Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea)
Abstract
:1. Introduction
2. Geological Context
2.1. Geological Setting and Paleoenvironments
2.2. The Kerch Peninsula: Local Geology and Maykopian Facies
2.3. Study Area
3. Materials and Methods
3.1. Sampling
3.2. Analytical Procedures
4. Results
4.1. Bulk and Trace Element Chemistry of the MMs
4.2. Bulk-Rock Mineralogy
4.3. Authigenic Mineralogy and Mineral Chemistry
4.3.1. Carbonates: Morphology, Chemistry, and Isotopes
4.3.2. FeS2: Morphology
4.3.3. FeS2: Main and Trace Element Composition and Isotopy
4.3.4. Host Minerals for Hg, Zn, Cu, Pb, Ag, Au
5. Discussion
5.1. Provenance of the Middle Maykopian Sedimentation in the Western Termination of the Indol-Kuban Trough: Mineralogical Evidence
5.2. Main Trends of Trace Element Sequestration by Mineral Hosts in Oxygen-Deficient Environments
5.2.1. Geochemical Fingerprints of Carbonates
5.2.2. Trace Element Composition of Sedimentary FeS2 and TE Partitioning during Diagenesis
5.3. Degree of Anoxia/Oxygenation in Sediments: Mineralogical and Geochemical Constraints
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rakhmanov, R.R. Mud Volcanoes and Their Petroleum Potential; Nedra: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Kopf, A. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–52. [Google Scholar] [CrossRef]
- Shnyukov, E.; Sheremetiev, V.; Maslakov, N.; Kutniy, V.; Gusakov, I.; Trofimov, V. Mud Volcanoes of the Kerch-Taman Region; GlavMedia Publishing House: Krasnodar, Russia, 2005. (In Russian) [Google Scholar]
- Evans, R.J.; Davies, R.J.; Stewart, S.A. Internal structure and eruptive history of a kilometre-scale mud volcano system, South Caspian Sea. Basin Res. 2007, 19, 153–163. [Google Scholar] [CrossRef]
- Alizadeh, A.A. Geology of Azerbaijan, Oil and Gas, v. VII; Nafta-Press: Baku, Azerbaijan, 2009. (In Russian) [Google Scholar]
- Mazzini, A. Mud volcanism: Processes and implications. Mar. Pet. Geol. 2009, 26, 1677–1680. [Google Scholar] [CrossRef]
- Dimitrov, L. Mud volcanoes as the most important pathways for degassing deeply buried sediments. Earth Sci. Rev. 2002, 59, 49–76. [Google Scholar] [CrossRef]
- Planke, S.; Svensen, H.; Hovland, M.; Banks, D.A.; Jamtveit, B. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 2003, 23, 258–268. [Google Scholar] [CrossRef]
- Martinelli, G.; Panahi, B. Mud Volcanoes, Geodynamics and Seismicity; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Deville, E.; Guerlais, S.H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean). Mar. Pet. Geol. 2009, 26, 1681–1691. [Google Scholar] [CrossRef]
- Bonini, M.; Mazzarini, F. Mud volcanoes as potential indicators of regional stress and pressurized layer depth. Tectonophysics 2010, 494, 32–47. [Google Scholar] [CrossRef]
- Feyzullayev, A.A. Mud volcanoes in the South Caspian basin: Nature and estimated depth of its products. Nat. Sci. 2012, 4, 445–453. [Google Scholar] [CrossRef]
- Bonini, M.; Tassi, F.; Feyzullayev, A.A.; Aliyev, C.S.; Capecchiacci, F.; Minissaleet, A. Deep gases discharged from mud volcanoes of Azerbaijan: New geochemical evidence. Mar. Pet. Geol. 2013, 43, 450–463. [Google Scholar] [CrossRef]
- Chao, H.C.; You, C.F.; Liu, H.C.; Chung, H.C. The origin and migration of mud volcano fluids in Taiwan: Evidence from hydrogen, oxygen, and strontium isotopic compositions. Geochim. Cosmochim. Acta 2013, 114, 29–51. [Google Scholar] [CrossRef]
- Li, N.; Huang, H.; Chen, D. Fluid sources and chemical processes inferred from geochemistry of pore fluids and sediments of mud volcanoes in the southern margin of the Junggar Basin, Xinjiang, northwestern China. Appl. Geochem. 2014, 46, 1–9. [Google Scholar] [CrossRef][Green Version]
- Oppo, D.; Capozzi, R.; Nigarov, A.; Esenov, P. Mud volcanism and fluid geochemistry in the Cheleken peninsula, western Turkmenistan. Mar. Pet. Geol. 2014, 57, 122–134. [Google Scholar] [CrossRef]
- Kokh, S.N.; Sokol, E.V.; Dekterev, A.A.; Kokh, K.A.; Rashidov, T.M.; Tomilenko, A.A.; Bul’bak, T.A.; Khasaeva, A.; Guseinov, A. The 2011 Strong Fire Eruption of Shikhzarli Mud Volcano, Azerbaijan: A Case Study with Implications for Methane Flux Estimation. Environ. Earth Sci. 2017, 76, 701. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Kikvadze, O.A. Mud volcanoes as important pathway for trace elements input to the environment: Case study from the Kerch-Taman province, Northern Black Sea. In Proceedings of the SGEM 2018: 18th International Multidisciplinary Scientific GeoConference, Albena, Bulgaria, 2–8 July 2018; pp. 307–322. [Google Scholar]
- Aliyev, A.A.; Guliyev, I.S.; Rakhmanov, R.R. Catalogue of Mud Volcanoes Eruptions of Azerbaijan: 1810–2007; Nafta-Press: Baku, Azerbaijan, 2009. [Google Scholar]
- Sokol, E.; Novikov, I.; Zateeva, S.; Vapnik, Y.; Shagam, R.; Kozmenko, O. Combustion metamorphism in Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 2010, 22, 414–438. [Google Scholar] [CrossRef]
- Seryotkin, Y.V.; Sokol, E.V.; Kokh, S.N. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos 2012, 133–135, 75–90. [Google Scholar] [CrossRef]
