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Abstract: A general overview of the trends in structural and thermodynamic properties that have been
identified within the hydrated normal rare earth carbonates and the rare earth hydroxycarbonates is
presented. Based upon available literature, we demonstrate the trends in crystallographic unit cell
parameters, thermal stability, aqueous solubility, and thermochemical properties. These trends can be
attributed to both the unique chemistry and strong similarity of the rare earth elements. There are also
inconsistent trends that signal research needs to better understand the structure–energy relationships
of the rare earth carbonates.
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1. Introduction

The rare earth elements have made their way into many aspects of modern life. From the gasoline
in automobiles, the ubiquitous mobile phones, speakers, lights, to energy production, the rare earth
elements are indispensable to current standards of living and technology. Common applications of the
rare earth elements are summarized in Figure 1. The interesting properties that have allowed their
application are largely due to the unique 4f electrons that have highly localized electronic states and
very predictable electronic transitions that are weakly influenced by the coordination environment or
crystal field. In general, this means that the unique physical properties of the rare earth ions are largely
unaffected by their surroundings. However, it should be noted that slight variations and nuanced
interactions of the rare earth ions with their surroundings are of great research interest [1].
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Figure 1. Applications of the rare earth elements broken down by element. Most applications are 
geared towards high-technology, such as lasers, magnets, phosphors, energy conversion, and 
catalysis. Adapted from Gschneidner, Jr. [2]. 

The International Union of Pure and Applied Chemistry (IUPAC) defines the rare earth elements 
as a series of 17 chemically similar elements in the periodic table [3] including scandium, yttrium, 
and the lanthanides. Scandium and yttrium are chemically similar to the lanthanides and often 
collocated with the lanthanides in mineral deposits. Scandium is not as widely utilized as the other 
rare earths as the process for obtaining metallic scandium is quite difficult. It is only relatively 
recently that scandium has found limited application in aluminum alloys. All but one of the 
lanthanides (lanthanum to lutetium) fill the 4f election shell. Depending upon classification and 
researchers’ preferences, either lanthanum, despite the namesake, or lutetium can be excluded from 
the lanthanide classification. Promethium was the last of rare earth elements to be formally discovered 
and is mainly utilized for its radioactivity in research and a small amount of applications [4]. 

The rare earth elements are not actually rare in geologic abundance, despite their name [5] 
(Figure 2). In absolute terms, the rare earth elements are more abundant than many of the platinum 
group metals (e.g., platinum and palladium) and have similar abundances to tin, zinc, and tungsten. 
Lutetium and thulium are the least abundant and lanthanum, cerium, and yttrium are the most 
abundant. The rare earth element of even atomic number is more abundant than either of the 
corresponding rare earth elements of odd atomic number on either side (Figure 2) in the periodic 
table (e.g., cerium (58) is more abundant than both lanthanum (57) and praseodymium (59)). The rare 

Figure 1. Applications of the rare earth elements broken down by element. Most applications are
geared towards high-technology, such as lasers, magnets, phosphors, energy conversion, and catalysis.
Adapted from Gschneidner, Jr. [2].

The International Union of Pure and Applied Chemistry (IUPAC) defines the rare earth elements
as a series of 17 chemically similar elements in the periodic table [3] including scandium, yttrium,
and the lanthanides. Scandium and yttrium are chemically similar to the lanthanides and often
collocated with the lanthanides in mineral deposits. Scandium is not as widely utilized as the other
rare earths as the process for obtaining metallic scandium is quite difficult. It is only relatively recently
that scandium has found limited application in aluminum alloys. All but one of the lanthanides
(lanthanum to lutetium) fill the 4f election shell. Depending upon classification and researchers’
preferences, either lanthanum, despite the namesake, or lutetium can be excluded from the lanthanide
classification. Promethium was the last of rare earth elements to be formally discovered and is mainly
utilized for its radioactivity in research and a small amount of applications [4].

