentration, these curves adopt a horizontal line-like region
of the similar absorbance intensity to pure BHA solution.

The three stages in the curve can be seen as the stepwise formation of high coordination complexes,
as interpreted by Equation (2). Note that the higher coordination components with more than 2 BHA as
ligands are not sufficiently supported by the Job plots. Better experimental evidence has been collected
from the electrospray ionization-mass spectrometry (ESI-MS) pattern.

3.1.2. ESI-MS Results

To find out possible Pb(II)–BHA complexes formed in the solution, the collected ESI-MS data of
reaction mixtures of lead nitrate and BHA with water as the solvent at the positive mode are shown in
Figure 4. Figure 4a shows that when the solution pH is approximately 13.0 in the mixture, the main
product is the single coordination complex Pb(BHA)+ with m/z values of 343. Figure 4b shows that
Pb(II)–BHA complex at the molar ratio of 1:2 can produce m/z values of 362 and 497 responding to
the (Pb(H2O)BHA)+ and (Pb(OH)BHA2)+ in aqueous solution, respectively. The later (Pb(OH)BHA2)+

configuration is quite abnormal, in which lead ion possesses a positive tetravalence. The reason
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for this is still unclear. However, this does not affect the following discussions and conclusions.
The inset in Figure 4b shows the predicated spectra of (Pb(OH)BHA2)+ is in good agreement with
the experimental one, further suggesting the existence of the double coordinated complexes. Proof
of the single coordinated Pb(II) complex and double coordinated complex with BHA as ligands is
provided, indicating that the Pb(BHA)+, Pb(BHA)2, and the possible high coordination complexes are
closely related to the pH value. This finding is consistent with the result obtained from the continuous
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Figure 4. ESI-MS results of the mixture of (a) Pb:BHA molar ratio of 1:1 at a pH value of 13.0 and
(b) Pb:BHA molar ratio of 1:2 at the natural pH of 4.4. The inset in (b) is the comparative results of the
theoretical spectra and the experimental spectra. (Solution concentrations are 1 mM/L).

The ESI-MS results have validated the existence of the Pb(II) complex with one and two BHA
as ligands. The experimental approaches are not sufficient, however, to provide exact structures or
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properties at the microscopic scale; thus, the structures of Pb(II)–BHA complexes, have been further
explored by using first-principle DFT calculations at high accuracy, including the solvation effects.

3.2. Theoretical Prediction

3.2.1. Prediction of Stable BHA Isomers and Pb(II)–BHA Complexes

All optimized BHA and BHA− (the anion of the BHA molecule with the dissociation of the proton)
structures and their complexes with the Pb(II) ion are shown in the first two rows in Figure 5a at a
B3LYP/aug-cc-pVDZ theoretical level. These optimized structures are divided into four categories
called Ei, Zi, Ea, and Za. From the calculation results as shown in Figure 5b, it is clear that the
corresponding Za type is most stable configuration for BHA, BHA−, Pb(BHA)2+, and Pb(BHA)+.
The interesting finding is that BHA prefers to coordinate with Pb(II) to form a “Pb–O–C–N–O”
five-membered ring, not a “Pb–O–C–N” four-membered ring, which is consistent with the previous
report [26].Minerals 2018, 8, x 9 of 17 
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Gibbs free energy of BHA, BHA−, Pb(BHA)2+, and Pb(BHA)+ isomers with the Gibbs free energy of
Za type as zero point. Spheres for Pb, C, H, O, and N atoms are colored in orange, gray, white, red,
and blue, respectively.

Because Za-type BHA is the most stable structure, it has been adopted in the following calculations
and discussions. To better understand the interaction of Pb–BHA with water molecules, the influence of
water molecules on the studied system has been further investigated using the explicit water molecules.

3.2.2. Single Pb–BHA in Aqueous Solution

The hydration of lead-BHA complex with different coordination water molecules has been
investigated to consider the real aqueous environment. Figure 6a shows that water molecules were
added one by one to coordinate with the Pb(BHA)+ complex. This procedure can be described by
Equations (4) and (5) below:

Pb(H2O) 2+
m + BHA− ↔ Pb(H2O)m(BHA)+ (4)

Pb(BHA)+(H2O)m + H2O↔ Pb(BHA)+H2O(m+1) (5)

where m(0→4). Here, the hydrated lead(II) cation is a six folded complex in the first hydration shell,
according to the previous report [51].