- Grapes, R.; Sokol, E.; Kokh, S.; Kozmenko, O.; Fishman, I. Petrogenesis of Na-rich paralava formed by methane flares associated with mud volcanism, Altyn-Emel National Park, Kazakhstan. Contrib. Miner. Pet. 2013, 165, 781–803. [Google Scholar] [CrossRef]
- Bagirov, E.; Lerche, I. Flame hazards in the South Caspian Basin. Energy Explor. Exploit. 1998, 16, 373–397. [Google Scholar]
- Jakubov, A.A.; Grigoryants, B.V.; Aliev, A.D.; Babazade, A.D.; Veliev, M.M.; Gadzhiev, Y.A.; Guseinzade, I.G.; Kabulova, A.Y.; Kastryulin, N.S.; Matanov, F.A.; et al. Mud Volcanism in the USSR Territory and Its Relation with Petroleum Potential; Elm: Baku, Russia, 1980. (In Russian) [Google Scholar]
- Avdusin, P.P. Mud Volcanoes of the Crimea-Caucasian Geological Province. A Petrographic Study; Izd. AS USSR: Moscow, Russia, 1948. (In Russian) [Google Scholar]
- Yassir, N.A. Mud Volcanoes and the Behaviour of Overpressured Clays and Silts. Ph.D. Thesis, University of London, London, UK, 1989. [Google Scholar]
- Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth-Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef]
- Dill, H.G.; Kaufhold, S. The Totumo mud volcano and its near-shore marine sedimentological setting (North Colombia)—From sedimentary volcanism to epithermal mineralization. Sediment. Geol. 2018, 366, 14–31. [Google Scholar] [CrossRef]
- Aliev, A.A.; Lavrushin, V.Y.; Kokh, S.V.; Sokol, E.V.; Petrov, O.L. Isotopic composition of pyritic sulfur from the mud volcanic ejecta in Azerbaijan. Lithol. Miner. Resour. 2017, 52, 358–368. [Google Scholar] [CrossRef]
- Aloisi, G.; Bouloubassi, I.; Heijs, S.; Pancost, R.D.; Pierre, C.; Sinninghe Damsté, J.S.; Gottschal, J.C.; Forney, L.J.; Rouchy, J.M. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett. 2002, 203, 195–203. [Google Scholar] [CrossRef]
- Gontharet, S.; Pierre, C.; Blanc-Valleron, M.M.; Rouchy, J.M.; Fouquet, Y.; Bayon, G.; Foucher, J.P.; Woodside, J.; Mascle, J. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea). Deep-Sea Res. Part II 2007, 54, 1292–1311. [Google Scholar] [CrossRef]
- Merinero, P.R.; Lunar, H.R.; Martínez, F.J. Mechanisms of trace metal enrichment in submarine, methane-derived carbonate chimneys from the Gulf of Cadiz. J. Geochem. Explor. 2012, 112, 297–305. [Google Scholar] [CrossRef]
- Wang, S.; Magalhães, V.H.; Pinheiro, L.M.; Liu, J.; Yan, W. Tracing the composition, fluid source and formation conditions of the methane-derived authigenic carbonates in the Gulf of Cadiz with rare earth elements and stable isotopes. Mar. Pet. Geol. 2015, 68, 192–205. [Google Scholar] [CrossRef]
- Carvalho, L.; Monteiro, R.; Figueira, P.; Mieiro, C.; Almeida, J.; Pereira, E.; Magalhães, V.; Pinheiro, L.; Vale, C. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: Evidence of Cd, As and Ba fronts in upper layers. Deep-Sea Res. Part I 2018, 131, 133–143. [Google Scholar] [CrossRef]
- Ershov, V.V.; Levin, B.V. New data on the material composition of mud volcano products on Kerch Peninsula. Dokl. Earth Sci. 2016, 471, 1149–1153. [Google Scholar] [CrossRef]
- Inan, S.; Yalcin, M.N.; Guliev, I.S.; Kuliev, K.; Feizullayev, A.A. Deep petroleum occurrences in the lower Kura depression, south Caspian Basin, Azerbaijan: An organic geochemical and basin modelling study. Mar. Pet. Geol. 1997, 14, 731–762. [Google Scholar] [CrossRef]
- Feyzullayev, A.A.; Guliyev, I.S.; Tagiyev, M.F. Source potential of the Mesozoice Cenozoic rocks in the South Caspian Basin and their role in forming the oil accumulations in the Lower Pliocene reservoirs. Pet. Geosci. 2001, 7, 409–417. [Google Scholar] [CrossRef]
- Fowler, S.R.; Mildenhall, J.; Zalova, S.; Riley, G.; Elsley, G.; Desplanques, A.; Guliyev, F. Mud volcanoes and structural development on Shah Deniz. J. Pet. Sci. Eng. 2000, 28, 189–206. [Google Scholar] [CrossRef]
- Smith-Rouch, L.S. Oligocenee-Miocene Maykop/Diatom Total Petroleum System of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan. U.S. Geol. Surv. Bull. 2006, 2201, 1–27. [Google Scholar]
- Luther, G.W.; Meyerson, A.L.; Krajewski, J.J.; Hires, R. Metal sulfides in estuarine sediments. J. Sediment. Res. 1980, 50, 1117–1120. [Google Scholar] [CrossRef]
- Chow, N.; Morad, S.; Al-Aasm, I.S. Origin of authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: Evidence from Cenozoic strata of the Arctic Ocean and Norwegian-Greenland Sea (ODP LEG 151). J. Sediment. Res. 2000, 70, 682–699. [Google Scholar] [CrossRef]
- Rickard, D. Sulfidic Sediments and Sedimentary Rocks; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Fleurance, S.; Cuney, M.; Malartre, M.; Reyx, J. Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr. Palaeocl. 2013, 369, 201–219. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Lounejeva Baturina, E.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace element content of sedimentary pyrite in black shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Little, S.H.; Vance, D.; Lyons, T.W.; McManus, J. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. Am. J. Sci. 2015, 315, 77–119. [Google Scholar] [CrossRef][Green Version]
- März, C.; Poulton, S.W.; Beckmann, B.; Kuster, K.; Wagner, T.; Kasten, S. Redox sensitivity of P cycling during black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 2008, 72, 3703–3717. [Google Scholar] [CrossRef]