The rare earth elements are not actually rare in geologic abundance, despite their name [5]
(Figure 2). In absolute terms, the rare earth elements are more abundant than many of the platinum
group metals (e.g., platinum and palladium) and have similar abundances to tin, zinc, and tungsten.
Lutetium and thulium are the least abundant and lanthanum, cerium, and yttrium are the most
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abundant. The rare earth element of even atomic number is more abundant than either of the
corresponding rare earth elements of odd atomic number on either side (Figure 2) in the periodic table
(e.g., cerium (58) is more abundant than both lanthanum (57) and praseodymium (59)). The rare earth
elements are co-located with one another and usually found as part of a host mineral. Many of these
rare earth enriched minerals are carbonate minerals [6], such as bastnaesite and lanthanite, and are
found in large carbonatite deposits, such as those at Mountain Pass (California, USA) [7] and Bayan
Obo (Inner Mongolia, China) [8,9]. Economically viable rare earth mineral deposits, large quantities
of minerals with high rare earth concentrations and chemistries that allow for the relatively easy
separation of the rare earth elements from the host, are mined and refined in only a few locations
around the world. Large capital costs, high environmental impact, and specific mineral chemistries
have resulted in China producing the majority of the world’s rare earths [5,10–14].
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Figure 2. (a) Crustal abundances of the rare earth elements (REEs) relative to silicon (adapted from
USGS [5]) and each other (adapted from Gupta [15]). (b) REEs are relatively abundant compared to
palladium group metals (e.g., palladium, platinum, and rhodium).
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The ability to refine and produce rare earth products from the aforementioned carbonate
mineral deposits begins with a fundamental understanding of the rare earth carbonates. The rare
earth carbonates include both the rare earth bearing carbonate minerals and the synthetic rare
earth carbonates that match the chemical composition of either the naturally occurring minerals
or the pure single element carbonates. Understanding the behavior of the rare earth carbonates in
geochemical systems begins with the behavior of the rare earths in the RE2O3-CO2-H2O ternary system.
At standard temperature and pressure (25 ◦C, 1 atm), the rare earth carbonates are the hydrated normal
rare earth carbonates (RE2(CO3)3·xH2O) and the rare earth hydroxycarbonates (RE(OH)CO3·xH2O,
also known as basic carbonates, carbonate hydroxide, hydroxylcarbonates, and hydroxocarbonates).
Anhydrous variants of the normal carbonates and hydroxycarbonates exist, but they readily absorb
water to create their respective hydrated variants. The rare earth oxycarbonates are also an important
class of rare earth carbonates. However, these oxycarbonates form at higher temperatures as a result
of the thermal decomposition of either the normal carbonates or hydroxycarbonates. Within the
framework of this study, the oxycarbonates and the anhydrous carbonates are treated as the thermal
decomposition products of their respective rare earth carbonate and will not be thoroughly addressed.

The preponderance of CO2 and H2O in geological systems at ambient conditions has necessitated
the analysis of the rare earth carbonates, especially with respect to phase stability, crystallography,
thermodynamic stability, and behavior in water. Understanding which rare earth carbonate phase
(normal vs. hexagonal hydroxycarbonate vs. orthorhombic hydroxycarbonate) will form in certain
CO2, H2O, pressure, and temperature conditions is crucial to understanding the geochemistry
and distribution of rare earths in natural systems. This is particularly important to nuclear fuel
applications, as certain lanthanides are the fission products of nuclear fuels and other lanthanides,
such as neodymium, serve as chemical homologues in studying the distribution of radioactive
actinides in natural CO2-H2O hydrothermal systems [16–19]. In industrial rare earth production,
understanding what phase the rare earth carbonates will assume in these mineral deposits
(normal vs. hexagonal hydroxycarbonate vs. orthorhombic hydroxycarbonate) informs how the
deposit can be processed. The refined rare earths are then precipitated as the rare earth carbonates to be
used in the downstream production of other rare earth solids such as the rare earth chlorides, sulfates,
and oxides. These industrially produced rare earth carbonate products utilize alkali or ammonium
carbonates/bicarbonates to simultaneously adjust pH and precipitate [20–33] from process streams.

