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Abstract: During the excavations carried out in Via di Mercurio (Regio VI, 9, 3) in Pompeii, in 2015,
some red, green, black, and brown wall painting fragments were found in the preparatory layer
of an ancient pavement which was probably built after the 62 AD earthquake. These fragments,
derived from the rubble, were used as coarse aggregate to prepare the mortar for building the
pavement. The wall painting fragments are exceptionally well preserved, which is an uncommon
occurrence in the city of Pompeii. However, as they were enclosed in the mortar, the wall painting
fragments were protected from the high temperatures (probably ranging between 180 ◦C and 380 ◦C)
produced by the eruption in 79 AD. The pigmented outer surface of each sample was analyzed
using a non-destructive multi-analytical approach, by combining spectrophotometric colorimetry
and portable X-ray fluorescence with micro-Raman spectroscopy. The compositional characterization
of the samples revealed the presence of cuprorivaite, goethite, and celadonite in the green pigments;
hematite in the red pigments; goethite in the brown pigment; and charcoal in the black pigment.
These data probably provide us with the most “faithful picture” of the various red, green, black,
and brown pigments used in Pompeii prior to the 79 AD eruption.

Keywords: micro-Raman spectroscopy; portable XRF; colorimetry; hematite; cuprorivaite;
celadonite; goethite

1. Introduction

The archaeological site of Pompeii is located on a plateau produced by prehistoric lava flows,
on the southern flank of Vesuvius [1] in Southern Italy.
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The area has been inhabited since the Middle Neolithic period. In the late 7th to early 6th century
BC it was ruled by the Etruscans, until the arrival of the Greeks in 474 BC. The city was later conquered
by the Samnites and in the 4th century BC passed under Roman jurisdiction. The 62 AD earthquake
destroyed most of the city which was then reconstructed, but Pompeii was once again completely
destroyed and buried under the volcanic eruption of 79 AD [2–4]. For this reason, Pompeii offers a
snapshot of Roman life in the 1st century AD as it has remained undisturbed since it was buried on
24 August 79 AD. The city remained hidden until the beginning of the 16th century, when during
remediation works in the Sarno Valley, the first inscriptions of the city made with Roman materials
were discovered [5]. The city covered an area of 66 hectares (of which 44 hectares have been excavated)
with public buildings, temples, theatres, bath complexes, private houses, and shops enclosed within a
circuit of defensive walls and guard towers as well as suburban villas and tombs just outside.

In recent years, there has been growing interest in ancient Roman technology which has led to
the publication of several archaeometric studies on the raw materials used for the construction of
buildings and on the artistic handicrafts made in the ancient city of Pompeii [6–14].

Despite the importance of this archaeological site, there is a paucity of literature on the composition
of the pigments used for the wall paintings [15–28]. An opportunity for studying this topic arose
during the excavations performed in Via di Mercurio (Regio VI, 9, 3) in 2015 by Pompeii Archaeological
Park. The archeological excavations were carried out under the Great Pompeii Project “Pompei per
tutti” [29]. In the pavement in front of house number 2 and the Centaur House, adjacent to a bend
in the curb, a ditch (US 173) was found which was filled with a layer (US 162) of ancient material
containing numerous plaster fragments as well as more recent material (please see Supplementary
Materials Figure S1). The ditch, which is 60 cm deep, should have been excavated after the discovery
of the road. However, US 173 could also have been an ancient open cavity at the time of the eruption.
The preparatory layer (US 162—rudus) is composed of a peculiar lime mortar, made of a mixture of
lime and large aggregates composed almost exclusively of ancient wall painting fragments, some of
which are approximately 15 cm in size. From this preparatory layer, we extracted six samples of wall
paintings (Figure 1) and, in order to study the composition of the pigments without damaging the
samples, we used non-destructive multi-analytical techniques such as spectrophotometric colorimetry,
portable X-ray fluorescence, and micro-Raman spectroscopy. The samples were kept in good condition,
although it is hoped that other wall painting fragments present in the pavement can be recovered and
recomposed in the near future. The compositional data of the pigments presented in this study can be
used for planning future restoration works.

Figure 1. Macroscopic photos of the wall painting fragments analyzed in this study.