- Sokol, E.V.; Kozmenko, O.A.; Khoury, H.N.; Kokh, S.N.; Novikova, S.A.; Nefedov, A.A.; Sokol, I.A.; Zaikin, P. Calcareous sediments of the Muwaqqar Chalk Marl Formation, Jordan: Mineralogical and geochemical evidences for Zn and Cd enrichment. Gondwana Res. 2017, 46, 204–226. [Google Scholar] [CrossRef]
- Parnell, J.; Perez, M.; Armstrong, J.; Bullock, L.; Feldmann, J.; Boyce, A.J. Geochemistry and metallogeny of Neoproterozoic pyrite in oxic and anoxic sediments. Geochem. Perspect. Lett. 2018, 7, 12–16. [Google Scholar] [CrossRef]
- Okay, A.I.; Şengör, A.M.C.; Görür, N. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 1994, 22, 267–270. [Google Scholar] [CrossRef]
- Sidorenko, A.V. Geology of USSR, v. VIII (Crimea); Nedra: Moscow, Russia, 1969. (In Russian) [Google Scholar]
- Zonenshain, L.P.; Le Pichon, X. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 1986, 123, 181–240. [Google Scholar] [CrossRef]
- Nedumov, R.I. Lithology, geochemistry, and paleogeography of Cenozoic deposits in the Caucasus foothills. Litologiya i Poleznye Iskopaemye 1994, 1, 69–77. (In Russian) [Google Scholar]
- Lavrushin, V.Y.; Kopf, A.; Deyhle, A.; Stepanets, M.I. Formation of mud-volcanic fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from boron isotopes. Lithol. Miner. Resour. 2003, 38, 120–153. [Google Scholar] [CrossRef]
- Popov, S.V.; Rögl, F.; Rozanov, A.Y.; Steininger, F.F.; Shcherba, I.G.; Kováč, M. Lithological-Paleogeographic Maps of Paratethys. 10 Maps Late Eocene to Pliocene. Scale: 1:5,000,000; Courier Forschungsinstitut Senckenberg: Stuttgart, Germany, 2004. [Google Scholar]
- Popov, S.V.; Antipov, M.P.; Zastrozhnov, A.S.; Kurina, E.E.; Pinchuk, T.N. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 2010, 18, 200–224. [Google Scholar] [CrossRef]
- Kopf, A.; Deyhle, A.; Lavrushin, V.Y.; Polyak, B.G.; Gieskes, J.M.; Buachidze, G.I.; Wallmann, K.; Eisenhauer, A. Isotopic evidence (He, B, C) for deep fluid and mud mobilization from mud volcanoes in the Caucasus continental collision zone. Int. J. Earth Sci. (Geol. Rundsch) 2003, 92, 407–425. [Google Scholar] [CrossRef]
- Meisner, A.; Krylov, O.; Nemcok, M. Development and structural architecture of the Eastern Black Sea. Lead. Edge 2009, 28, 1046–1055. [Google Scholar] [CrossRef]
- Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea–the Kerch seep area. Mar. Geol. 2012, 319–322, 57–74. [Google Scholar] [CrossRef]
- Kokh, S.N.; Shnyukov, Y.F.; Sokol, E.V.; Novikova, S.A.; Kozmenko, O.A.; Semenova, D.V.; Rybak, E.N. Heavy carbon travertine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 2015, 325, 26–40. [Google Scholar] [CrossRef]
- Herbin, J.P.; Saint-Germès, M.; Maslakov, N.; Shnyukov, E.F.; Vially, R. Oil seeps from the “Boulganack” mud volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: Inferences for the petroleum potential. Oil Gas Sci. Technol. 2008, 63, 609–628. [Google Scholar] [CrossRef]
- Olenchenko, V.V.; Shnyukov, Y.F.; Gas’kova, O.L.; Kokh, S.N.; Sokol, E.V.; Bortnikova, S.B.; El’tsov, I.N. Explosion Dynamics of the Andrusov Mud Vent (Bulganak Mud Volcano Area, Kerch Peninsula, Russia). Dokl. Earth Sci. 2015, 464, 951–955. [Google Scholar] [CrossRef]
- Nosovsky, M.F. The regional stratigraphic scale of the Maikopian deposits of the Crimea plain. Geologichesky Zhurnal 2003, 3, 137–145. (In Russian) [Google Scholar]
- Seidov, A.G. Lithology of the Maykop Formation in Azerbaijan; Izd. Akademii Nauk Azerbaidzhanskoi SSR: Baku, Russia, 1962. (In Russian) [Google Scholar]
- Lavrushin, V.Y.; Aidarkozhina, A.; Kikvadze, O.E.; Kokh, S.N. Geochemistry of mud volcanic fluids in the southern West-Kuban Basin: A case study with implication for source and mobilization depth reconstruction. In Proceedings of the XXII Conference on Groundwater in Siberia and Far East, Yakutsk, Russia, 22–26 June 2018; pp. 291–297. (In Russian). [Google Scholar]
- Kharaka, Y.K.; Mariner, R.H. Chemical Geothermometers and Their Application to Formation Waters from Sedimentary Basins. In Thermal History of Sedimentary Basins. Methods and Case Histories; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 99–117. [Google Scholar]
- Naumenko, A.D.; Naumenko, M.A. Main patterns of high-potential reservoirs in the northeastern Black Sea. Geologiya i Poleznye Iskopaemye Mirovogo Okeana 2008, 4, 49–58. (In Russian) [Google Scholar]
- Smyslov, A.A. Geothermal Map: Map of the Crustal Heat Flow Regime in the USSR Territory. Scale 1:1,0000,000; Ministry of Geology: Moscow, Russia, 1977. (In Russian)
- Kikvadze, O.E.; Lavrushin, V.Y.; Pokrovskii, B.G.; Polyak, B.G. Isotope and chemical composition of gases from mud volcanoes in the Taman Peninsula and problem of their genesis. Lithol. Miner. Resour. 2014, 49, 491–504. [Google Scholar] [CrossRef]
- Shatsky, V.; Sitnikova, E.; Kozmenko, O.; Palessky, S.; Nikolaeva, I.; Zayachkovsky, A. Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav massif). Russ. Geol. Geophys. 2006, 47, 482–496. [Google Scholar]