The purpose of this study is to present the most common synthesis methods of the rare earth
carbonates, their crystallographic structure, thermochemical data, aqueous behavior, and thermal
stability. Through this treatment, we will find trends that can be attributed to the unique chemistry of
the rare earth elements and identify inconsistencies and research needs in the current body of literature.

2. Synthesis

The history of the rare earth carbonates begins in the latter half of the 19th century. Treatises on
chemistry in the first half of the 19th century, such as those by Sylvester [34] and Reid [35], contain
scant mention, if any, of the rare earth elements. Considering that Johan Gadolin’s discovery of
yttrium dates to 1792, spread in knowledge concerning the chemistry of these new rare earths would
have been limited. However, treatises on chemistry from the late 19th century onwards address
the rare earth carbonates, along with other rare earth salts. Treatises such as those by Roscoe and
Schorlermmer [36], Treadwell [37], Blitz and Blitz [38], and Fresenius [39] briefly detail the synthesis
of the rare earth carbonates, though no specific mention of the stoichiometry is made. The most
popular methods were precipitation from an aqueous rare earth salt solution using alkali/ammonia
carbonates/bicarbonates or the conversion of the rare earth hydroxide to the carbonate using gaseous
carbon dioxide. Efforts to synthesize the rare earth carbonates by alternative means yielded results
in the 20th century. Starting in the 1950s, rare earth carbonates were synthesized by homogeneous
precipitation from an aqueous solution of the rare earth salt plus a water soluble organic compound.
Also known as decomposition synthesis, this method has been extensively used in laboratory settings
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to synthesize the carbonates. In laboratory settings with high purity requirements, homogeneous
precipitation has been the synthesis method of choice as the conversion of hydroxide is a relatively
slow process and precipitation using the alkali/ammonia carbonates/bicarbonate salts result in alkali
or double carbonate contamination [36–42].

We have classified the various synthesis methods of the rare earth carbonates as conversion,
precipitation, and decomposition. Based upon the findings by Kutty [43–47] and Caro [48–50], each of these
synthesis types can be used to create the desired rare earth carbonate phase (normal vs. hydroxy). It should
be noted that the most convenient means of creating the hydroxycarbonates are the decomposition methods.
Both types of carbonates can be used in laboratory settings as host materials or as template materials in
the formation of other nanocrystalline rare earth phases [51–75]. In industrial settings, both normal and
hydroxycarbonates have been equally useful as precursor materials.

2.1. Conversion

Conversion synthesis methods create rare earth carbonates by directly converting a colloidal
solution of the insoluble precursor material into the rare earth carbonate of interest. Direct mention
of this synthesis method can be found in chemistry treatises [36–39] dating to the late 19th century.
In these cases, rare earth carbonates are created by flowing gaseous CO2 through a wet solution of
the rare earth hydroxide. Later reports in the early 20th century will use this technique to begin
the work of definitively characterizing the rare earth carbonates. Raikow et al. [76] demonstrated
the formation of lanthanum, yttrium, and cerium carbonates in addition to the formation of other
metal carbonates, by flowing relatively low pressure, gaseous CO2 over aqueous solutions of their
respective metal hydroxides. By this method, normal lanthanum carbonate, yttrium hydroxycarbonate,
and cerous/ceric carbonates were synthesized. Converting a RE hydroxide into its respective RE
carbonate by this method is quite simple but is slow and has low conversion yields [77].

