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Abstract: In the presented paper, activated carbons were prepared from fructose and glucose,
and activating agents (KOH, NaOH, LiOH) by hydrothermal treatment (HTC) treatment.
After preparation, samples were characterized in details. Different techniques were used: x-ray
powder diffraction analysis, Raman spectral analysis, elemental analysis, and determination of
textural and morphological properties. Obtained results showed dependence of investigated
properties and the nature of precursors (glucose or fructose) as well as the type of hydroxides
used as activating agents. After characterization, samples were tested as materials for heavy metals
(Pb2+, Cd2+ and Zn2+) and methylene blue removal. Also, adsorption experiments were performed
on wastewaters taken from tailings of the lead and zinc mine and kinetic of the methylene blue
removal was studied. The factors which distinguished the KOH activated samples were high yield
(~14%), content of organic carbon (63–74%), porosity and specific surface area (SBET ~700–1360 m2/g),
a low degree of the crystal phase, indications that potassium ions may be included in heavy metals
removal, good removal of the heavy metal ions (~47–59 mg/g for Pb2+, ~21–27 mg/g for Cd2+ and
~6–10 mg/g for Zn2+) and fast (~10–30 min) and good methylene blue (~60–200 mg/g) removal.

Keywords: glucose; fructose; activated carbon; hydrothermal treatment; hydroxide activation; heavy
metals; methylene blue

1. Introduction

The increasing human need for new products and technologies has led to intensive development
of industry. On the other side, industrial development is usually followed by high levels of potentially
hazardous materials which may have negative influence on the environment as well as human or
animal health. In countries with a good economy, strict rules and laws have caused high control of
the level of waste materials being released into the environment, and consequently, due to applying
adequate techniques for waste purification, the influence of industry on the environment is usually
very small or negligible. On the other hand, in developing countries, control and human consciousness
are significantly weaker, which often leads to higher quantities of waste materials being released into
the environment and a significant increase of ecological problems as a consequence.
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Heavy metals are one of the most dangerous pollutants in the nature. They are especially toxic
for living organisms because of their stability and tendency of accumulation in the environment [1].
With the rapid development of industries such as plating facilities, fertilizers, tanneries, batteries,
paper and pesticides, heavy metals wastewaters are increasingly discharged into the environment,
either directly or indirectly. Heavy metals are not biodegradable and many of their ions are known
to be toxic and carcinogenic. Toxic heavy metals which are of particular concern in the treatment of
industrial wastewaters are Zn, Cu, Ni, Hg, Cd, Pb and Cr [2]. Regarding acute toxicity, cadmium and
lead along with mercury form “the big three” of heavy metals with the greatest potential hazard to
humans and the environment [3].

Mining presents a significant contribution to economic development in every country, but at
the same time it is very often one of the biggest environmental pollutants. Contamination of the
environment with heavy metals mainly occurs due to mining activities, i.e., after technological
processes of mineral resources where as a result of processing flotation tailings remain [4].

The Grot mine is one of the biggest mines in Serbia, with possibly the most significant influence on
the environment. It belongs to the Besna Kobila metallographic region (1823 m) and it is located in the
southeast of Serbia, near the town Vranje (Figure 1). In the Grot mine, the exploitation and processing
(flotation) of lead-zinc ore is carried out. Production of ore in the Grot mine is about 14,000 tons of ore
monthly, and about 800 tons of lead and zinc concentrate are obtained per month in the flotation of the
mine. Tailings of the mine Grot is about 24 ha in area, while the volume of the landfill material in the
tailings is about 6 million tons.
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Figure 1. The geographic position of the mine Grot.

The flotation tailings of the mine Grot, Serbia contain Cd, Pb, As, Cr, Ni, Cu, etc.
The concentrations of mentioned heavy metals are mostly higher than maximum permissible
concentrations (MPC) according to the laws of the Republic of Serbia [5]. For that reason, the tailings
represent a serious problem for nature and the environment, primarily because of the contamination
they generate either by scattering particles from the tailings or by contamination of the soil.
However, the most important negative effect, especially for human health, is the release of the
wastewater. Namely, contaminated wastewater from tailings, is released without any control and
with a flow of about 100 m3/h, contaminating the river Korbevečka and polluting the South Morava,
which belongs to the Danube basin. It is very important to note that rivers which are contaminated
with tailings wastewater, especially in the surroundings areas of the tailings, where concentration of
the heavy metals are the highest, are very often used by local populations to irrigate gardens and fields
as well as to meet other water needs. Thus, it is important to apply necessary actions and procedures
for purification and treatment which would prevent or at least minimize the pouring of the wastewater
from tailings in the rivers and reduce negative effects on the environment.
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Besides heavy metals, the contamination of waters with organic pollutants, such as dyes is very
frequent, and also represents a serious environmental problem. Dyes are widely used in coloring
processes in the leather, textile, paper, plastic and wood industries, as well as in food industries [6–8].
Methylene blue (MB) basic cationic dye is the most frequently used dye for leather, cotton, silk and
wood [9–11]. It is very dangerous for the respiratory system if inhaled, causing mental confusion and
mild poisoning if ingested by mouth [9,12–14]. Additionally, MB has been widely used in scientific
investigations due to its high level of adsorption on solids, and as a model compound for adsorption
characterizations of organic compounds in aqueous solutions [15–17].

It is in common for all mentioned pollutants that they must not be found in nature without
control, and for that reason, development of the new materials and techniques which may be used for
contaminated waters treatment, either before or after discharging them into nature, represents one of
the greatest scientific challenges today.

Different treatment methodologies may be used for that purpose such as adsorption, precipitation,
ion-exchange, coagulation, membrane filtration and photo-degradation [18,19]. Among these,
adsorption and ion exchange techniques are upgraded methods in terms of their simplicity,
recyclability and mode of waste recovery from the pollutants [18,20].

In recent years, a lot of studies have been performed with aim of the selection and/or production
of low-cost adsorbents with good adsorption capacities for both organic and inorganic pollutants such
as methylene blue or heavy metals. For example, natural materials of both an organic and inorganic
nature, such as alginate, chitosan, zeolites, clays, biomaterials, etc. are classified as adsorbents with
potential to be widely used for the treatment of waters contaminated with heavy metals. They are
available in large quantities and are low-cost, often biodegradable, usually recyclable and show high
adsorption ability towards a great number of heavy metal ions [21–24]. On the other side, Bukallah et al.
(2008) [25] described the removal of methylene blue from an aqueous solution by adsorption on sand,
while Tang et al. (2017) [26] showed good adsorption properties for MB of the agricultural residue
walnut shell. Tahir et al. (2008) followed adsorption of the methylene blue by using bioabsorbents
such as Ulva lactuca and Sargassum [27].