- Saryg-ool, B.Y.; Myagkaya, I.N.; Kirichenko, I.S.; Gustaytis, M.A.; Shuvaeva, O.V.; Zhmodik, S.M.; Lazareva, E.V. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy. Sci. Total Environ. 2017, 581–582, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Lavrent’ev, Y.G.; Korolyuk, V.N.; Usova, L.V.; Nigmatulina, E.N. Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ. Geol. Geophys. 2015, 56, 1428–1436. [Google Scholar] [CrossRef]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hubert, F.; Caner, L.; Meuner, A.; Ferrage, E. Unraveling complex <2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity. Am. Mineral. 2012, 97, 384–398. [Google Scholar] [CrossRef]
- Guggenheim, S.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Eberl, D.D.; Formoso, M.L.L.; Galán, E.; Merriman, R.J.; Peacor, D.R.; et al. Report of the Association Internationale Pour L’Étude Des Argiles (AIPEA) Nomenclature Committee for 2001: Order, Disorder and Crystallinity in Phyllosilicates and the use of the “Crystallinity Index”. Clay Miner. 2002, 37, 389–393. [Google Scholar] [CrossRef]
- Taylor, S.M.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Science: Oxford, UK, 1985. [Google Scholar]
- Rudnick, R.L.; Gao, S. The composition of the continental crust Treatise on Geochemistry—The Crust; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Romanek, C.S.; Jiménez-López, C.; Navarro, A.R.; Sánchez-Román, M.; Sahai, N.; Coleman, M. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature. Geochim. Cosmochim. Acta 2009, 73, 5361–5376. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Essen, E.J. Phase equilibrium in the system CaCO3-MgCO3-FeCO3. J. Petrol. 1987, 28, 389–414. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Bolhar, R.; Kamber, B.S.; Moorbath, S.; Fedo, C.M.; Whitehouse, M.J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 2004, 222, 43–60. [Google Scholar] [CrossRef]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Cabral, A.R.; Radtke, M.; Munnik, F.; Lehmann, B.; Reinholz, U.; Riesemeier, H.; Tupinambá, M.; Kwitko-Ribeiro, R. Iodine in alluvial platinum–palladium nuggets: Evidence for biogenic precious-metal fixation. Chem. Geol. 2011, 281, 125–132. [Google Scholar] [CrossRef]
- Meisel, T.; Horan, M.F. Analytical methods for the highly siderophile elements. Rev. Mineral. Geochem. 2016, 81, 89–105. [Google Scholar] [CrossRef]
- Hagvall, K.; Persson, P.; Karlsson, T. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter. Geochim. Cosmochim. Acta 2014, 146, 76–89. [Google Scholar] [CrossRef]
- Rice, C.M.; Atkin, D.; Bowels, J.F.W.; Criddle, A.J. Nukundamite, a new mineral, and idaite. Mineral. Mag. 1979, 43, 193–200. [Google Scholar] [CrossRef]
- Hatert, F. Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Can. Mineral. 2005, 43, 623–635. [Google Scholar] [CrossRef]
- Hámor-Vido, M.; Viczián, I. Vitrinite reflectance and smectite content of Mixed-layer illite/smectites in Neogene Sequences of the Pannonian Basin, Hungary. Acta Geol. Hung. 1993, 36/2, 197–209. [Google Scholar]
- Stefanov, Y. Illite/smectite diagenesis and thermal evolution of Lower Cretaceous-Paleogene successions in the Dolna Kamchiya Depression, Eastern Bulgaria. Geol. Balc. 2018, 47, 3–21. [Google Scholar]
- Huang, W.-L.; Bassett, W.A.; Wu, T.-C. Dehydration and hydration of montmorillonite at elevated temperatures and pressures monitored using synchrotron radiation. Am. Mineral. 1994, 79, 683–691. [Google Scholar]
- Huggett, J. Low-temperature illitization of smectite in the late Eocene and early Oligocene of the Isle of Wight (Hampshire basin), UK. Am. Mineral. 2005, 90, 1192–1202. [Google Scholar] [CrossRef]
- Hall, P.L.; Astill, D.M.; McConnell, J.D.C. Thermodynamic and structural aspects of the dehydration of smectites in sedimentary rocks. Clay Miner. 1986, 21, 633–648. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G.W. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Rue, E.L.; Smith, G.J.; Cutter, G.A.; Bruland, K.W. The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Res. 1997, 44, 113–134. [Google Scholar] [CrossRef]
- Cutter, G.A.; Moffett, J.G.; Nielsdóttir, M.C.; Sanial, V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar. Chem. 2018, 201, 77–89. [Google Scholar] [CrossRef]
- Mucci, A. Manganese uptake during calcite precipitation from seawater: Conditions leading to formation of pseudokutnahorite. Geochim. Cosmochim. Acta 1988, 52, 1859–1868. [Google Scholar] [CrossRef]
- Böttcher, M.E. Manganese (II) partitioning during experimental precipitation of rhodochrosite-calcite solid solutions from aqueous solutions. Mar. Chem. 1998, 62, 287–297. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep-Sea Res. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Zachara, J.M.; Cowan, C.E.; Resch, C.T. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 1991, 55, 1549–1562. [Google Scholar] [CrossRef][Green Version]
- Alwan, K.A.; Williams, P.A. Mineral formation fromaqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters. Transit. Met. Chem. 1979, 4, 128–132. [Google Scholar] [CrossRef]
- Abanda, P.A.; Hannigan, R. Effect of diagenesis on trace element partitioning in shales. Chem. Geol. 2006, 230, 42–59. [Google Scholar] [CrossRef]