Minerals 2018, 8, 134 3 of 15

2. Materials and Methods

Six samples of wall painting fragments (Figure 1) were extracted from the preparatory layer
(rudus) of the pavement in Via di Mercurio (Regio VI, 9, 3) in Pompeii. The fragments were not
randomly selected, as they were chosen to obtain samples of all of the colors present in the wall
paintings. The samples were cleaned thoroughly with a scalpel, immersed in an ultrasonic bath filled
with demineralized water for 2 min, and then dried in a ventilated kiln at 24 ◦C for 12 h.

The wall painting fragments analyzed are: two samples of red color (Sample 1 and Sample 2);
two samples of green color (Sample 3 and Sample 4); one sample of black color (Sample 5); and one
sample of brown color (Sample 6) (Figure 1).

The non-destructive compositional analyses were only carried out on the external pigmented
layer, while compositional characterization of the plaster preparation layer of the paintings was not
performed. However, analyses are still underway and will be discussed in the near future.

Colorimetric analyses were carried out with a Konica Minolta Spectrophotometer CM-2600d
under standard illuminant D65, including the specular component (measuring area: circular area with
a diameter of 8 mm). Colorimetric data were presented using trichromatic colorimetric coordinates
in the CIE-L*a*b* space (L* represents brightness: 0 = black, 100 = white; +a* = red; −a* = green;
+b * = yellow; −b* = blue) as defined by the Commission International de l’Eclairage (CIE).

Portable X-ray fluorescence (p-XRF) was performed to determine the qualitative elemental
composition of the external pigmented layer, using a p-XRF spectrometer “Bruker Tracer IV-SD”
(Bruker, Billerica, MA, USA) equipped with a Rh X-ray tube; the following conditions were used for
the analyses: acceleration voltage of 40 kV, current intensity of 35 µA, spectrum accumulation of 120 s,
vacuum < 17 Torr, no filters, spot size of approximately 5 mm. The element assignments were defined
using “Bruker AXS MA Artax 7.4” software. The peak intensities for the p-XRF spectra were indicated
as counts per second (cps).

Micro-Raman analyses were performed using a Thermo Fisher DXR Raman microscope (Waltham,
MA, USA), equipped with OMNICxi Raman Imaging software 1.0, an objective of 50×, a grating of
900 ln/mm (full width at half maximum, FWHM), and an electron multiplying charge-coupled device
(EMCCD). The 532.0-nm line (solid state laser) was used at an incident power output ranging from 1.8
to 7 mW (Table 1). The spatial resolution of the laser beam was about 3–5 µm. The acquisition time of
the spectra varied from 5 to 40 s.

3. Results and Discussion

3.1. Macroscopic Features of the Samples and Colorimetric Analysis

The wall painting fragments taken from the preparatory layer (rudus) of the ancient pavement are
very well preserved (Figure 1) and have important and unusual characteristics. In fact, as they had been
incorporated into the binder of the preparatory mortar of the sidewalk, they were protected from the
high temperatures, probably ranging between 180 ◦C and 380 ◦C [30], produced by the 79 AD eruption.
Moreover, the external 2-cm thick layer of the pavement provided additional protection, which enabled
us to study pigments used in Pompeian wall paintings that have not undergone mineralogical and
chromatic changes during the eruption for the first time.

The samples have a very high cohesion and it is hard to break them apart with one’s hands.
From the macroscopic point of view, all of the samples are composed of three layers, with the exception
of Sample 5 (black) which only has two layers. In Samples 1, 2, 3, 4, and 6 (Figure 1), the innermost
layer is between 10 mm (the red fragments) and 17.4 mm (the green fragments) thick, the intermediate
layer is between 2.5 mm (the red fragments) and 3.5 mm (the green fragments) thick, and the external
pigmented layer is less than 1 mm thick. As mentioned above, Sample 5 (Figure 1) is composed of only
two layers: the innermost layer is approximately 5 mm thick, while the external pigmented layer is
less than 1 mm thick.
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Figure 2 shows the reflectance curves (Figure 2a) and the colorimetric coordinates (Figure 2b) of
all samples. The reflectance curves for the red fragments (Samples 1 and 2) are very similar (Figure 2a);
in fact, the curves overlap almost perfectly. The reflectance curves of the green fragments (Samples 3
and 4) are also similar (Figure 2a); however, the curve of Sample 4 is shifted upwards, because this
sample has a higher reflectance and brightness than Sample 3.