Besides mentioned adsorbents, activated carbons (ACs) are very beneficial materials for different
uses such as power transfer, production wearable sensing and sensor application nanofibers [28–35].
In addition, their use is particularly significant in inorganic or organic pollutants removal, due to a
large number of unique characteristics, such as a highly developed porous structure, large surface area,
variability in surface chemistry, and a high level of surface activity [33–35]. The major drawback of the
conventional activated carbon-based adsorption process is the usage of non-renewable and relatively
expensive raw materials (i.e., wood and coal), and therefore, it is still considered to be a high cost
process with restricted applicability. To overcome such drawbacks and attain better economic viability,
adsorption processes using non-conventional low-cost activated carbons derived from renewable and
inexpensive materials such as naturally abundant biomass, saccharides, agricultural and industrial
wastes have been examined by different researchers [36–39].

In general, for potential practical application of the material for pollutants removal from aqueous
solutions, it is very important that the material should possess any kind of universality, i.e., possess the
ability to remove different contaminants. For activated carbons, universality and adsorption properties,
structure, carbon content, specific surface, etc. are very important [40] and to get material with the best
properties, it is necessary to apply different preparing conditions and perform detailed characterization
as well.

In the presented paper, activated carbons were prepared by hydrothermal synthesis from easily
accessible, eco-friendly and low-cost materials (glucose and fructose) and activated with different
hydroxides in order to get the best properties for use in removal different (inorganic and organic)
pollutants from contaminated aqueous solutions. The obtained samples were characterized in detail
and then checked for removal of the inorganic (heavy metals) and organic (methylene blue) pollutants
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from contaminated aqueous solutions. Experiments were also performed on real wastewater samples
taken from tailings of the lead and zinc mine, but experiments were performed in laboratory conditions.

2. Materials and Methods

Chemicals that were used in this study were of high purity and supplied from Sigma Aldrich,
Darmstadt, Germany.

2.1. Synthesis of the Samples

Synthesis of activated carbon materials was performed in two steps. At first, required amounts
of glucose (G) and fructose (F) were dissolved in deionized water in order to prepare solutions
with a concentration of 1.0 mol/dm3. Hydrothermal synthesis was carried out in the PTFE
(polytetrafluoroethylene) chamber placed in a stainless steel autoclave. Prepared solutions were
placed into autoclave and heated into an oven under autogenous pressure at 240 ◦C for 24 h.
Afterward, samples were filtrated, washed with distilled water and dried for 1 h at 100 ◦C.

The second part of experiments was activation of carbon containing materials with selected
hydroxides (KOH, NaOH and LiOH) as activation agents. Chemical activation was performed by dry
mixing of selected precursor and hydroxide at room temperature with the ratio 1:3. Subsequently,
the mixed samples were activated in a horizontal tube furnace (Protherm Furnaces, model PTF
16/38/250, Ankara, Turkey) at 750 ◦C, 200 cm3/min nitrogen flow and the heating rate of 5 ◦C/min,
with a retention time of 1 h.

Activated carbons obtained by this procedure were designated as AC@G–T–N2–t–XOH and
AC@F–T–N2–t–XOH, where G and F are precursors, N2 is activation gas, T and t are temperature
and time of activation while XOH represent activation agents (X = Li, Na, K). During activations
the following yields were obtained: 6.0; 7.9 and 13.6 for LiOH, NaOH and KOH activated glucose,
respectively, and 6.4; 7.4 and 13.5 for LiOH, NaOH and KOH activated fructose, respectively.

2.2. Characterization Methods

The crystal structure of the obtained samples was characterized by x-ray powder diffraction
(XRPD) analysis using Ultima IV Rigaku diffractometer (Rigaku, The Woodlands, TX, USA),
equipped with Cu Kα 1,2 radiation source (a generator voltage of 40.0 kV and a generator current of
40.0 mA). All samples were recorded in the range of 10–90◦ 2θ, with a scanning step of 0.02◦ and at a
scan rate of 2◦/min.

Raman spectra of activated carbons were collected on a DXR Raman microscope (Thermo Scientific,
Waltham USA) equipped with an Olympus optical microscope and a CCD detector, with a diode
pumped solid state high-brightness laser (532 nm) and a 10× objective. The powdered sample was
placed on X–Y motorized sample stage. The analysis of the scattered light was carried out by the
spectrograph with a grating 900 lines/mm. The laser power was 1 mW.

Elemental analyses of samples were performed on a Vario EL III C, H, N, S/O Elemental Analyzer
(Elementar, Langenselbold, Germany). The amounts of C, N and H were determined directly while the
amount of oxygen was calculated as: 100%–ash%–C%–N%–H%.

The adsorption/desorption isotherms of activated carbons based on adsorption/desorption
of N2 at 77 K were determined using a Micromeritics, model TriStar II 3020
(Micromeritics, Norcross, GA, USA). Degassing of samples under a N2 stream (purity 6.0)
and programmed bi-level heating (the first heating stage was at 90 ◦C during 60 min; the second
heating stage was at 250 ◦C during 240 min). The specific surface area (SBET) of obtained samples
was calculated by the law of BET (Brunauer, Emmet, Teller) theory [41] from the best linear fit in the
region p/po < 0.01 (p and po represent the equilibrium and saturation pressures of nitrogen at a fixed
temperature). Using BJH (Barrett, Joyner and Halenda) method [41], for every sample from desorption
branch of the nitrogen isotherm pore-size distributions were calculated. In addition, mesopore
surface (Smeso) and micropore volume (Vmicro) were also calculated from the isotherms. By using the
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high-resolution αs–plot method [42–45], mesopore surface area (Smeso) and micropore volume (Vmicro)
were determined. Micropore surface (Smicro) was calculated by subtracting Smeso from the SBET.

The morphology of the investigated activated carbons was examined by scanning electron
microscope Tescan MIRA3 XM FESEM (Tescan, Brno – Kohoutovice, Czech Republic).