As shown in Figure 6a, the electronical density distribution of LUMO (bottom (a)) shifted from
the lead ion to the BHA molecule, indicating the active site of the lead-BHA complex can be influenced



Minerals 2018, 8, 368 9 of 16

by the coordinated water molecules. The increasing number of water molecules from 0 to 3 results in
small differences in the electronical density distribution of LUMO and HOMO, which suggests the
active site of Pb(BHA)+ is stable. A fairly dispersed distribution of LUMO and HOMO on the whole
complex has been observed, after adding more than 3 water molecules, which should be due to the
influence of the surrounding water molecules.
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Figure 6. The optimized structure (top (a)) of hydrated Pb(BHA)+ with the addition of water molecules
one by one and the corresponding highest occupied molecular orbital (HOMO) (middle (a)) and lowest
unoccupied molecular orbital (LUMO) (bottom (a)). (b) Gibbs free energy difference between the
hydrated Pb(BHA)+ and hydrated Pb2+ +BHA complex with four and five water molecules. (c) The
hydroxylation of Pb(BHA)+. The contours have been computed at the PCM-B3LYP level of theory with
a threshold of 0.001 au, and spheres for Pb, C, H, O, and N atoms are colored in orange, gray, white,
red, and blue, respectively.

Figure 6b shows the optimized structures of a BHA reacted with a hydrated lead(II) ion (left of
Figure 6b, denoted as (Pb(H2O)m)BHA)+ and the hydration structure of Pb(BHA)+ (right of Figure 6b,
denoted as (Pb–BHA)(H2O)m)+ with four (m = 4) and five (m = 5) water molecules, respectively.
The Gibbs free energy differences between ((Pb(H2O)m)BHA)+ and ((Pb–BHA)(H2O)m)+ are −7.44
kcal/mol and−5.07 kcal/mol with respect to four (m = 4) and five (m = 5) water molecules, respectively.
These calculated results show that ((Pb–BHA)(H2O)m)+ is more favorable in thermodynamics.

As is tabulated in Table 1, all the Gibbs free energy differences of the coordination reactions of
(Pb–BHA)+(H2O)m (m > 0) with another water molecule shown are positive, although all the Gibbs free
energy changes of the coordination reactions of Pb2+ with water molecule are negative. This indicates
that Pb2+ prefers to coordinate with more than five water molecules, but (Pb–BHA)− will not like to
coordinate with more than two water molecules (∆G > 10 kcal/mol for the third water molecule),
and in the hydration configurations of ((Pb–BHA)(H2O)m)+, (Pb–BHA)− and (Pb–BHA)−H2O should
be the dominate species. These findings are consistent with the ESI-MS results.
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Table 1. The changes in the reaction Gibbs free energy (∆G) and the difference of Pb–O mean distance
in the hydration system with coordination number (CN) m of water molecules varied from 1 to 5.

CN of Water
Molecules (m)

∆G/(Kcal/mol) Pb–O Mean Distance (Å)

(Pb–BHA)+(H2O)m Pb(H2O)m
2+ (Pb–BHA)+(H2O)m Pb(H2O)m

2+

1 1.41 −50.48 2.53 2.34
2 1.38 −36.75 2.64 2.38
3 7.40 −27.34 2.69 2.42
4 4.64 −17.65 2.77 2.49
5 8.35 −14.56 2.83 2.55

On the other hand, with the addition of the coordinated water molecules, the average bond
length of Pb–O in both hydration systems of (Pb–BHA)+(H2O)m and Pb(H2O)m

2+ increased. The bond
length of Pb–O in (Pb–BHA)+H2O is 2.53 Å, which is similar to the mean bond length of Pb–O in
Pb(H2O)5 (2.55 Å). In structure chemistry, the basic idea is that the longer bond length, the less stable
the corresponding complex. Thus, the changes of mean bond length of Pb–O in (Pb–BHA)+(H2O)m and
Pb(H2O)m

2+ also confirmed that (Pb–BHA)+(H2O)m are less stable than (Pb–BHA)+ and Pb(H2O)m
2+.