- Rajan, S.; Mackenzie, F.T.; Glenn, C.R. A thermodynamic model for water column precipitation of siderite in the Plio-Pleistocene Black Sea. Am. J. Sci. 1996, 296, 506–548. [Google Scholar] [CrossRef]
- Campbell, K.A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeogr. Palaeocl. 2006, 232, 362–407. [Google Scholar] [CrossRef]
- Roberts, H.H.; Feng, D.; Joye, S.B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Res. Part II 2010, 57, 2040–2054. [Google Scholar] [CrossRef]
- Matsumoto, R.; Ryu, B.J.; Lee, S.R.; Lin, S.; Wu, S.; Sain, K.; Pecher, I.; Riedel, M. Occurrence and exploration of gas hydrate in the marginal seas and continental margin of the Asia and Oceania region. Mar. Pet. Geol. 2011, 28, 1751–1767. [Google Scholar] [CrossRef]
- Bruland, K.W.; Lohan, M.C. Controls of trace metals in seawater. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 23–47. [Google Scholar]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Huerta-Diaz, M.A.; Morse, J.W. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 1992, 56, 2681–2702. [Google Scholar] [CrossRef]
- Janssen, D.J.; Conway, T.M.; John, S.G.; Christian, J.R.; Kramer, D.I.; Pedersen, T.F.; Cullen, J.T. Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proc. Natl. Acad. Sci. USA 2014, 111, 6888–6893. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Awid-Pascual, R.; Kamenetsky, V.S.; Goemann, K.; Allen, N.; Noble, T.; Lottermoser, B.G.; Rodemann, T. The evolution of authigenic Zn–Pb-Fe-bearing phases in the Grieves Siding peat, western Tasmania. Contrib. Mineral. Petrol. 2015, 170, 17. [Google Scholar] [CrossRef]
- Lane, T.W.; Morel, F.M. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA. 2000, 97, 4627–4631. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Morel, F.M.M. The oceanic cadmium cycle: Biological mistake or utilization? Proc. Natl. Acad. Sci. USA 2013, 110, E1877. [Google Scholar] [CrossRef] [PubMed]
- Mederer, J.; Moritz, R.; Zohrabyan, S.; Vardanyan, A.; Melkonyan, R.; Ulianov, A. Base and precious metal mineralization in Middle Jurassic rocks of the Lesser Caucasus: A review of geology and metallogeny and new data from the Kapan, Alaverdi and Mehmana districts. Ore Geol. Rev. 2014, 58, 185–207. [Google Scholar] [CrossRef]
- Varentsov, I.M. Manganese Ores of SuperGene Zone: Geochemistry of Formation; Springer: Berlin, Germany, 1996. [Google Scholar]
- Berner, Z.A.; Puchelt, H.; Nöltner, T.; Kramar, U. Pyrite geochemistry in the Toarcian Posidonia Shale of southwest Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology 2013, 60, 548–573. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Berner, R.A. A new geochemical classification of sedimentary environments. J. Sediment. Res. 1981, 51, 359–365. [Google Scholar] [CrossRef]
Rocks | Middle Maykop Shale | Upper Maykop Shale | Fresh Mud Masses | Weathered Mud Masses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | T-1-3 | BT-18-1 | В-3-4 | О-1-2 | 202-2 | Mean (n = 10) | S | В-3-7 | 203-1s | 203-2 | Mean (n = 11) | S |
SiO2 | 53.19 | 60.04 | 56.61 | 60.36 | 57.31 | 57.63 | 1.88 | 57.30 | 53.93 | 58.32 | 56.69 | 3.96 |
TiO2 | 0.81 | 1.05 | 0.78 | 0.88 | 0.89 | 0.85 | 0.05 | 0.87 | 0.82 | 0.85 | 0.85 | 0.04 |
Al2O3 | 16.48 | 18.07 | 14.19 | 12.73 | 12.70 | 13.87 | 1.50 | 15.81 | 14.82 | 14.23 | 14.47 | 0.99 |
Fe2O3 | 7.90 * | 5.83 * | 1.57 | 2.06 | 2.19 | 2.16 | 0.52 | 5.18 | 3.84 | 5.32 | 4.80 | 0.61 |
FeO | n.a. | n.a. | 4.38 | 4.18 | 4.77 | 4.45 | 0.25 | 2.01 | 2.83 | 1.55 | 1.84 | 0.70 |
MnO | 0.11 | 0.04 | 0.07 | 0.10 | 0.10 | 0.09 | 0.01 | 0.08 | 0.08 | 0.11 | 0.09 | 0.01 |
MgO | 3.38 | 1.95 | 2.02 | 1.77 | 1.93 | 1.92 | 0.10 | 2.20 | 1.89 | 1.93 | 1.89 | 0.28 |
CaO | 2.44 | 0.47 | 1.82 | 1.84 | 2.15 | 1.81 | 0.29 | 1.40 | 1.41 | 2.26 | 1.59 | 0.53 |
Na2O | 1.32 | 1.37 | 3.08 | 2.73 | 2.93 | 2.67 | 0.51 | 1.87 | 3.98 | 1.97 | 2.90 | 1.64 |
K2O | 2.87 | 2.19 | 2.16 | 1.90 | 1.97 | 2.09 | 0.19 | 2.38 | 2.25 | 1.98 | 2.14 | 0.21 |
P2O5 | 0.11 | 0.10 | 0.14 | 0.14 | 0.13 | 0.14 | 0.01 | 0.13 | 0.14 | 0.17 | 0.14 | 0.02 |
H2O− | n.a. | n.a. | 1.57 | 1.24 | 1.43 | 1.53 | 0.27 | 1.86 | 1.84 | 1.99 | 2.16 | 0.60 |
LOI | 9.98 | 7.84 | 7.07 | 5.68 | 6.16 | 6.42 | 0.62 | 6.71 | 7.64 | 6.17 | 7.44 | 1.31 |
СО2 | n.a. | n.a. | 3.99 | 3.71 | 4.82 | 3.93 | 0.67 | 2.17 | 3.27 | 2.24 | 2.45 | 1.28 |
F | n.a. | n.a. | 0.06 | 0.06 | 0.06 | 0.06 | 0.00 | 0.06 | 0.06 | 0.05 | 0.06 | 0.01 |
SО3 | 0.47 | 0.14 | 0.07 | n.d. | 0.07 | 0.03 | 0.04 | n.d. | 0.93 | 0.25 | 0.24 | 0.40 |
S | n.a. | n.a. | n.d. | 0.27 | 0.15 | 0.17 | 0.12 | 0.10 | 0.13 | 0.12 | 0.07 | 0.06 |
Total | 99.05 | 99.07 | 99.58 | 99.65 | 99.75 | 99.81 | 0.32 | 100.14 | 99.86 | 99.52 | 99.81 | 0.28 |
Rock | Middle Maykop Shale | Upper Maykop Shale | Fresh Mud Masses | Weathered Mud Masses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Т-1-3 | BT-18-1 | B-3-4 | О-1-2 | 202-2 | Mean (n = 10) | S | B-3-7 | 203-1s | 203-2 | Mean (n = 11) | S |
Li | n.a. | 56.6 | 103 | 65.6 | 69.0 | 82.5 | 23.4 | 82.8 | 77.5 | 62.6 | 68.9 | 13.7 |
Be | n.a. | 2.16 | 1.85 | 1.68 | 1.70 | 1.75 | 0.18 | 1.86 | 1.91 | 1.83 | 1.84 | 0.06 |
B | n.a. | 61.4 | 746 | 602 | 638 | 837 | 369 | 549 | 993 | 598 | 810 | 278 |