2.3. Adsorption Experiments

Experiments on testing availability of the selected samples to be used in area of environmental
protection and purification of waters contaminated with heavy metals were performed under
batch conditions for the single component solutions of lead(II)-nitrate, cadmium(II)-nitrate and
zinc(II)-nitrate of known heavy metal ions concentrations (~700 mg/dm3). For that purpose, 0.5 g
of the adsorbents were mixed with 50 cm3 of heavy metals solutions at 350 rpm, 24 h at initial pH
4.2 and room temperature. Initial pH was adjusted by adding very small quantities (few drops) of
0.1 mol/dm3 HNO3. After reaction time the suspensions were centrifuged, and concentrations of
the heavy metals, as well as concentrations of potassium, sodium and lithium ions, were determined
from the supernatants using an atomic absorption spectrometer (AAS) Analytic Jena 300 (Analytic
Jena, Jena, Germany). Final pH was also measured. In the second step, adsorption experiments were
performed on wastewater taken from tailings of the lead and zinc flotation facility Grot, Vranje, Serbia.
The samples were taken from the outlet pipe of the flotation facility (OF) and hydro-cyclone overflow
(PHC) in accordance with standard procedure [46]. Collected samples were kept in the capped
container and left at room temperature in order to separate liquid from the solid phase. After few
days, the liquid phase was decanted and filtered through qualitative filter paper in order to remove
large particles and impurities. The adsorption experiments were performed under the following
batch conditions: 0.5 g of the adsorbent was mixed with 50 cm3 of the contaminated water for 24 h.
According to SRPS ISO 5667-10:2007, during sampling, the wastewater is mixed with a solution of
nitric acid in order to stabilize it, so the pH of the solution after sampling and before materials testing
was ~4.2. For that reason, all experiments related to heavy metals removal were performed at initial
pH = 4.2 and final pHs were measured. After 24 h the suspensions were centrifuged, and the initial and
non-adsorbed concentrations of heavy metals were determined using an inductively coupled plasma
optical emission spectrometry (ICP-OES) on an ICP spectrometer Spectroflame (Spectro Analytical
Instruments, Kleve, Germany).

The adsorption experiments for dyes were carried out in magnetically stirred (σ = 400 rpm) glass
vessel. Testing of the methylene blue (MB) adsorption was performed for initial MB concentration of
200 mg/dm3 in distilled water at room temperature and under conditions protected from light. In order
to simulate real conditions, the initial pH (6.6) as well as final pH were not adjusted and were only
measured. The solid/liquid ratio applied in these experiments was 25 mg/25 cm3. The contact time
was 24 h. The kinetic experiments were performed with the concentration of the MB of 50 mg/dm3,
and other conditions as in previous experiments (250 mg of the adsorbents were mixed with a 250
cm3 MB solution). At a specific time, 1 cm3 of the solutions were taken, centrifuged and analyzed on
Agilent 8435 UV-VIS spectrophotometer with a diode array detector (Agilent, Santa Clara, CA, USA).
The two maximum wavelengths for MB were used, the first in the ultraviolet (UV) and the second one
in the visible (VIS) range of electromagnetic spectrum. Thus, the absorption spectra were collected at
291 nm and 664 nm.

3. Results

3.1. Characterization

3.1.1. XRPD Analysis and Raman Spectroscopy

It is known that when a substance is dissolved in water or some other solvent, its crystal structure
is destroyed. That means that in the first stage of obtaining samples for this study, during the
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preparation of a 1 mol/dm3 solution of glucose or fructose, their crystalline structures were destroyed.
Then, it is also known from the literature [47,48] that because of HTC treatment, an amorphous network
with a high content of carbon is obtained with increased surface functional properties so it may be
said that HTC-obtained carbon containing materials from glucose and fructose do not possess crystal
structures. It was of interest to determine whether additional activation with different hydroxides had
an influence on crystalline structures of prepared carbonaceous materials, i.e., whether activation takes
place in the same way on both sugars. For that reason, XRPD analyses of samples AC@G–T–N2–t–XOH
and AC@F–T–N2–t–XOH were performed and the results are shown in Figure 2.
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The results presented in Figure 2a are for samples obtained from glucose, which showed that
there are no significant differences in the shape of XRPD curves for samples activated with different
hydroxides, and broad peaks between 2θ value ~26◦ and ~44◦ are visible. That is characteristic for
materials with an amorphous structure and is ascribed to typical graphitic (002) and (100) planes.
The broadening of the two peaks suggests the low graphitization degree and the presence of amorphous
carbon in all three AC@G–T–N2–t–XOH samples [49].

The XRPD diagrams presented in Figure 2b for AC@F–T–N2–t–XOH showed sharp and
well-defined peaks, which indicate that besides amorphous, presence of a defined (crystal) structural
arrangement occurs in all three fructose samples. According to the database in international center
for diffraction data (ICDD), the peak positions indicate the presence of carbonates (X2CO3) (ICDD
01-074-6256) as well as oxides (X2O) (ICDD 01-072-1216) [50] (X is Li, Na or K) in form of crystal
phases in all samples obtained from fructose. The most pronounced peaks (the highest content of
crystal phases, oxides and carbonates) are observed for the sample obtained by activating with LiOH,
while the characteristic peaks are the weakest for the sample activated with KOH. That is expected
since the reactivity of alkaline metals is changed in the following order: Li > Na > K. The different
behavior of glucose and fructose sample after activation with three hydroxides, may be explained as
a result of different oxidation potential two samples, which is significantly higher for fructose [51],
and consequently indicates greater ability of fructose to build oxides and other similar compounds in
comparison with glucose.

To confirm differences in crystal structures of the activated samples, Raman spectrometric analyses
were performed, and results are presented in Figure 3a and b. In Raman spectra, two typical Raman
modes at around 1595 and 1340 cm−1 are clearly visible in all investigated samples.

The Raman mode (G–band) at around 1595 cm−1 corresponds to the graphitic lattice vibration of
sp2–bonded carbon atoms [52], while Raman mode (D–band) at around 1340 cm−1 is associated with
the presence of defects in the graphite layer [53]. Integrated peak areas (ID and IG) were calculated
for both peaks and used for determination of the graphitization degrees, which is equal to peaks
intensity ratios of D– and G–bands (ID/IG). The ID/IG value is a measure of the crystallinity of the
sample. The increase of its value corresponds to decrease of the crystallinity of the sample and vice
versa [47,54]. From the literature [55] the ID/IG value lower than 0.25 indicated perfect crystallinity
with a low degree of crystal defects. For samples investigated in this study, the ID/IG values were
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much higher, meaning that all samples possess lower crystallinities or crystallinities with the presence
of defects (amorphous phase) what confirmed results of XRPD analyses.