In addition, the scheelite flotation [16] are usually performed at the alkaline pH, hydroxyl ion
(OH−) are a key component in the pulp. Thus, the coordination reactions of Pb(BHA)+ with OH−

were also investigated in this work. Herein, the coordination of the Pb(BHA)+ with OH− has been
simulated in a stepwise order, as shown in Figure 6c. The reaction site has been chosen according
to the LUMO of Pb(BHA)+. The optimized structures of Pb(BHA)(OH) and (Pb(BHA)(OH)2)− and
the reaction Gibbs free energies changes (∆G) are also given in Figure 6c. The hydroxyl binding with
Pb(BHA)+ and PbOH(BHA) respond with binding energies of −33.81 Kcal/mol and −12.82 Kcal/mol,
respectively. These results suggest that the coordination reaction of hydroxyl with the Pb(BHA)+

are thermodynamically favorable. At a natural pH of 4.4, both Pb2+ and BHA− should be the major
reactants involved in the coordination reaction. At a real flotation plant, however, a higher pH value
close to 9 is used. At such pH or a higher pH, both Pb(BHA)(OH) and (Pb(BHA)(OH)2)− could exist in
the flotation solution. These results are in good accordance with experimental m/z value of 383 and
423 in ESI-MS patterns, which refer to (Pb(BHA)(OH)+Na)+ and the (Pb(BHA)(OH)2 + 2Na)+ species
in Figure 4, respectively.

Consistently positive ∆G of the coordination reactions between (Pb–BHA)+(H2O)m (m > 1) and
another water molecule should be ascribed to the result of the stronger coordination of BHA− with
Pb2+ (∆G is −356.55 kcal/mol as listed in Table 1). The coordination involving charge transfer from
the ligand BHA− to the metal ion Pb2+ makes the properties and electronic structure of Pb–BHA less
active than the independent lead(II) ion. The results agree well with the transformation in Figure 6b,
where the bonded BHA is strong enough to protect the Pb2+ from the influence of surrounding
water molecules.

Based on these results and discussions (the BHA− can coordinate with the Pb(II) smoothly),
the following work has been conducted under the implicit model rather than explicit water molecules.

3.2.3. High Coordination Complexes

In thermodynamics, the isomer with the lowest Gibbs free energy (G) could be the most stable
and most efficient isomer; Za type structures should be the optimal configurations and the dominant
components according to the Gibbs free energies shown in Figure 5b, which is consistent with the
results obtained by Begoña et al. [32]. The Za type structure as the ligand has been used for the
subsequent calculations. The initial Pb(II)–BHA coordination complexes are modeled with the Pb(II)
ion as the central metal ion, based on the stepwise mechanism in Equation (2). To obtain the possible
high coordination compounds, we increased the coordination number of BHA ligand to 4.
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As shown in Figure 7, all Pb(II)–BHA coordination complexes possess hemidirected geometry (in
such configuration, BHA ligands occupy merely half of the space surrounding the Pb(II) atom) [7,51,61].
As shown in Table 2, the reaction between the BHA with the Pb(II) (Figure 7a) corresponds to a total
reaction free energy change of −356.55 Kcal/mol, indicating the Pb–BHA− is a fairly favorable
specie in thermodynamics. For the second BHA− ligand (Figure 7b), the total reaction free energy
change is −27.20 Kcal/mol, excluding the reaction free energy of Pb(BHA)+. The reaction energy
(−356.55 Kcal/mol) of BHA− with Pb2+ is much higher than that of water molecules with Pb
(−50.48 Kcal/mol), indicating the coordination reaction of BHA− with Pb2+ will be more efficient than
that of H2O with Pb2+. Thereafter, the coordination reaction of the third BHA− produces a positive
change in Gibbs free energy of 0.03 Kcal/mol, implying that the binding of the third water molecule
with the former Pb(BHA)2 is not favorable in thermodynamics. Moreover, as is shown in Figure 7c,
when CN reaches 4, the intramolecular aggregation occurred due to a hydrogen bonding interaction
(The highlighted N–H...O bond in Figure 7c) between the added BHA− and another adjoining BHA−,
with the hydrogen bond (N–H...O) length of 1.84 Å [26,62] and the N–H...O angle of 153.9◦. A higher
CN than 3 should not be stable, but a Pb(II)–BHA complex with three or more BHA ligands can appear
due to the intermolecular interactions, including the Van der Waals’ force, H-bonding interaction.Minerals 2018, 8, x 12 of 17 
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and blue, respectively.