Sc | 18.7 | 20.7 | 17.3 | 17.7 | 15.5 | 16.6 | 2.91 | 18.9 | 17.5 | 17.7 | 18.2 | 0.68 |
V | 123 | 158 | 111 | 102 | 101 | 107 | 14.3 | 123 | 125 | 115 | 116 | 10.8 |
Cr | 145 | 125 | 90.1 | 85.7 | 83.1 | 88.9 | 13.6 | 102 | 104 | 94.9 | 95.2 | 10.8 |
Mn | 920 | 249 | 637 | 723 | 694 | 657 | 43.8 | 601 | 621 | 758 | 665 | 70.7 |
Co | 19.4 | 18.2 | 20.7 | 21.5 | 19.4 | 20.7 | 2.54 | 21.9 | 20.8 | 18.8 | 20.9 | 1.61 |
Ni | 76.0 | 45.9 | 49.0 | 42.6 | 43.9 | 45.7 | 5.03 | 50.6 | 49.0 | 44.2 | 47.2 | 3.10 |
Cu | 41.7 | 38.1 | 24.1 | 23.8 | 22.2 | 22.9 | 2.26 | 24.6 | 25.7 | 24.4 | 24.9 | 0.57 |
Zn | 87.0 | 112 | 94.8 | 134 | 114 | 116 | 22.7 | 131 | 114 | 112 | 123 | 11.1 |
Ga | n.a. | 19.4 | 14.1 | 12.9 | 12.6 | 13.5 | 1.88 | 15.5 | 15.5 | 14.4 | 14.6 | 1.21 |
Ge | n.a. | 1.30 | 1.20 | 1.13 | 0.96 | 1.03 | 0.11 | 1.04 | 0.93 | 0.88 | 0.95 | 0.07 |
As | n.a. | 27.2 | 22.3 | 22.5 | 12.7 | 20.5 | 4.84 | 13.6 | 15.9 | 14.6 | 19.6 | 9.86 |
Se | n.a. | 8.69 | 3.72 | 5.54 | 4.17 | 4.73 | 1.37 | 4.38 | 5.43 | 5.89 | 5.00 | 0.78 |
Rb | 86.3 | 95.0 | 84.7 | 75.0 | 76.0 | 80.8 | 10.3 | 91.8 | 89.4 | 83.1 | 84.9 | 7.30 |
Sr | 182 | 89.8 | 177 | 313 | 578 | 294 | 165 | 184 | 150 | 163 | 152 | 30.2 |
Y | 21.1 | 17.2 | 11.8 | 12.6 | 12.2 | 12.5 | 0.77 | 12.1 | 12.5 | 13.8 | 13.4 | 1.38 |
Zr | 150 | 92.7 | 48.0 | 65.0 | 53.6 | 56.3 | 6.20 | 51.7 | 56.8 | 59.0 | 58.3 | 5.82 |
Nb | 12.3 | 9.27 | 7.36 | 7.10 | 7.30 | 7.44 | 0.34 | 7.88 | 7.42 | 7.61 | 7.58 | 0.21 |
Mo | 1.00 | 0.66 | 0.75 | 1.27 | 0.83 | 1.04 | 0.45 | 0.57 | 2.97 | 1.25 | 1.45 | 1.06 |
Cd | 0.12 | 0.25 | 0.21 | 0.14 | 0.18 | 0.16 | 0.04 | 0.17 | 0.20 | 0.19 | 0.19 | 0.03 |
Sn | n.a. | 2.19 | 1.88 | 1.84 | 1.80 | 1.85 | 0.20 | 1.99 | 2.00 | 1.97 | 1.91 | 0.16 |
Sb | 0.73 | 2.09 | 1.50 | 1.88 | 1.35 | 1.74 | 0.29 | 2.04 | 2.07 | 1.58 | 2.09 | 0.46 |
Cs | 4.00 | 6.89 | 7.92 | 5.47 | 5.27 | 6.06 | 1.26 | 7.14 | 6.41 | 5.77 | 6.05 | 0.96 |
Ba | 347 | 281 | 291 | 273 | 375 | 326 | 82.5 | 258 | 264 | 268 | 271 | 16.6 |
Hf | 4.00 | 5.90 | 5.04 | 11.9 | 6.53 | 6.52 | 2.68 | 5.52 | 5.30 | 6.81 | 6.03 | 0.74 |
Ta | 3.05 | 0.36 | 0.47 | 0.37 | 0.35 | 0.39 | 0.07 | 0.41 | 0.38 | 0.52 | 0.41 | 0.08 |
W | n.a. | 0.99 | 0.82 | 1.82 | 1.50 | 1.15 | 0.43 | 1.36 | 0.86 | 0.87 | 0.99 | 0.25 |
Hg | 0.06 | 0.06 | 0.54 | 0.42 | 0.47 | 0.38 | 0.15 | 0.51 | 0.60 | 0.48 | 0.43 | 0.21 |
Tl | n.a. | 0.39 | 0.29 | 0.27 | 0.27 | 0.29 | 0.02 | 0.30 | 0.30 | 0.30 | 0.30 | 0.01 |
Pb | n.a. | 17.6 | 17.0 | 15.3 | 16.0 | 16.5 | 0.69 | 16.2 | 16.6 | 16.5 | 16.8 | 0.85 |
Bi | n.a. | 0.27 | 0.19 | 0.16 | 0.17 | 0.18 | 0.02 | 0.21 | 0.19 | 0.18 | 0.20 | 0.02 |
Th | 10.0 | 10.2 | 8.20 | 10.1 | 8.22 | 8.78 | 1.06 | 9.60 | 8.73 | 9.28 | 9.15 | 0.37 |
U | 1.99 | 4.77 | 3.56 | 3.81 | 3.37 | 3.49 | 0.23 | 3.88 | 3.05 | 3.93 | 3.80 | 0.53 |
Br | n.a. | 11.5 | 71.0 | 41.4 | 38.7 | 47.7 | 17.1 | 7.10 | 67.8 | 14.9 | 25. | 28.5 |
La | 32.3 | 22.7 | 20. | 19.7 | 19.9 | 20.1 | 0.89 | 20.8 | 20.2 | 20.7 | 20.7 | 0.36 |
Ce | 64.3 | 52.2 | 44.1 | 42.3 | 43.7 | 43.7 | 2.25 | 46.1 | 43.2 | 44.2 | 44.7 | 1.30 |
Pr | 7.26 | 5.90 | 5.19 | 5.28 | 5.20 | 5.37 | 0.31 | 5.45 | 5.24 | 5.51 | 5.44 | 0.14 |
Nd | 27.0 | 20.5 | 19.9 | 19.1 | 19.8 | 19.7 | 0.51 | 21.2 | 18.8 | 20.9 | 20.3 | 1.09 |
Sm | 5.49 | 4.43 | 4.34 | 3.94 | 4.02 | 4.08 | 0.13 | 4.39 | 4.27 | 3.94 | 4.20 | 0.19 |
Eu | 1.14 | 1.02 | 0.93 | 0.75 | 0.87 | 0.88 | 0.07 | 0.88 | 0.96 | 0.95 | 0.93 | 0.04 |
Gd | 4.55 | 3.42 | 3.42 | 3.39 | 3.46 | 3.48 | 0.15 | 3.58 | 3.34 | 3.53 | 3.53 | 0.15 |
Tb | 0.68 | 0.56 | 0.47 | 0.46 | 0.49 | 0.48 | 0.03 | 0.51 | 0.47 | 0.49 | 0.50 | 0.02 |
Dy | 4.07 | 3.04 | 2.77 | 2.49 | 2.52 | 2.63 | 0.12 | 2.80 | 2.84 | 2.82 | 2.84 | 0.06 |
Ho | 0.83 | 0.56 | 0.51 | 0.47 | 0.46 | 0.49 | 0.03 | 0.46 | 0.43 | 0.50 | 0.48 | 0.05 |
Er | 2.28 | 1.54 | 1.15 | 1.28 | 1.15 | 1.34 | 0.25 | 1.28 | 1.29 | 1.43 | 1.37 | 0.10 |
Tm | 0.34 | 0.25 | 0.20 | 0.16 | 0.17 | 0.19 | 0.02 | 0.17 | 0.18 | 0.19 | 0.19 | 0.02 |
Yb | 2.30 | 1.47 | 1.04 | 0.94 | 1.13 | 1.12 | 0.16 | 0.99 | 1.13 | 1.26 | 1.21 | 0.19 |
Lu | 0.35 | 0.25 | 0.18 | 0.13 | 0.19 | 0.19 | 0.04 | 0.16 | 0.14 | 0.19 | 0.16 | 0.02 |
Phase | Mud Volcano Hill | ||
---|---|---|---|
Tischenko | Andrusov | Trubetskoy | |
Carbonates | |||
Siderite ((Fe,Mg)CO3) | ♦ | ♦ | ♦ |
Ankerite (Ca(Fe2+,Mg)(CO3)2) | ▲ | ▲ | ▲ |
Dolomite (CaMg(CO3)2) | ● | ● | ● |
Calcite (CaCO3) | ● | ||
Oligonite (Fe,Mn,Mg,Ca)CO3 | ● | ||
Kutnohorite (Ca(Mn,Mg,Fe2+)(CO3)2) | ● | ||
Mn-calcite ((Ca,Mn)CO3) | ● | ||
Ca-rhodochrosite ((Mn,Ca)CO3) | ● | ||
Sulphides | |||
Pyrite (FeS2) | ♦ | ♦ | ♦ |
Marcasite (FeS2) | ● | ● | ▲ |
Cinnabar (HgS) | ● | ||
Sphalerite (ZnS) | ▲ | ||
Cu5FeS6 | ● | ||
Chalcopyrite (CuFeS2) | ● | ||
Akantite α-Ag2S | ● | ||
Pb-S-bearing phase | ● | ||
Native elements and alloys | |||
Copper (Cu0) | ● | ||
Gold (Au0) | ● | ||
Gold-Silver alloy (AuxAg1−x) | ● | ||
Sulphates | |||
Barite (BaSO4) | ● | ● | ● |
Celestine (SrSO4) | ● | ||
Gypsum (CaSO4·2H2O) | ● | ● | |
Oxydes/(oxy)hydroxides | |||
Fe(Mn)-(oxy)hydroxides | ▲ | ▲ | ▲ |
Quartz (SiO2) | ▲ | ▲ | ▲ |
Silicates | |||
Glauconite (K,Na)(Fe3+,Fe2+,Al,Mg)2(Si,Al)4O10(OH)2 | ● | ● | ● |