The ID/IG values for activated carbons obtained from glucose were higher in comparison with
values for samples obtained from fructose (for KOH activated samples: 2.14 (glucose) and 1.65
(fructose); for NaOH activated samples: 2.06 (glucose) and 1.51 (fructose); and for LiOH activated
samples: 1.72 (glucose) and 1.41 (fructose)) confirming the presence of a higher degree of amorphousity
in samples obtained from glucose.
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3.1.2. Elemental Analysis

The contents of organic C, N, O and H in glucose and fructose samples obtained after hydrothermal
treatment and activation with different hydroxides were determined by elemental analysis and the
results are listed in Table 1.

Table 1. Elemental analysis of the glucose and fructose activated carbons.

Sample N C H Ash O

AC@G–750–N2–1.0–LiOH 0.95 61.94 3.88 33.24 10.21
AC@G–750–N2–1.0–NaOH 0.04 72.89 1.49 25.58 9.08
AC@G–750–N2–1.0–KOH 0.36 74.06 1.79 23.79 19.62
AC@F–750–N2–1.0–LiOH 0.08 38.05 1.42 60.45 22.33
AC@F–750–N2–1.0–NaOH 0.68 70.71 2.74 25.88 8.66
AC@F–750–N2–1.0–KOH 0.51 62.99 3.45 33.05 10.17

Presented results showed that the content of organic carbon in samples obtained from glucose
was higher in comparison with those obtained from fructose after activation with the same hydroxide.
For example, after activation with LiOH, the content of carbon was ~62% for AC@G–750–N2–1.0–LiOH
and ~38% for AC@F–750–N2–1.0–LiOH. Also, for both sample types (glucose and fructose), the content
of organic carbon was much higher after activation with NaOH and KOH in comparison with samples
obtained by activation with LiOH. That may be explained as a consequence of the formation of crystal
layers after activation which are reach with carbonates and oxides, whereby this phenomenon is the
most pronounced for fructose and LiOH activated samples, while the least pronouncing was obtained
for KOH activated samples. That is also confirmed by XRPD and Raman spectrometry and is described
in Section 3.1.1. Variation in oxygen and hydrogen contents may be explained with formation of the
oxides and releasing of the water molecules during activation reactions or due to carbonization as well
as decomposition of oxygen-containing functional groups at a high temperature [56–58], while presence
of insignificant amounts of nitrogen can be a consequence of lagging of nitrogen which was used as an
inert atmosphere for obtaining investigated samples.

3.1.3. Textural Properties

Textural properties are one of the most important parameters for practical application of the
materials, at first in the field of environmental protection in adsorption and removal of different
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pollutants, inorganic or organic. From that reason carbon samples prepared from glucose and
fructose and activated by different hydroxides (LiOH, NaOH and KOH) were characterized by
adsorption/desorption of N2 at 77 K and results are presented in Figure 4a for glucose and Figure 4b
for fructose. Also, for a better comparison, the influence of different activation agents on structure,
porosity developments and pore-size distributions were determined and presented as inserts in
Figure 4 (insets 1, 2 and 3). As it is clear from Figure 4a and b, for all samples similar isotherms
of type I according to IUPAC classification [46] were obtained, which means that all investigated
samples pose dominant microporous structure. The calculated values of specific surface areas (SBET),
mesopore surfaces (Smeso), micropore surfaces (Smic), micropores volume (Vmic) and average pore
diameters (dpore) are shown in Table 2. To compare results, the same parameters for HTC-G and HTC-F
are also presented in Table 2 where is visible the lack of porosity in chars produced by HTC.

Minerals 2018, 8, x FOR PEER REVIEW  8 of 21 

 

pollutants, inorganic or organic. From that reason carbon samples prepared from glucose and 

fructose and activated by different hydroxides (LiOH, NaOH and KOH) were characterized by 

adsorption/desorption of N2 at 77 K and results are presented in Figure 4a for glucose and Figure 4b 

for fructose. Also, for a better comparison, the influence of different activation agents on structure, 

porosity developments and pore-size distributions were determined and presented as inserts in 

Figure 4 (insets 1, 2 and 3). As it is clear from Figure 4a and b, for all samples similar isotherms of 

type I according to IUPAC classification [46] were obtained, which means that all investigated 

samples pose dominant microporous structure. The calculated values of specific surface areas (SBET), 

mesopore surfaces (Smeso), micropore surfaces (Smic), micropores volume (Vmic) and average pore 

diameters (dpore) are shown in Table 2. To compare results, the same parameters for HTC-G and 

HTC-F are also presented in Table 2 where is visible the lack of porosity in chars produced by HTC. 

 

 

Figure 4. N2 adsorption–desorption isotherms of (a) glucose and (b) fructose. Insets: influence of 

different activation agents (KOH, NaOH and LiOH) on structure, porosity developments and 

pore-size distributions. 

Figure 4. N2 adsorption–desorption isotherms of (a) glucose and (b) fructose. Insets: influence
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pore-size distributions.
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Table 2. Textural properties of investigated samples: specific surface areas (SBET), mesopore surface
(Smeso), micropore surface (Smic), micropore volume (Vmic) and average pore diameter (dpore).

Samples SBET (m2/g) Smeso (m2/g) Smic (m2/g) Vmic (cm3/g) dpore (nm)

HTC-G
HTC-F <10 - - - -

AC@G–750–N2–1.0–LiOH 688 37 651 0.21 2.40
AC@G–750–N2–1.0–NaOH 1291 179 1112 0.24 2.60
AC@G–750–N2–1.0–KOH 1357 195 1162 0.09 2.60
AC@F–750–N2–1.0–LiOH 272 32 240 0.13 2.80
AC@F–750–N2–1.0–NaOH 953 46 907 0.28 2.40
AC@F–750–N2–1.0–KOH 701 94 607 0.04 2.60

From Table 2 it is clear that activation by NaOH, KOH and LiOH of the glucose and fructose
sample previously hydrothermal synthesized (HTC-G and F) has a positive effect on the textural
properties, and for all investigated samples specific surface areas increased from <10 m2/g to more
than 270 m2/g after activation. In all glucose and fructose samples, the smallest increase in the specific
surface area is achieved with LiOH (SBET = 688 and 272 m2/g for glucose and fructose activated
sample, respectively). Significant better results were obtained for NaOH and KOH activated samples
(1291 and 953 m2/g for NaOH and 1357 and 701 m2/g for KOH activated glucose and fructose sample,
respectively). Clearly visible crystal phases containing oxides and carbonates that are detected by
XRPD analyses in samples obtained from fructose may be an explanation for lower specific surface
areas in comparison with glucose samples. This is in agreement with results published by Mopoung
et al. [59], where activated carbon was prepared from Tamarind Seeds by activation with KOH.
Authors also found that potassium compounds in form of crystal phase produced at the surface of
the activated carbon caused lowering of the BET surface area. Also, from Table 2, it may be seen that
the KOH activated sample obtained from fructose possess a lower specific surface area in comparison
with samples activated with NaOH that is opposite from samples obtained from glucose. The reason
for that is the lower carbon content in the AC@F–750–N2–1.0–KOH than in AC@F–750–N2–1.0–NaOH
(Table 1). The same ratio between specific surface area and carbon content in activated carbon was
also found by other authors [60]. Also, BET surface areas of all samples showed very good agreement
with results of the elemental analysis (Table 1) and the value of SBET is changed in the same manner as
carbon content in the investigated samples.