Figure 2. (a) Reflectance curves of the painted surface of the samples; (b) CIE-L*a*b* colorimetric
coordinates of the painted surface of the samples analyzed.

As expected, the reflectance curve of the black fragment (Sample 5) is straight because its
reflectance is very low (Figure 2a). Meanwhile, the brown fragment (Sample 6) shows the highest
reflectance ranging between 540 and 740 nm (Figure 2a). However, some preliminary considerations
can be made by comparing the reflectance curves for the red (Samples 1 and 2) and brown (Sample 6)
pigments; in fact, the inflection points and the slopes of the reflectance curves of Samples 1 and 2 fit
with those of hematite, while the reflectance curve of Sample 6 matches with those of goethite [31–35].

With regard to the colorimetric coordinates (Figure 2b), there are significant differences among all
of the samples that can be seen with the naked eye and are due to their chemical and mineralogical
composition, as shown in the following paragraphs.

3.2. Portable X-ray Fluorescence

Portable X-ray fluorescence is one of the most frequently used techniques to obtain information on
the elemental composition of the surfaces of Cultural Heritage artifacts. In the case of mural paintings,
the presence of particular chemical elements or the combination of chemical elements, allows us to
hypothesize the use of particular mineral pigments [36,37].

Figure 3a,b show the fluorescence spectra of the external layer of the red fragments (Samples 1 and
2). The spectra are very similar and reveal the presence of Al, Si, P, K, Ca, Ti, Mn, and Fe. The presence
of rhodium (Rh) is not attributable to the layer analyzed, but comes from the source emission. In these
conditions, without standard samples and calibration models, the data are not quantitative. However,
the significant presence of Fe suggests that the fragments were composed of red iron oxides pigments,
probably red ocher, mixed with lime.

Figure 4a,b show the fluorescence spectra of the external layers of the green fragments (Samples
3 and 4), which are also very similar. The chemical elements detected in both X-ray spectra are Mg,
Al, Si, P, S, K, Ca, Ti, Mn, Fe, Ni, Cu, and Zn. The significant presence of copper and iron may be
due to the use, in the pigment preparation process, of a mixture of iron hydroxides and minerals
containing copper, such as malachite. In fact, Ni and Zn can be associated with the mineralization of
malachite [38,39].

Figure 5 shows the X-ray spectra of the external layers of the black fragment (Sample 5—Figure 5a)
and the brown fragment (Sample 6—Figure 5b). The chemical elements detected in the spectrum of
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the black fragment (Figure 5a) are Mg, Al, Si, P, S, K, Ca, and Fe. The high content of calcium is not
due to its black coloration, but to the use of lime. The black coloration is probably due to the presence
of a chemical element that cannot be detected using portable X-ray spectroscopy, such as carbon (C)
derived from powdered charcoal.

The X-ray spectrum of the brown fragment (Figure 5b) shows the presence of Mg, Al, Si, P, S, K,
Ca, and Fe. The significant presence of iron may indicate that iron hydroxides (mixed with lime) were
used, which would explain its brown color.

Figure 3. Portable X-ray fluorescence (P-XRF) spectra of the red painted surfaces of Samples 1 (a) and 2 (b).

Figure 4. P-XRF spectra of the green painted surfaces of Samples 3 (a) and 4 (b).
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Figure 5. P-XRF spectra of the painted surfaces of Samples 5 (a) and 6 (b).

3.3. Micro-Raman Spectroscopy

Micro-Raman spectroscopy was used to check the validity of the previous hypotheses concerning
the chemical composition of the samples.

Calcite was detected in all samples. Calcite (CaCO3) is due to the carbonation of lime, used
as a binder to fix the mineral pigment. Figure 6 shows the Raman spectra of all samples analyzed
by micro-Raman spectroscopy with the relative Raman bands typical of calcite at 148, 274, 711,
and 1085 cm−1 [40].

Figure 6. Raman spectra of calcite for all samples.
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The analysis of the red fragments (Sample 1 and Sample 2) confirmed the presence of iron oxide,
in particular of hematite (Fe2O3) in both samples (Figure 7). In Figure 7, hematite bands at 224, 243, 297,
409, 610 cm−1 [41–44] can be seen as well as calcite bands. The bands at 1586 cm−1 and 1319 cm−1 are
most probably also related to the presence of G and D bands of the amorphous carbon, which exhibits
a strong shift [45,46]. In the past the use of pure hematite as a mineral pigment to obtain the red color
was unlikely; the use of red ochre, where the red color is given by the presence of hematite [47,48],
is much more likely; moreover, the Raman spectra of hematite and red ocher are very similar [49,50].