Mineral | CaO | FeO | MgO | MnO | Na2O | SrO | ZnO | Total | FeCO3 | MgCO3 | CaCO3 | MnCO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
wt % | mol % | |||||||||||
LLD | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.02 | |||||
Tischenko hill | ||||||||||||
Sd * | 4.43 | 49.85 | 3.13 | 0.33 | 0.18 | bdl | bdl | 57.95 | 81 | 9 | 9 | 1 |
Sd | 5.23 | 44.90 | 7.50 | 0.07 | 0.06 | 0.06 | bdl | 57.82 | 70 | 20 | 10 | 0 |
Sd | 5.97 | 49.16 | 2.97 | 0.43 | 0.14 | 0.06 | 0.12 | 58.85 | 79 | 8 | 12 | 1 |
Sd | 7.31 | 46.99 | 2.40 | 0.82 | 0.08 | 0.09 | 0.12 | 57.81 | 77 | 7 | 15 | 1 |
Sd | 5.19 | 39.65 | 10.47 | 1.50 | 0.15 | 0.06 | bdl | 57.04 | 60 | 28 | 10 | 2 |
Sd | 1.19 | 40.03 | 11.07 | 6.51 | 0.13 | bdl | 0.05 | 58.98 | 59 | 29 | 2 | 10 |
Olig * | 4.41 | 29.02 | 8.75 | 14.42 | 0.11 | 0.05 | 0.19 | 56.96 | 44 | 25 | 9 | 22 |
Olig * | 5.80 | 24.29 | 6.77 | 21.28 | 0.18 | bdl | 0.15 | 58.54 | 37 | 19 | 11 | 33 |
Olig * | 5.15 | 25.16 | 7.86 | 20.70 | 0.10 | 0.07 | 0.14 | 59.18 | 38 | 21 | 10 | 31 |
Kut | 22.86 | 1.96 | 6.84 | 25.71 | 0.22 | 0.06 | bdl | 57.70 | 3 | 18 | 42 | 37 |
Dol | 29.47 | 5.62 | 17.28 | bdl | bdl | bdl | bdl | 52.37 | 8 | 42 | 50 | 0 |
Andrusov hill | ||||||||||||
Sd * | 4.61 | 49.48 | 1.95 | 0.39 | 0.23 | bdl | 0.10 | 56.80 | 83 | 6 | 10 | 1 |
Sd | 6.38 | 50.15 | 0.55 | 0.83 | 0.23 | bdl | bdl | 58.17 | 84 | 2 | 13 | 1 |
Sd | 4.26 | 47.89 | 4.66 | 0.93 | 0.18 | 0.09 | bdl | 58.04 | 77 | 13 | 9 | 1 |
Sd 1 | 5.07 | 45.43 | 7.40 | 0.38 | bdl | 0.08 | 0.08 | 58.52 | 69 | 20 | 10 | 1 |
Sd | 4.89 | 45.63 | 7.80 | 0.39 | 0.06 | bdl | 0.12 | 58.91 | 69 | 21 | 9 | 1 |
Ank | 33.04 | 13.33 | 11.33 | 0.24 | bdl | bdl | bdl | 57.99 | 18 | 26 | 55 | 1 |
Ank | 31.72 | 11.22 | 13.35 | 0.15 | bdl | 0.09 | bdl | 56.56 | 15 | 32 | 53 | 0 |
Ank | 31.59 | 11.91 | 13.21 | 0.19 | bdl | 0.25 | bdl | 57.21 | 16 | 30 | 54 | 0 |
Ca-Rhod 2 | 15.10 | 1.27 | 0.75 | 40.47 | 0.12 | bdl | bdl | 57.88 | 2 | 2 | 30 | 66 |
Trubetskoy hill | ||||||||||||
Sd * | 5.16 | 48.44 | 4.35 | 0.48 | 0.17 | bdl | 0.07 | 58.67 | 76 | 12 | 10 | 1 |
Sd | 9.75 | 41.93 | 2.17 | 4.37 | 0.20 | bdl | 0.06 | 58.53 | 66 | 6 | 20 | 7 |
Sd | 1.58 | 46.23 | 10.65 | 0.25 | bdl | bdl | bdl | 58.74 | 68 | 28 | 3 | 0 |
Ank | 31.57 | 9.47 | 15.54 | 0.20 | bdl | 0.17 | bdl | 56.97 | 12 | 35 | 52 | 1 |
Ank | 31.53 | 12.70 | 12.27 | 0.26 | 0.05 | 0.41 | bdl | 57.22 | 17 | 29 | 53 | 1 |
Ank | 31.66 | 13.81 | 11.21 | 0.17 | bdl | 0.10 | bdl | 57.00 | 19 | 26 | 55 | 0 |
Mn-Cal | 31.64 | 0.33 | 0.15 | 26.04 | 0.08 | 0.05 | bdl | 58.31 | 1 | 1 | 59 | 39 |
Cal 3 | 52.29 | 1.95 | 0.40 | 0.19 | bdl | 0.08 | bdl | 54.98 | 3 | 1 | 96 | 0 |
Dol | 28.85 | 5.84 | 17.83 | 1.10 | bdl | bdl | bdl | 53.62 | 8 | 42 | 48 | 2 |
Location | Mineral | δ 13C (VPDB), ‰ | δ18O (VPDB), ‰ | δ18O (VSMOW), ‰ | δ34 S (CDT), ‰ |
---|---|---|---|---|---|
Andrusov hill | Ankerite | +2.1 ± 0.1 | +1.9 ± 0.2 | +32.8 ± 0.2 | |
Andrusov hill | Ankerite | +2.2 ± 0.1 | +1.8 ± 0.2 | +32.7 ± 0.2 | |
Trubetskoy hill | Ankerite | +2.2 ± 0.1 | +1.0 ± 0.2 | +31.9 ± 0.2 | |
Trubetskoy hill | Ankerite | +2.0 ± 0.1 | +1.2 ± 0.2 | +32.1 ± 0.2 | |
Tischenko hill | Oligonite | +2.8 ± 0.1 | +1.3 ± 0.2 | +32.2 ± 0.2 | |
Andrusov hill | Siderite | +3.3 ± 0.1 | +5.9 ± 0.2 | +36.9 ± 0.2 | |
Trubetskoy hill | Siderite | +3.5 ± 0.1 | +5.2 ± 0.2 | +36.2 ± 0.2 | |
Trubetskoy hill | Siderite | +3.7 ± 0.1 | +5.5 ± 0.2 | +36.5 ± 0.2 | |
Tischenko hill | Siderite | +3.7 ± 0.1 | +5.4 ± 0.2 | +36.4 ± 0.2 | |
Big Tarkhan spring | Calcite * | +8.1 ± 0.1 | +11.0 ± 0.2 | +42.3 ± 0.2 | |
Big Tarkhan spring | Calcite * | +10.7 ± 0.1 | +12.7 ± 0.2 | +44.0 ± 0.2 | |
Big Tarkhan spring | Calcite * | +11.6 ± 0.1 | +12.8 ± 0.2 | +44.1 ± 0.2 | |
Big Tarkhan spring | Calcite * | +12.1 ± 0.1 | +12.9 ± 0.2 | +44.2 ± 0.2 | |
Andrusov hill | Pyrite frambiods | +8.94 ± 0.15 | |||
Andrusov hill | Pyrite crystals | +8.23 ± 0.15 | |||
Andrusov hill | Pyrite crystals | +6.23 ± 0.15 | |||
Trubetskoy hill | Pyrite frambiods ** | +7.40 ± 0.15 | |||
Trubetskoy hill | Pyrite frambiods ** | +5.65 ± 0.15 | |||
Trubetskoy hill | Pyrite crystals | +4.02 ± 0.15 | |||
Trubetskoy hill | Pyrite crystals | +4.18 ± 0.15 | |||
Tischenko hill | Pyrite frambiods ** | +0.38 ± 0.15 | |||
Tischenko hill | Pyrite crystals | +0.36 ± 0.15 | |||
Tischenko hill | Pyrite frambiods | −1.53 ± 0.15 |
Location | Andrusov Hill | Trubetskoy Hill | Tischenko Hill | ||||
---|---|---|---|---|---|---|---|
Element | Framboids | Pseudomorphs after Fossil Remnants | Euhedral Crystals | Framboids | Euhedral Crystals | Framboids | Euhedral Crystals |
Ti | 27.3 | 471 | 2.63 | 1.22 | 1.68 | 3.53 | 8.20 |
Mn | 4971 | 2529 | 585 | 2173 | 1465 | 3144 | 1605 |
Co | 182 | 145 | 18.7 | 134 | 32.0 | 130 | 71.0 |
Ni | 445 | 386 | 46.0 | 240 | 63.0 | 325 | 120 |
Cu | 797 | 412 | 70.0 | 358 | 62.0 | 179 | 90.0 |
Zn | 965 | 57.0 | 197 | 56.0 | 25.0 | 83.0 | 46.0 |
As | 1148 | 1001 | 134 | 331 | 175 | 761 | 329 |
Hg | 4.20 | 1.25 | 7.50 | 1.30 | 2.50 | 1.65 | 2.40 |
Mo | 111 | 105 | 17.5 | 22.1 | 18.5 | 70.0 | 19.4 |
Cd | 0.61 | 0.5 | 0.09 | 0.26 | 0.17 | 0.32 | 0.15 |
Sb | 17.6 | 43.0 | 2.32 | 5.00 | 2.13 | 18.2 | 4.23 |
Au * | 0.08 | 0.08 | 0.01 | 0.06 | 0.02 | 0.05 | 0.02 |