3.1.4. SEM Analysis

In order to explain and realize differences in morphological properties which occur due to
activation by various hydroxides, SEM analyses of samples were performed and results are presented
in Figure 5a–c for glucose, and Figure 5d–f for fructose samples activated with different hydroxides.
Obtained results were also compared with the results of SEM analyses of the samples (results
are not shown) after hydrothermal treatment of glucose and fructose, where it was visible that
microspheres, which are the typical morphologies of carbohydrate-derived chars, were developed
after hydrothermal treatment.

As it may be seen from Figure 5a and b, after activation of the glucose sample with LiOH and
NaOH HTC-obtained sample maintained its morphological properties and well defined, interconnected
spherical microparticles were obtained with a diameter in the range of 3–4 µm. For the same hydroxides,
for the fructose sample, the same trend was obtained (Figure 5d and e) and spherical, interconnected
microparticles are also visible, but with differences in particle size and sphere diameters were in a
range from ~0.5 to ~1.0 µm. However, after activation with KOH, for both samples the spherical
morphology was destroyed (Figure 5c and f). The reason for that and for the generation of pore
networks may be various redox reactions which take place between carbon and potassium compounds
such as gasification reaction and ejection of carbon in form of oxides, then releasing water molecules
and KOH reduction to metal K. At the same time, K2CO3 which may also be formed during the
activation, may be reduced by carbon to K, K2O, CO, and CO2 what also, as a consequence, may have
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creating porous carbon surface. An additional reason for microstructure destroying is that since the
boiling point of K is close to 750 ◦C (temperature of activation), it is possible that potassium remains
in the activated carbon structure and changes it [60–62]. On the other side, the boiling points of the
Li and Na are much higher than activation temperature, so the possibility of their entering into the
structure of the activated carbon and chaining is much lower, what may be a reason for maintaining
morphological properties of the carbon containing material.
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Figure 5. SEM micrographs of activated carbons obtained by using different hydroxides:
(a) AC@G–750–N2–1.0–LiOH; (b) AC@G–750–N2–1.0–NaOH; (c) AC@G–750–N2–1.0–KOH,
(d) AC@F–750–N2–1.0–LiOH; (e) AC@F–750–N2–1.0–NaOH and (f) AC@F–750–N2–1.0–KOH.

3.2. Adsorption Experiments

3.2.1. Removal of Heavy Metals from Aqueous Solutions

Results of characterization gave an indication that besides all prepared samples, the one that was
obtained by activation with KOH should be the best candidate for heavy metals removal. The reasons
for that are: the best yield, the lowest degree of the crystal phase, the highest porosity, very high
specific surface area, as well as the high content of organic carbon. In addition, ion exchange is one of
the most common mechanisms involved in heavy metals removal on different adsorbents, and results
of characterization gave an indication that potassium ions may be inserted in the structure of the
activated carbons and from that point potential available for ion exchange with heavy metal ions from
surrounding aqueous solution.

To confirm that, the testing of removal of different (model) heavy metal ions (Pb2+, Cd2+ and Zn2+)
from the aqueous solution was performed by all prepared samples for the same initial concentrations
of heavy metals and the results are shown in Tables 3 and 4.

From results presented in Table 3 it is clear that under applied experimental conditions, all
investigated samples showed the highest affinity for lead cations, followed with cadmium, while for
the removal of Zn2+ affinity was the weakest. Also, as expected, the samples activated with KOH
showed better removal of all three heavy metal cations in comparison with those activated with LiOH
and NaOH.
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Table 3. Amounts of heavy metals removed from waters solutions by using samples prepared
from glucose and fructose and activated with different hydroxides. Ci—initial concentration;
Ca—removed amount.

Sample Ci (Pb2+),
mg/dm3

Ca (Pb2+),
meq/100 g

Ci (Cd2+),
mg/dm3

Ca (Cd2+),
meq/100 g

Ci (Zn2+),
mg/dm3

Ca (Zn2+),
meq/100 g

AC@G–750–N2–1.0–KOH

680

45.3

715

37.0

645

16.8
AC@G–750–N2–1.0–NaOH 32.4 24.9 14.7
AC@G–750–N2–1.0–LiOH 12.0 11.0 6.16
AC@F–750–N2–1.0–KOH 56.6 48.4 30.6

AC@F–750–N2–1.0–NaOH 42.0 40.0 26.0
AC@F–750–N2–1.0–LiOH 7.8 9.6 5.8

Table 4. Concentrations of released alkali cations (K+, Na+ and Li+) during heavy metals removal (CR).

Sample Exchanged Cation CR (Pb2+), meq/100 g CR (Cd2+), meq/100 g CR (Zn2+), meq/100 g

AC@G–750–N2–1.0–KOH K+ 14.10 10.3 4.6
AC@G–750–N2–1.0–NaOH Na+ 2.0 1.6 1.1
AC@G–750–N2–1.0–LiOH Li+ 1.8 - -
AC@F–750–N2–1.0–KOH K+ 25.0 15.2 12.7

AC@F–750–N2–1.0–NaOH Na+ 2.1 - -
AC@F–750–N2–1.0–LiOH Li+ 0.9 - -

The reason for differences in the removal of heavy metal cations between the sample activated
with KOH and the other two may be found and explained by results presented in Table 4,
where concentrations of the released cations in the solutions after heavy metals removal are given.
It is clear that much higher amount of potassium was released in comparison with lithium or sodium
which practically have not been detected. Non-stochiometric ratio between released cations and
removed heavy metal ions may be an indication that heavy metal cations from solutions have been
partially exchanged with potassium ions from activated carbon. Also, the amounts of bounded heavy
metal cations for all adsorbents were much higher than amounts of released cations, meaning that
significant parts of removed heavy metal cations have been bounded in some other ways and probably
by chemisorption. The amount of potassium released from the sample obtained by KOH activation of
fructose was much higher in comparison with amounts released from sample obtained from glucose,
and that may be the reason for higher removed amount of all thee heavy metal cations from aqueous
solutions although the fructose sample possess lower specific surface.