More recent advances in synthesizing rare earth carbonates from insoluble precursor materials
(considering that solubility products of rare earth hydroxides range from 10−21 to 10−18) have come
to include the conversion of the rare earth oxide [49,50,78]. Caro and coworkers [50] synthesized the
entire array of normal rare earth carbonates at room temperature by equilibrating a colloidal solution
of the oxides with a CO2 overpressure of 1 atm over a matter of days to weeks. Caro and coworkers
later demonstrated [49] that the lighter normal rare earth carbonates can be hydrolyzed to create
the hydroxycarbonates by allowing the lighter normal rare earth carbonates to sit in water without
CO2 overpressure. Work by Fernando and coworkers [78] utilized supercritical CO2 at 2800 psi and
at temperatures less than 100 ◦C to synthesize the normal carbonates of lanthanum, neodymium,
samarium, europium, gadolinium, dysprosium, and holmium. It was demonstrated that working with
very low solids loading of the oxides, at lower temperatures, increasing pCO2 increased conversion
yields while keeping conversion times relatively short (> 95% conversion in 1 hour) with increasing
reaction times not giving measurable increases in yield.

RE2O3-CO2-H2O systems have been studied using varied system pressure and temperature
to determine hydrothermal phase equilibria of the system [43–47]. With sufficient pCO2 and mole
fraction of CO2, the hydrated normal carbonates are preferred over the hydroxycarbonates at lower
temperatures. Exact temperatures and mole fraction of CO2 at which each carbonate (e.g., normal
carbonate vs. hydroxycarbonate vs. monoxycarbonate) becomes preferred changes with system
pressure. In general, the normal carbonates form preferentially at temperatures less than 200 ◦C given
sufficient pCO2/mole fraction of CO2. With insufficient amounts of CO2, the hydroxycarbonates are
generally preferred regardless of temperature. As previously mentioned, the normal carbonates of the
lighter rare earths can form their hydroxycarbonates at ambient conditions when exposed to water.

Gaseous CO2 is an integral part in the synthesis of the rare earth carbonates. Upon initial
inspection, the conversion methods are relatively straightforward, facile means of creating the desired
carbonates, especially the normal carbonates. Simple as they are, they are not necessarily the most
popular or cost-effective solutions for creating the rare earth carbonates. Converting the hydroxides



Minerals 2018, 8, 106 6 of 24

to the carbonates is a slow process (hours to days). Converting the oxides to the carbonates using
supercritical CO2 is a faster process with high yields (hours), but requires high pressure vessels to
contain the supercritical CO2 [78]. In either case, quick high-throughput synthesis of the carbonates
is not possible. Synthesis of the carbonates from an aqueous solution of a rare earth salt is also not
possible by these means. Yet, the importance of CO2 to the synthesis process, regardless of the type of
synthesis, cannot be understated.

2.2. Decomposition

Decomposition synthesis, also known as homogeneous precipitation, create the rare earth
carbonates by increasing the effective concentration of aqueous CO2/carbonate ions in solutions via
the decomposition of rare earth organic salts or soluble organic compounds at elevated temperatures.
Unlike the conversion of insoluble template materials in a colloidal solution, these precipitations
occur from completely aqueous solutions of the rare earth salts plus an organic compound. An initial
reason for finding decomposition-based methods for synthesizing the rare earth carbonates was to
eliminate the contamination from carbonate/bicarbonate salt precipitations and the slow conversion
process of the rare earth oxides/hydroxides. Hence, in principle, any organic compound that liberates
CO2 upon decomposition/hydrolysis in water can serve as a CO2 source. The most popular organic
compounds/salts that have been used are trichloroacetic acid and urea. Other organic sources such as
gelatin, formic acid [79,80], acetic acid [81], and propionic acid [81] have been used but have not been
as popular.