Pb | 402 | 337 | 47.0 | 140 | 46.0 | 309 | 78.0 |
Ga | 0.53 | 0.10 | 0.13 | 0.28 | 0.19 | 0.32 | 0.18 |
V | 7.18 | 8.08 | 0.91 | 2.67 | 1.65 | 4.32 | 2.04 |
Cr | 12.6 | 9.58 | 1.85 | 10.1 | 3.18 | 3.47 | 1.29 |
Location | Andrusov Hill | Trubetskoy Hill | Tischenko Hill | ||||||
---|---|---|---|---|---|---|---|---|---|
Element | Mean (n = 23) | Min | Max | Mean (n = 12) | Min | Max | Mean (n = 16) | Min | Max |
Al | 32.8 | 0.20 | 271 | 91.9 | 18.8 | 231 | 98.0 | 0.96 | 248 |
Ti | 2.80 | 0.27 | 14.7 | 11.9 | 1.72 | 37.8 | 6.97 | 0.44 | 34.7 |
Mn | 1209 | 67.7 | 3654 | 958 | 78.5 | 2323 | 1853 | 351 | 5715 |
Co | 79.3 | 0.23 | 355 | 141 | 0.8 | 345 | 46.1 | 1.03 | 206 |
Ni | 116 | 5.76 | 438 | 383 | 1.61 | 714 | 140 | 2.98 | 392 |
Cu | 123 | 1.34 | 1004 | 842 | 23.9 | 1656 | 203 | 6.23 | 678 |
Zn | 30.3 | 2.18 | 87.9 | 18.9 | 6.96 | 33.1 | 32.2 | 6.25 | 60.1 |
As | 248 | 3.74 | 1466 | 164 | 6.84 | 262 | 148 | 12.1 | 526 |
Se | 7.67 | 0.85 | 22.3 | 11.7 | 3.63 | 26.8 | 10.1 | 1.91 | 37.8 |
Zr | 0.42 | 0.11 | 1.79 | 0.57 | 0.33 | 1.06 | 0.93 | 0.08 | 2.81 |
Mo | 6.55 | 0.08 | 35.3 | 3.67 | 0.33 | 8.91 | 10.7 | 0.15 | 48.4 |
Ag | 0.43 | 0.01 | 3.19 | 2.19 | 0.61 | 3.93 | 0.82 | 0.02 | 3.24 |
Cd | 0.08 | 0.01 | 0.39 | 0.17 | 0.12 | 0.21 | 0.13 | 0.01 | 0.33 |
Sn | 0.34 | 0.13 | 1.06 | 6.59 | 0.19 | 25.2 | 0.28 | 0.13 | 0.44 |
Sb | 1.44 | 0.06 | 2.82 | 2.28 | 1.12 | 3.94 | 2.72 | 0.13 | 6.75 |
Te | 0.46 | 0.05 | 1.37 | 0.58 | 0.48 | 0.68 | 0.89 | 0.12 | 2.33 |
Ce | 0.12 | 0.002 | 0.45 | 0.17 | 0.02 | 0.26 | 0.25 | 0.01 | 0.93 |
Re | 0.04 | 0.002 | 0.11 | 0.005 | 0.002 | 0.007 | 0.02 | 0.001 | 0.05 |
Au | 0.02 | 0.004 | 0.06 | 0.02 | 0.01 | 0.05 | 0.02 | 0.01 | 0.03 |
Tl | 3.70 | 0.27 | 14.1 | 2.69 | 1.28 | 5.15 | 1.34 | 0.11 | 3.42 |
Pb | 47.8 | 0.12 | 511.6 | 250 | 2.68 | 664 | 68.9 | 2.63 | 207 |
Bi | 0.24 | 0.004 | 2.84 | 1.72 | 0.83 | 3.45 | 0.23 | 0.01 | 0.42 |
Re/Mo | 0.006 | 0.001 | 0.002 | ||||||
Te/Se | 0.06 | 0.05 | 0.09 | ||||||
Sb/Se | 0.19 | 0.19 | 0.27 | ||||||
Tl/Se | 0.48 | 0.23 | 0.13 |
Location | Tischenko Hill | Andrusov Hill | Trubetskoy Hill | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ineral | Pyrite | Pyrite | Marcasite | Pyrite | ||||||||
Element | Mean (n = 11) | Min | Max | Mean (n = 13) | Min | Max | Mean (n = 10) | Min | Max | Mean (n = 10) | Min | Max |
Al | 760 | 2.7 | 2029 | 62.6 | 25.5 | 91.1 | 214 | 10.8 | 777 | 35.0 | 0.40 | 99.1 |
Ti | 86.5 | 2.7 | 257 | 10.2 | 1.95 | 17.9 | 25.7 | 4.68 | 38.5 | 8.22 | 0.39 | 32.7 |
Mn | 2012 | 12.3 | 6208 | 13.1 | 0.67 | 64.8 | 72.5 | 1.93 | 215 | 215 | 3.93 | 434 |
Co | 8.69 | 1.81 | 86.4 | 6.15 | 0.25 | 28.5 | 10.3 | 0.59 | 20.0 | 3.11 | 1.57 | 7.87 |
Ni | 14.2 | 4.52 | 271 | 42.8 | 0.84 | 176 | 15.5 | 1.07 | 36.8 | 8.70 | 2.60 | 18.6 |
Cu | 112 | 3.19 | 647 | 16.7 | 0.93 | 32.5 | 1.86 | 0.81 | 2.91 | 39.2 | 1.68 | 82.2 |
Zn | 76.9 | 1.62 | 296 | 8.16 | 0.51 | 26.7 | 6.29 | 0.66 | 14.8 | 17.2 | 1.21 | 41.1 |
As | 490 | 3.10 | 933 | 1034 | 0.33 | 2104 | 278 | 0.23 | 865 | 23.1 | 2.71 | 60.3 |
Se | 13.4 | 4.15 | 46.1 | 10.2 | 3.30 | 18.2 | 46.5 | 46.5 | 46.5 | 9.42 | 1.51 | 17.5 |
Zr | 6.12 | 0.16 | 23.9 | 0.17 | 0.07 | 0.36 | 0.63 | 0.03 | 1.62 | 0.14 | 0.04 | 0.29 |
Mo | 45.4 | 0.35 | 121 | 204 | 0.03 | 539 | 15.5 | 0.02 | 61.3 | 7.56 | 0.34 | 18.5 |
Ag | 2.80 | 0.03 | 10.3 | 0.10 | <0.02 | 0.12 | 0.07 | <0.02 | 0.09 | 0.10 | 0.03 | 0.16 |
Cd | 0.29 | 0.01 | 0.45 | 0.10 | 0.04 | 0.22 | 0.03 | 0.01 | 0.05 | 0.02 | <0.01 | 0.03 |
Sn | 0.35 | 0.21 | 0.48 | 0.23 | 0.20 | 0.25 | 0.20 | <0.12 | 0.24 | 0.28 | 0.20 | 0.39 |
Sb | 13.1 | 0.27 | 54.0 | 22.3 | 1.46 | 49.0 | 1.74 | 0.02 | 6.41 | 1.41 | 0.20 | 2.77 |
Te | 6.65 | 1.93 | 6.87 | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 | <0.04 | 0.02 | <0.01 | 0.08 |
Ce | 0.92 | 0.01 | 3.25 | 0.06 | 0.02 | 0.15 | 0.36 | 0.02 | 0.99 | 0.04 | 0.01 | 0.07 |
Re | 0.01 | 0.004 | 0.05 | 0.004 | 0.001 | 0.007 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Au | 0.02 | 0.01 | 0.03 | 0.007 | 0.003 | 0.02 | 0.01 | 0.004 | 0.01 | 0.01 | 0.01 | 0.01 |
Tl | 1.21 | 0.01 | 2.37 | 2.64 | 0.05 | 5.22 | 1.31 | 0.04 | 4.70 | 3.17 | 0.67 | 6.4 |
Pb | 249 | 2.46 | 1083 | 11.5 | 0.22 | 54.60 | 2.37 | 0.40 | 7.37 | 2.11 | 0.40 | 5.06 |
Bi | 0.25 | 0.01 | 1.06 | 0.17 | 0.02 | 0.32 | 0.01 | 0.004 | 0.01 | 0.01 | 0.004 | 0.038 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokol, E.; Kokh, S.; Kozmenko, O.; Novikova, S.; Khvorov, P.; Nigmatulina, E.; Belogub, E.; Kirillov, M. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea). Minerals 2018, 8, 344. https://doi.org/10.3390/min8080344
Sokol E, Kokh S, Kozmenko O, Novikova S, Khvorov P, Nigmatulina E, Belogub E, Kirillov M. Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea). Minerals. 2018; 8(8):344. https://doi.org/10.3390/min8080344
Chicago/Turabian StyleSokol, Ella, Svetlana Kokh, Olga Kozmenko, Sofya Novikova, Pavel Khvorov, Elena Nigmatulina, Elena Belogub, and Maxim Kirillov. 2018. "Mineralogy and Geochemistry of Mud Volcanic Ejecta: A New Look at Old Issues (A Case Study from the Bulganak Field, Northern Black Sea)" Minerals 8, no. 8: 344. https://doi.org/10.3390/min8080344