Under the same experimental conditions heavy metal removal was investigated using commercial
activated carbon (C-AC) of known manufacturer. The results showed that C-AC adsorbed
~68 meq/100 g lead ions, ~13 meq/100 g Cd2+ and ~10 meq/100 g Zn2+ what is very comparable
with results obtained from samples activated with KOH for lead ions, while glucose and fructose
KOH activated samples removed significantly higher amounts of cadmium and zinc ions. Also,
in these investigations, after separation of the solid and liquid phase, final pHs were also measured.
Results showed that final pHs were less than 6.6, meaning that all heavy metals were predominantly
in the most dangerous (X2+) form [63]. The presented results give just a part of information about
capacities of investigated samples as well as about mechanism of removal of different heavy metals
from aqueous solutions. However, for better understanding it is necessary to perform additional
investigations and that will be the aim of our future work.

After experiments on model solutions, ACs samples were also tested for the treatment of real
wastewater from the Grot mine, but in laboratory conditions. Experiments were performed on
wastewater from the outlet pipe of the flotation facility (OF) and hydro-cyclone overflow (PHC)
of the flotation tailings and adsorbents which previously showed the best heavy metals removal
(AC@F–750–N2–1.0–KOH and AC@G–750–N2–1.0–KOH). The results are shown in Tables 5 and 6.

As can be seen, the initial concentrations (C0) of zinc, mercury, manganese, lead and nickel
were very high and dangerous for human health (e.g., the content of lead was 61 times higher
than maximal allowed concentration in drinking water—0.01 mg/dm3 or 12 times higher than
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maximal allowed amount in water according to standard denoted as MPC1 in Table 5). On the other
side, the concentrations of other investigated heavy metals were lower than maximally permissible
concentrations according to listed standards (MPC1 and MPC2) in Tables 5 and 6.

Table 5. The concentrations of heavy metal cations in tailings wastewater before (C0) and after treatment
(Ce) with AC@F–750–N2–1.0–KOH.

Pollutant C0, PHC,
mg/dm3

Ce, PHC,
mg/dm3

%
Removal

C0, OF,
mg/dm3

Ce, OF,
mg/dm3

%
Removal

MPC1 *,
mg/dm3 MPC2 **, mg/dm3

Zn 0.338 0.14 59 0.269 0.121 55 0.2 0.024–0.8
Hg 2.568 1.980 23 1.304 0.978 25 0.001 0.00001–0.0003
Mn 3.069 1.921 37 2.568 1.721 33 0.1 -
Cd <0.045 <0.045 - <0.045 <0.045 - 0.005 0.00006–0.006
Fe 0.075 <0.040 >99 0.179 <0.01 >99 0.3 -
Ba <0.007 <0.007 - <0.007 <0.007 - - -
Be <0.004 <0.004 - <0.004 <0.004 - - -
Cu <0.017 <0.017 - <0.017 <0.017 - 0.1 0.0013-0.075
Al 0.065 0.054 17 0.023 0.018 22 0.2 -
Mg 20.780 12.105 42 20.931 12.977 38 50 -
Ca 98.859 74.304 25 117.983 73.768 29 200 -
Si 6.340 3.221 49 6.810 3.337 51 - -
Pb 0.611 0.405 34 0.402 0.241 40 0.05 0.0017–0.075
Ni 0.068 0.055 19 0.072 0.057 21 0.05 0.0021–0.075
Cr 0.093 0.091 2 0.169 0.167 1 0.1 0.0025–0.03
Sr 0.604 0.503 17 0.496 0.422 15 - -

* MPC (maximum permissible concentrations) according to law of the Republic of Serbia, Regulations for Hazardous
Substances in Waters, “Službeni glasnik SRS 31/82” and “Službeni list SRJ 42/98”; ** Target values and soil
remediation intervention values and background concentrations soil/sediment and groundwater for metals.
Dutch Target and Intervention Values, 2000 (the New Dutch List).

Table 6. The concentrations of heavy metal cations in tailings wastewater before (C0) and after treatment
(Ce) with AC@G–750–N2–1.0–KOH.

Pollutant C0, PHC,
mg/dm3

Ce, PHC,
mg/dm3

%
Removal

C0, OF,
mg/dm3

Ce, OF,
mg/dm3

%
Removal

MPC1 *,
mg/dm3 MPC2 **, mg/dm3

Zn 0.338 0.169 50 0.269 0.129 52 0.2 0.024–0.8
Hg 2.568 2.106 18 1.304 1.043 20 0.001 0.00001–0.0003
Mn 3.069 2.148 30 2.568 1.848 28 0.1 -
Cd <0.045 <0.045 - <0.045 <0.045 - 0.005 0.00006–0.006
Fe 0.075 <0.040 >99 0.179 <0.040 >99 0.3 -
Ba <0.007 <0.007 - <0.007 <0.007 - - -
Be <0.004 <0.004 - <0.004 <0.004 - - -
Cu <0.017 <0.017 - <0.017 <0.017 - 0.1 0.0013–0.075
Al 0.065 0.059 10 0.023 0.020 11 0.2 -
Mg 20.780 13.507 35 20.931 12.977 38 50 -
Ca 98.859 79.087 20 117.983 78.763 18 200 -
Si 6.340 3.804 40 6.810 4.427 35 - -
Pb 0.611 0.428 30 0.402 0.285 29 0.05 0.0017–0.075
Ni 0.068 0.058 15 0.072 0.061 16 0.05 0.0021–0.075
Cr 0.093 0.091 2 0.169 0.166 2 0.1 0.0025–0.03
Sr 0.604 0.513 15 0.496 0.402 19 - -

* MDK (maximum allowed amount) according to law of the Republic of Serbia, Regulations for Hazardous
Substances in Waters, “Službeni glasnik SRS 31/82” and “Službeni list SRJ 42/98”; ** Target values and soil
remediation intervention values and background concentrations soil/sediment and groundwater for metals.
Dutch Target and Intervention Values, 2000 (the New Dutch List).

After treatment of wastewater (Ce) with AC@F–750–N2–1.0–KOH and AC@G–750–N2–1.0–KOH,
the content of all heavy metal cations was reduced. After treatment, the concentration of zinc was
reduced by more than 50%. The concentrations of other main pollutants: lead, mercury, manganese,
nickel and strontium were also significantly reduced and after treatment, their concentrations were
lowered by about 35, 20, 33, 18 and 18%, respectively. The concentrations of Fe, Cr, Ca and Al were
also reduced after treatment with both adsorbents. However, fructose sample showed slightly better
adsorption properties in comparison with glucose sample. These results indicate that both samples and
especially AC@F–750–N2–1.0–KOH pose the potential to be used as a material for the production of
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collector filters for tailings. However, these results are just preliminary, and for practical applications,
additional investigations on wastewater in real conditions will be done in future.