Figure 7. Raman spectra of hematite for Samples 1 and 2.

The mineralogical composition of the green fragments (Samples 3 and 4) is quite complex.
Figure 8a,b show two blue euhedral cuprorivaite crystals (CaCuSi4O10) detected by Raman
spectroscopy. Indeed, the relative spectra show typical cuprorivaite bands at 113, 137, 361, 377,
431, 568, and 1083 cm−1 [40,51–56]. Cuprorivaite, which is a calcium-copper tetrasilicate, is the main
component of ancient Egyptian blue pigment [57], a synthetic pigment obtained by heating a mixture
composed of calcite, siliceous sand, copper compounds, and natron or plant ash, to a temperature
ranging between 850 ◦C and 950 ◦C [52,58,59]. Samples 3 and 4 also contain brown minerals, which can
be seen in Figure 8c,d, which are goethite crystals (Fe+3O(OH)). In fact, the relative Raman spectra
show typical bands at 91, 203, 241, 297, 387, 416, 477, 546, and 681 cm−1 [41,60,61].

Numerous charcoal fragments were detected in the green fragments (Figure 9a,b), as confirmed
by the Raman spectra, where Raman bands of amorphous carbon at 1361 and 1577 cm−1 [45,46] were
observed. Another mineral with a green hue present in Samples 3 and Sample 4 is celadonite (K[(Al,
Fe3+), (Fe2+, Mg)](AlSi3, Si4)O10(OH)2) (Figure 9c,d), which was detected by the Raman bands at
171, 271, 444, 589, and 700 cm−1 [59]. In addition to glauconite, clayey micas celadonite is one of
the main components of the “green earths”, which have been used as pigments since antiquity [62].
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The coexistence of cuprorivaite, goethite, and celadonite in Pompeian green pigments has been
highlighted by previous works [19]. As a matter of fact, Egyptian blue (cuprorivaite) and “yellow ocher”
(goethite) were mixed together to obtain different green hues; while the “green earths” (celadonite)
were added to the mixture in order to enhance the color brilliance of the green pigments [19]. Powdered
charcoal was frequently added to various pigments to create darker shades and this is probably why it
was found in Samples 3 and 4.

Figure 8. Optical microscope (OM) images of cuprorivaite under reflected light on the painted surfaces
of Samples 3 (a) and 4 (b) with relative Raman spectra; OM images of goethite under reflected light on
the painted surfaces of Samples 3 (c) and 4 (d) with relative Raman spectra.
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Figure 9. OM images of amorphous carbon under reflected light on the painted surfaces of Samples 3
(a) and 4 (b) with relative Raman spectra. OM images of celadonite under reflected light on the painted
surfaces of Samples 3 (c) and 4 (d) with relative Raman spectra.

The black color of the black fragment (Sample 5) is due to the large amount of finely pulverized
charcoal mixed with lime, as demonstrated by the Raman spectrum shown in Figure 10a, in which
Raman bands of amorphous carbon at 1361 and 1577 cm−1 [45,46] can be seen.

In contrast, the brown fragment (Sample 6) is mainly composed of brown minerals mixed with
lime, which are classified as goethite due to the presence of Raman bands at 91, 243, 299, 393, 474, 550,
and 685 cm−1 [41,60,61] (Figure 10b).
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Figure 10. (a) OM images of amorphous carbon under reflected light on the painted surface of Sample
5 (black) with relative Raman spectrum; (b) OM images of goethite under reflected light on the painted
surface of Sample 6 (brown) with relative Raman spectrum.

A synthesis of the minerals identified by Raman spectroscopy with their typical Raman bands is
shown in Table 1, describing the composition of each pigment.
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Table 1. Micro-Raman and p-XRF results for the compounds detected on the painted surfaces of all of the samples analyzed in this study.

Band Wavenumber/cm−1 and Compounds Identification by Micro-Raman Spectroscopy P-XRF

Sample Color

Calcite: 148, 274, 711,
1085 cm−1 [40].