Rare earth trichloroacetate salts were one of the first rare earth organic salts used to synthesize the
rare earth carbonates. Salutsky and Quill [82] first synthesized the normal carbonates of lanthanum,
neodymium, and samarium using this method in 1950. The oxide is first dissolved in an excess of
the trichloroacetic acid and then heated under CO2 bubbling until the excess trichloroacetic acid has
been decomposed, after which precipitation can occur. Follow up studies on the normal rare earth
carbonates by others such as Charles [83], Head [84,85], Sastry [86], Wakita [87], Shinn [88], and Eyring
and coworkers [89,90] have utilized rare earth trichloroacetate decomposition to synthesize phase
pure normal rare earth carbonates. For the purposes of characterizing the normal carbonates, such as
diffraction analysis and thermal decomposition analysis, trichloroacetate decomposition has been the
choice synthesis method. From these normal carbonates, the respective hexagonal hydroxycarbonates
may be synthesized via hydrolysis; elevated temperatures and low pCO2 overpressure accelerate this
hydrolysis. This hydrolysis occurs quickly and many steps during the normal carbonate synthesis
are usually taken to ensure this does not occur, such as pCO2 overpressure during reaction and
washing with CO2-laden water. To synthesize the orthorhombic hydroxycarbonates, alternative
organic compounds other than trichloroacetic acid are used.

Urea decomposition was reported by Akinc and coworkers [91,92] and Matijevic and
coworkers [61,71,72] in the late 1980s and early 1990s. Since then, it has become one of the most favored
CO2-source organic compounds in the laboratory synthesis of rare earth carbonates [59,68,74,75,93–98],
particularly the orthorhombic hydroxycarbonates. Urea hydrolysis is rather slow at even 90 ◦C, but is
accelerated by the presence of lanthanide salts. Increasing the temperature beyond 100 ◦C results in
uncontrolled, accelerated decomposition of urea. For nanoparticle synthesis, this has been shown to
be an undesirable outcome as this affects particle size distribution, but this may not necessarily be
a concern for purely synthesizing the hydroxycarbonate [99].

Other organic compounds such as gelatin, formic acid [79,80], acetic acid [81], and propionic acid [81]
have been used to create the rare earth carbonates, but have only been utilized on a very limited scale,
if at all. The most popular trichloroacetate and/or urea decompositions have been successfully used
to synthesize the entire gamut of rare earth carbonates [59,61,68,71,72,74,75,82–90,94–98]. In laboratory
settings where chemical purity is of utmost importance, they have been considered as choice precursor
materials as the alkali precipitants will create double carbonate contaminants given sufficient contact time.
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Other modifications to reaction conditions such as stabilizing ligands, temperature, pressure, carbonate
source content, and solvent have been used with great aplomb to achieve variations in particle morphology.

Decomposition syntheses are much faster than conversion syntheses and can be comparable in
time to precipitations using carbonate/bicarbonate salts (minutes to hours). Some laboratory-based
carbonate syntheses utilize these salts. Yet, compared to salt precipitations, decomposition syntheses
are not as straightforward and difficult to scale to large quantities. This particular quality of the
carbonate/bicarbonate salt precipitations has made these salts the choice methods for industrial scale
precipitations from highly acidic rare earth salt solutions.

2.3. Precipitation

One of the most cost-effective ways of producing rare earth carbonates en masse from rare
earth salt solutions (e.g., rare earth chlorides and nitrates) is by the precipitation of a rare earth
carbonate using carbonate or bicarbonate salts. In an industrial setting, alkali or ammonia
carbonate/bicarbonate salts are the most employed precipitation agents within the rare earth
stripping/extraction/calcination process(es) [20–33]. Given that many of these industrial rare earth
salt solutions are highly acidic, the “dual” nature of these precipitation agents are very useful;
they adjust pH to the carbonate/hydroxide precipitation pH regime (pH ≥ 6.0) and increase the
aqueous carbonate/bicarbonate concentrations beyond saturation. Synthetic rare earth salt solutions,
i.e., those derived directly from the rare earth salts, are also acidic and benefit from the ‘dual’ nature of
the carbonate/bicarbonate salts. Achieving pH ≥ 6.0 is a necessary component to the precipitation
process as the rare earth carbonates are soluble at even moderately acidic pH. In laboratory settings,
the rare earth carbonates are also synthesized using these salts. Nagashima [97] reported that
the use of bicarbonate salts improved the crystallinity of the final rare earth carbonate products.
However, since research laboratories require high purity products and have other product requirements
such as particle size, shape, and crystallinity, these parameters are more easily controlled using
decomposition synthesis, and carbonate/bicarbonate salt precipitations are not as favored. Based upon
our understanding of the RE2O3-CO2-H2O hydrothermal equilibria, the normal carbonates are the
preferred carbonate phases in these precipitation processes. Most carbonate salt precipitation processes
are conducted at ambient conditions in relatively short amounts of time. However, if the rare earth
carbonate is allowed to remain in contact with aqueous alkali carbonate/bicarbonate salt solution,
the carbonate will either hydrolyze to create hydroxycarbonate [100] or, more likely, create a double
carbonate [36–42,101–104].