3.2.2. Removal of Organic Dye from Aqueous Solution

All samples prepared by activation with different hydroxides of the HTC-treated glucose and
fructose were also tested for removal of MB from contaminated aqueous solutions. The adsorption
measurements were carried out with the same concentrations of dye in solution (50 mg/dm3).
The absorption spectra of dye solutions were collected after a certain time in interval 0–24 h, and two
absorption maximums of wavelength λmax1 = 291 nm and λmax2 = 664 nm were used for measuring
MB concentrations. The absorption spectra of MB solutions before and 24 h after introducing carbon
powders are presented in Figure 6a and b.
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activated carbons: (a) glucose and (b) fructose. The solid/liquid ratio was 25 mg/25 cm3.

As it can be seen from absorption spectra (Figure 6), the intensity of the characteristic bands for MB
significantly decreased after treating of the solutions with glucose (Figure 6a) and fructose (Figure 6b)
samples activated with NaOH and KOH, indicating that significant amount of MB was removed from
solutions after 24 h. However, samples activated with LiOH showed very low adsorption of MB.
From that reason, LiOH activated samples were not further considered. Significant lower adsorption
obtained by samples activated with LiOH may be consequence of very low mesopore specific surface
area. Similar dependence between mesopores specific surface and MB removal have shown by other
authors [59] for adsorption of MB on activated carbon prepared from Tamarind Seeds by activation
with KOH, as well as, with results published by Kim et al. [64] for organic dyes removal on hierarchical
nanoporous MnO.

Figure 7 illustrated the effect of contact time on removal of MB from aqueous solution by glucose
and fructose samples activated with NaOH and KOH. As can be seen, the MB removal increased with
an increase in contact time. For glucose, the removal was most rapid in the first 10 min for KOH and
40 min for NaOH activated sample, while for fructose the removal was rapid in the first 30 min for
both hydroxides and then it tended to level thereafter, proceeding at a slower rate until saturation was
obtained. For all samples, it was noticed that solutions were almost colorless after 40 min, meaning
that almost all amounts of MB were removed from the solution. From the presented results it may be
concluded that, under applied experimental conditions, the removal of MB from aqueous solutions
was very fast for investigated samples (KOH and NaOH activated), but slightly better results were
obtained for samples from glucose. Since, there were no significant changes in amount of removed MB
from the solution after 140 min, on diagrams are shown time dependencies only for the first 140 min.
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From the presented results, it can be concluded that samples obtained by activating with NaOH
exhibit a high degree of removal of MB from the aqueous solution and its removal are comparable
to those obtained with the KOH-activated samples. However, the yield for the production of NaOH
activated samples (~7%) is almost two times lower in comparison with KOH activation (~14%),
because of which the advantage can be given to KOH activated samples and these samples were
further analyzed.

Obtained results for MB removal by KOH activated glucose and fructose samples (measured at
664 nm) were then fitted to different kinetic model: pseudo I, pseudo II and Elovich model, which linear
forms are given in Equations (1)–(3) [65], respectively:

ln
qt
qe

= k1t (1)

t
qt

=
1

k2·q2
e
+

1
qe

t (2)

qt = b· ln(ab) + b·lnt (3)

where, qe and qt (mg/g) are removed amounts of MB in equilibrium and time t (min), k1 (1/min) and
k2 (g/(mg·min)) are constants of rate for pseudo I and II order, respectively, a (mg/(g/min)) is initial
rate of MB removal and b (g/mg) is a factor which indicated the degree of coverage of the surface of
the adsorbent and the activation energy of the chemisorption.

The coefficients of correlation (R2) for pseudo I, pseudo II order models and Elovich model
are: 0.35, 0.98 and 0.89, respectively for fructose sample activated with KOH and 0.52, 0.99 and
0.82, respectively for glucose sample activated with KOH. Due to low values of the R2, characteristic
parameters of the pseudo I order and Elovich models were not calculated and only parameters of
the pseudo II order model and characteristic linear curves are presented in Figure 8 and Table 7.
Also, initial rate (h = k2·qe

2) was determined for both adsorbents and results are presented in Table 7.
From results presented in Figure 8 and Table 7, good fitting, high values of R2 and good agreement

of experimental and calculated values of qe were obtained, meaning that the Pseudo II order model
effectively described the kinetic of removal of the MB from aqueous solutions using KOH activated
samples obtained from glucose and fructose. Both, initial rate (h) as well as rate constant (k2),
were much higher for removal MB by AC@G–750–N2–1.0–KOH, indicating much favorable adsorption
of MB than on AC@F–750–N2–1.0–KOH. The reason for that trend may be higher values of the specific
surface (SBET and Smeso) as well as greater availability of the active centers for glucose in comparison
with fructose sample.

Fitting of the experimental results with different kinetic models may give information about that
at which way the interaction between MB and adsorbents takes place. The best fitting Pseudo II order
model for both investigated samples give an indication that chemisorption, which include valence
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forces through sharing or exchange electrons, is included in MB removal and also that this process is
the rate limiting (the slowest) step [38,66]. Significant lower values of rate constants (initial rate (h)
as well as rate constant (k2)) for fructose sample means that, the chemisorption takes place in much
greater extent on this sample than on the sample obtained from glucose.
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Table 7. Characteristic parameters of the Pseudo II order kinetic model for MB removal.

Kinetic Parameter AC@G–750–N2–1.0–KOH AC@F–750–N2–1.0–KOH

qe, exper (mg/g) 49.71 49.82
qe, (mg/g) 50.00 50.00

h, g/(mg·min) 100.00 14.28
k2, g/(mg·min) 40.0 × 10−3 5.7 × 10−3

R2 0.99 0.98

In order to determine influence of the processes on the surface and the diffusion on the total
adsorption rate, and to get additional information about binding mechanism of MB on both adsorbents,
the intra-particle diffusion model was also applied. The mathematic form of the diffusion model is
given in Equation (4) [65]:

qt = I + kDt1/2 (4)

where qt (mg/g) is adsorbed amount of MB in time t (min), kD (mg/(g·min1/2)) is the diffusion
constant and I is a constant and equal to the intercept on y-axis. The results are presented in Figure 9
and Table 8.
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According to this model, the adsorption process in general includes three processes: (1) migrating
the pollutants from the solution to the surface of the adsorbent and forming the film on the surface;
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(2) adsorption at appropriate active centers on the surface; (3) diffusion into internal channels and
vacancies. If the curves pass through zero and are linear in the entire time interval, only the diffusion
influence on the total rate of the pollutant removal. Otherwise, in addition to diffusion, all the
mentioned processes occur, and the overall rate is influenced by the processes on the surface and the
diffusion [67].