Power output of the
laser beam: 7 mW

Hematite: 224, 243,
297, 409, 610,

1319 cm−1 [41–44].
Power output of the
laser beam: 2.6 mW

Cuprorivaite: 113, 137,
361, 377, 431, 568,

1083 cm−1 [40,51–56].
Power output of the
laser beam: 5 mW

Goethite: 91, 203, 241,
297, 387, 416, 477, 546,
681 cm−1 [41,60,61].
Power output of the
laser beam: 1.8 mW

Celadonite: 171, 271,
444, 589, 700 cm−1 [62].

Power output of the
laser beam: 1.8 mW

Amorphous carbon:
1361, 1577 cm−1 [45,46].

Power output of the
laser beam: 6 mW

Chemical elements
identified by p-XRF

Sample 1 Red Yes Yes No No No Yes Al, Si, P, K, Ca, Ti, Mn, Fe.

Sample 2 Red Yes Yes No No No Yes Al, Si, P, K, Ca, Ti, Mn, Fe.

Sample 3 Green Yes No Yes Yes Yes Yes Mg, Al, Si, P, S, K, Ca, Ti,
Mn, Fe, Ni, Cu, Zn.

Sample 4 Green Yes No Yes Yes Yes Yes Mg, Al, Si, P, S, K, Ca, Ti,
Mn, Fe, Ni, Cu, Zn.

Sample 5 Black Yes No No No No Yes Mg, Al, Si, P, S, K Ca, Fe.

Sample 6 Brown Yes No No Yes No No Mg, Al, Si, P, S, K, Ca, Fe.
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4. Conclusions

In this study, we successfully applied a non-destructive multi-analytical approach to analyze
exceptionally preserved wall painting fragments which had been reused as recycled coarse aggregate
to make the preparatory layer (rudus) of an ancient Pompeian pavement. The compositional results
obtained are very important, because they provided us with insight into the pigments used in Pompeian
wall paintings, which had not undergone mineralogical and chromatic changes due to the increase
in temperature during the 79 AD eruption. For this reason, the colorimetric data presented probably
provide us with the most “faithful picture” of the various red, green, black, and brown pigments used
in Pompeii prior to the 79 AD eruption.

The study highlighted the use of hematite as a primary mineral pigment for red paintings (as
shown in Samples 1 and 2). The red color of these samples was the hue that the painters of that time
really wished to use. As the samples were in a good state of preservation, we can confirm that their
red color is original and not due to mineralogical transformation (dehydration) from goethite (yellow
ochre with brown hues) to hematite (with red hues), caused by high temperatures of approximately
250 ◦C [63,64], as in the case of the Herculaneum wall paintings, where the original brown color
may have changed to red following the 79 AD eruption [65]. Therefore, our data indicate that using
hematite as a primary mineral to make red pigments was common practice in Pompeii, probably
because it was less expensive than the precious cinnabar (HgS).

The results of analyses carried out on the green fragments (Samples 3 and 4) confirmed the
findings of previous studies [19], in particular confirming that the Pompeians obtained green pigment
by mixing Egyptian blue and yellow ochre and added “green earths” (celadonite) to enhance the color
brilliance of the green pigments.

Powdered charcoal was used to obtain the black pigment (Sample 5) and to create darker shades
of other pigments, such as green pigments (Samples 3 and 4).

The characterization of the brown fragment (Sample 6) detected the presence of goethite as the
main mineral used to obtain the brown color, confirming that goethite was commonly used in the wall
paintings of Pompeii [17,19].

This study shows the importance of combining different non-destructive analytical techniques
(micro-Raman, p-XRF, and colorimetry) to obtain an exhaustive characterization of the mineral
pigments without damaging the samples; as matter of fact, these techniques are complementary.
Portable X-ray fluorescence (p-XRF) and colorimetry alone are not sufficient for solving the issues
regarding the composition of the ancient wall paintings. P-XRF and colorimetry provide non-punctual
information, working on spots ranging from about 25 to 50 mm2. Micro-Raman spectroscopy allows
one to overcome this problem by punctual analyses with a spatial resolution of about 3–5 µm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/4/134/s1,
Figure S1: Location of the wall painting fragments “in situ” in Via di Mercurio (Regio VI, 9, 3) in Pompeii.
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