The double carbonates, single crystal phases characterized as a mixture of an alkali carbonate and
rare earth carbonate, are a phase unique to the carbonate/bicarbonate salt precipitation methodologies.
It has been understood since the beginnings of rare earth carbonate synthesis that the double carbonates
form if a rare earth carbonate is allowed to sit in a solution of the alkali carbonate/bicarbonate salt [36–39].
Ammonium carbonate/bicarbonate solutions do not result in a double carbonate, but rather result in
the formation of the perioxycarbonate [105]. It should be noted that the dissolution process occurs more
rapidly if the excess salt solution is that of the bicarbonate salt. Yet, regardless of either carbonate or
bicarbonate, the final carbonate product will be the double carbonate. This process occurs in two steps.
The rare earth carbonates will dissolve in the salt solution and then precipitate as the double carbonate.
It should be noted that this process is not quick and requires the rare earth carbonate to be in contact with
carbonate salt solution for hours to days for appreciable amounts of precipitation. The best characterized
rare earth/alkali double carbonates are those of the rare earth/sodium double carbonates [40,102–104].
Rare earth/potassium double carbonates also occur [41,42,102].

End product purity requirements, amongst other requirements, ultimately dictate what synthesis
method is used to create the rare earth carbonate. Conversion methods are no longer as popular as
the very large amounts of time require to achieve full conversions to the carbonates have seen them
fall out of favor. The decomposition methods can be used to tailor product-specific properties such as
particle size, morphology, and crystalline phase in laboratory settings. Decomposition methods are
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faster than conversion methods but still much slower than carbonate salt precipitations. Carbonate
salt precipitations are generally not used to tailor product-specific properties such as particle size and
shape, but are much more straightforward than decomposition methods, yet susceptible to double
carbonate contamination.

3. Trends in the Properties of the Rare Earth Carbonates

The rare earth elements, because of their chemically similar natures, exhibit a number of trends
with respect to their atomic numbers. Many of these trends can be correlated with the lanthanide
contraction, the decrease in ionic radii with increasing atomic number [15]. From lanthanum to
lutetium, there is a demonstrable decrease in the ionic radius of the trivalent lanthanide cations due
to the weak shielding of the valence electrons by the inner 4f electrons (Figure 3). This contraction
manifests itself in the slight chemical differences between the rare earths, including yttrium and
scandium, that allow for their chemical separation during industrial refining process. Based upon
ionic radius, the properties of scandium are very different from those of all other rare earths and the
properties of yttrium are somewhere between those of erbium and thulium. Though it may be difficult
to separate immediately adjacent lanthanides (due to a small difference in ionic radius and chemistry),
increasingly greater differences in ionic radius, and thus chemistry, allows for easier separation. It is
relatively straightforward to separate lanthanum from erbium but extraordinarily difficult to separate
neodymium from praseodymium.
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Figure 3. Ionic radius of the trivalent rare earth (RE) cations (adapted from Gupta [15]).
Lanthanide contraction is observed due to the weak shielding of the valence electrons by the 4f
electrons. Certain properties of rare earth carbonate phases can be correlated with atomic number.