Table 8. Characteristic parameters of the intra-particle diffusion kinetic model for MB removal.

Time Interval
AC@G–750–N2–1.0–KOH AC@F–750–N2–1.0–KOH

R2 kD, mg/(g·min1/2) R2 kD, mg/(g·min1/2)

1 0.99 38.07 0.99 13.66
2 0.99 0.22 0.99 0.12

As may be seen from Figure 9, for both adsorbents, curves do not pass through zero and
are not linear in all time intervals, which means that different processes are included in MB
removal. The largest part of the MB was removed in the first time interval (1) where the highest
values of the kD were determined (~38 and ~14 mg/(g·min1/2), for AC@G–750–N2–1.0–KOH and
AC@F–750–N2–1.0–KOH, respectively), meaning that MB was mainly removed by processes which
include migrating the MB from the solution to the surface of the adsorbents, forming film on the
surfaces and adsorption at appropriate active centers on the surfaces. Very low slopes and kD values
obtained for both adsorbents in second time interval indicate that a very small amount of the MB was
removed from solution by diffusion into internal channels and vacancies. Since that almost all amounts
of MB were removed from the solution by processes which occur on the surface of the adsorbents,
it can be concluded that these processes are the most responsible for the overall reaction rate and
diffusion through the internal channels and the vacancies does not significantly affect the entire process.
Similar conclusions were made by other authors for removal of methylene blue by mango seed kernel
powder [68] or by activated carbon developed from Ficus carica bast [38].

For applied experimental conditions it was not possible to reach a conclusion regarding which
sample possesses better adsorption capacity for MB, since both samples removed almost 100%
of the MB from aqueous solution. From that reason, samples were additionally tested for MB
removal. All experimental conditions were the same as in previous experiments, but with significant
higher initial MB concentration (200 mg/dm3). Results showed that after 24 h final pH was 6.3 for
AC@F–750–N2–1.0–KOH and 7.2 for AC@G–750–N2–1.0–KOH. Removed amount of the MB was
61 mg/g for AC@G–750–N2–1.0–KOH, while for the fructose sample a significantly higher amount
of adsorbed MB was obtained and was 197 mg/g. The possible reason for a higher capacity and
slower MB binding rate for the sample AC@F–750–N2–1.0–KOH could be higher density but lower
accessibility of active centers containing carbon which are responsible for MB removal.

The pH was also measured for suspensions of both adsorbents in clear distilled water
(25 mg/25 cm3) for a time period of 150 min. The results showed that pH was 8.8 for fructose
and 10.3 for the glucose KOH activated sample. Since the fructose sample showed much better
removal of MB, even possessing lower pH (lower amount of –OH groups at surface) in comparison
with KOH activated glucose, it may be concluded that main bounding of the MB occurs at active
centers containing carbon what is in agreement with Pseudo II order kinetic model. On the other side,
lowering of the pH after MB removals by both adsorbents indicate that –OH groups at their surfaces
are also responsible for MB removal. So finally, it may be said that bounding of the MB occurs on both,
active centers containing carbon and –OH groups at surfaces of both adsorbents.

Table 9 showed comparison of the removed amount of MB from aqueous solutions obtained by
using different environmental-friendly adsorbents. It may be seen, that AC@G–750–N2–1.0–KOH
is very comparable with results obtained by other authors, but, on the other side,
AC@F–750–N2–1.0–KOH removed a significantly higher amount of MB.
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Table 9. Comparison of the removed amount of MB from aqueous solutions obtained using different
environmental-friendly adsorbents.

Adsorbent Dye Name Adsorption Capacity Reference

Orange peel MB 18.6 [69]
Peanut hull MB 68.0 [70]
Rice husk MB 40.6 [71]

Cherry Sawdust MB 39.8 [72]
Wheat shells MB 16.6 [73]
Walnut shell MB 51.6 [26]

AC@G–750–N2–1.0–KOH MB 61.0 This study
AC@F–750–N2–1.0–KOH MB 197.0 This study

4. Conclusions

Results obtained in this study may be summarized as:

• Samples obtained from glucose pose an amorphous structure, while in samples obtained from
fructose besides being amorphous, the presence of crystal phases (X2CO3 and oxides X2O) was
also detected.

• For precursors, glucose and fructose, the elementary analysis showed that the carbon content was
much higher after activation with KOH and NaOH.

• Samples activated with KOH and NaOH pose much better textural properties in comparison with
samples activated with LiOH.

• After treating of carbon samples with KOH, the changing and destroying of their spherical
shapes and microspheres were noticed in the case of both glucose and fructose precursors. On the
contrary, carbon samples treated with LiOH and NaOH maintained their microspherical structures
but with different particle size for the whole order of size.

• All investigated samples showed high affinity for lead cadmium and zinc ions. Samples activated
with KOH showed better removal of all three heavy metal cations in comparison with those
activated with LiOH and NaOH. The best removal was obtained for AC@F–750–N2–1.0–KOH.

• Non-stochiometric ratio between released cations and removed heavy metals ions indicated that
heavy metal cations from solutions have been partially exchanged with K+, Na+ or Li+ ions from
activated carbon. Much higher amounts of bounded heavy metal cations for all adsorbents than
amounts of released cations, indicate that significant part of removed heavy metal cations have
been bounded by some other ways, probably by chemisorption.

• Results of wastewater treatment in the laboratory conditions indicate that both glucose and
fructose KOH activated samples, especially AC@F–750–N2–1.0–KOH pose the potential to be
used as materials for the production of collector filters for tailings.

• Results of MB removal indicating that significant amount of MB was removed from solutions
after treating of the solution with both glucose and fructose KOH and NaOH activated samples.

• Results also showed that kinetic removal of MB from water solutions by KOH and NaOH activated
glucose and fructose samples was very fast and may be described with the Pseudo II order model.

• Fitting of the results with intra-particle diffusion kinetic model indicate total rate is not affected
only by diffusion, but also by processes on the surface and diffusion through the internal channels
and the vacancies do not significantly effect the entire process.
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