Table 2. The changes in Gibbs free energy (∆G) and Pb–O mean distance in Pb(II)–BHA complexes
with CN of BHA ligands ranging from 1 to 3.

CN Reaction ∆G(Kcal/mol) Pb–O (Å) εgap (eV)

1 Pb2+ + BHA- −356.55 2.26 4.17
2 Pb(BHA)+ + BHA- −27.20 2.40 4.50
3 Pb(BHA)2 + BHA- +0.03 2.58 4.17

3.2.4. Frontier Molecular Orbital Analysis

In Figure 8 the ligands of Pb(BHA)2 (b) and (Pb(BHA)3)− (c) occupied just half of the space
surrounding the Pb(II) ions. Pb(BHA)2 and (Pb(BHA)3)− adopted the hemidirected Pb(II)–BHA
structures due to the lone pair electron contributed by BHA ligands [51,63]. Additionally, the structure
of BHA can form some dimer structures and even interact with themselves. The adjoining BHA may
result in aggregation due to intermolecular interaction [32].
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As illustrated in Figure 8a, the LUMO of Pb(BHA)+ is mainly located at the Pb atom indicating
that the Pb site of the Pb(BHA)+ should be active in electrophilic reaction. The LUMO of Pb(BHA)2 in
Figure 7b and the (Pb(BHA)3)− in Figure 8c, however, spreads over the whole molecule, suggesting
that the molecule is not active in electrophilic reaction. Because the Pb(II)–BHA is used as selective
collector of oxide mineral, where the hydrated oxide mineral surface is an electron rich system,
the Pb(BHA)+ can be more actively absorb onto the surface than other species in the Pb(II)–BHA
solution. Additionally, as is shown in Table 3, the Pb atom contributes 91.93% to the LUMO, a rate
much higher than that in other Pb(II)–BHA complexes, based on the NAO [64] method. These results
have further verified that the Pb atom in Pb(BHA)+ can be the active site to adsorb onto the oxide
minerals surface. This is consistent with the reported results [9,10,24,65].
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Figure 8. (a–c) The frontier molecular orbitals (HOMO and LUMO) of Pb(II)–BHA complexes with 1 a,
2b, and 3c BHA ligands. The orbitals are generated at the B3LYP/aug-cc-pVDZ theory level with a
threshold of 0.001 au, and the solvation effect is included with PCM model. Spheres for Pb, C, H, O,
and N atoms are colored in orange, gray, white, red, and blue, respectively.

Table 3. The contribution of the Pb atom to frontier molecular orbitals (HOMO+1, HOMO, LUMO,
and LUMO−1) based on the NAO [64] method.

Pb–BHA
Orbital Composition Assigned to Pb atom/%

HOMO−1 HOMO LUMO LUMO+1

Pb(BHA)+ 0.03 3.55 91.93 77.54
Pb(BHA)2 1.14 1.28 1.14 0.02
Pb(BHA)−3 1.01 0.75 0.13 0.00

4. Conclusions

In the present study, experimentally, Job plots considering two dosing strategies indicate that the
Pb coordination compounds in solution may adopt the stoichiometry of Pb(BHA)+ and Pb(BHA)2.
UV-Vis results obtained by the equimolar continuous change method show that the Pb(BHA)+

and the high coordination number compounds should be formed stepwise in aqueous solution.
Thereafter, the electrospray ionization-mass spectrometry (ESI-MS) results provide strong proofs
that the Pb(BHA)+ and (PbOH(BHA)2)+ should be the stable species at the alkaline pH in solution;
and the Pb(BHA)+ should be the major component in aqueous solution at the natural pH. Furthermore,
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first-principles density functional theory (DFT) calculations show that: the Za type BHA should be
the major structure; the Pb(BHA)+ can be stable in aqueous solution; and the formation of higher
coordination number complexes are not favorable. Finally, the frontier molecular orbitals analyses
show that the Pb atom of Pb(BHA)+ is the largest contributor to the LUMO. This suggests that the Pb
atom in the structure should be the active site for accepting nucleophile and can also be the active site
to adsorb onto the surface of oxide minerals. Both experimental results and theoretical results are in
good accordance. These findings are meaningful to further illustrate the adsorption mechanism of
Pb(II)–BHA complexes in mineral processing.
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