A number of lanthanide properties follows a general trend that is similar in principle to the
lanthanide contraction. The metallic lanthanides have increasing Vickers hardness, density, and melting
points with increasing atomic number. Europium and ytterbium are notable exceptions as they are
divalent in the metallic state instead of the more common trivalent state (Figure 4). Cerium is also an
exception as cerium can also be tetravalent, but the effect on Vickers hardness, density, and melting
point is not as pronounced.

The rare earth carbonates exhibit a number of trends that are similar in principle to that of the
lanthanide contraction. Their crystallography, thermal stability, thermochemistry, and behavior in
aqueous systems demonstrate some trends with increasing atomic number. Identifying these trends
furthers our understanding of the influence of rare earth chemistry on materials and enables predictive
capabilities in the general RE2O3-CO2-H2O system(s). The slight and major differences that arise
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in the rare earth carbonates, such as the unit cell parameters in the rare earth carbonates within the
same isostructural group, the hydrolysis tendency of the normal rare earth carbonate to create the
hydroxycarbonate, or solubility differences in aqueous solutions, enables our ability to separate the
rare earths. In natural water systems that contain an abundance of water, carbon dioxide, and the rare
earth oxides, a systematic understanding of rare earth carbonates can help us predict the distribution
of the rare earths in these systems. As mentioned previously, rare earths are important in the study of
nuclear fuel applications as rare earths are fission products of nuclear fuels and certain lanthanides
are good chemical homologues for some actinides. As the carbonates are believed to be the solubility
limiting factor in natural water systems, study of the synthetic carbonates is all the more relevant.
Hydrolysis tendencies will affect which carbonate phase (normal carbonate vs. hydroxycarbonate) are
found in natural water systems, solubility trends will demonstrate the distribution of the rare earths
between solid and aqueous phases, and in mixed RE2O3-H2O-CO2 systems, quantified thermochemical
differences enable predictions of which rare earth carbonate is more likely to form over the other(s),
enabling separation techniques of mixed rare earths.

These property-specific trends are most evident within a systematic study and when quantification
and analytical methods are self-consistent. Systematic studies generally encompass the whole rare
earth spectrum or representative rare earths (yttrium + light rare earth(s) + heavy rare earth(s)) to
demonstrate trends with respect to atomic number. Crystallographic trends are apparent when the
same indexing methods and space groups are used. Thermal stability trends manifest with consistent
atmospheres and heating conditions. Solubility and thermochemical trends require the use of the exact,
desired rare earth carbonate phase to properly attribute these values.
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3.1. Crystallography of the Rare Earth Carbonates

The normal rare earth carbonates, with the general chemical formula of RE2(CO3)3·xH2O,
are hydrated carbonates in which the reported degree of hydration can vary from the theoretically
determined values depending upon synthesis conditions. The rare earth hydroxycarbonates have
the general chemical formula of RE(OH)CO3·xH2O that can assume the orthorhombic, hexagonal,
or tetragonal structural variants depending upon reaction conditions. It should be noted that in the
study of naturally occurring RE carbonates, particularly single RE carbonates, the hydroxycarbonates
are of greater importance as they are the hydrolysis products of the normal carbonates at ambient
conditions (pCO2 = 3 × 10−4 atm, 25 ◦C, total pressure = 1 atm) and are also the preferred carbonate
phase at elevated temperatures [43–47,49].

Much prior literature regarding the crystallography of the rare earth carbonates has reported
unit cell parameters, space groups, and crystal systems in isolation from one another, i.e., there
is an abundance of literature that reports crystallographic parameters of one or two rare earth
carbonates [88,106–119]. This fragmentation leads to confusion and inconsistencies in the available
crystallographic data for the rare earth carbonates. Yet, literature that utilizes the same crystal systems
and space groups often reports similar crystallographic parameters, such as those by Caro [120] and
Shinn [88]. Authors that have systematically studied the rare earth carbonates (e.g., Caro, Wakita,
Michiba, and Tahara) have utilized self-consistent indexing and synthesis methods, allowing trends
in the crystallographic parameters to become apparent. For both hydroxycarbonates and normal
carbonates, unit cell parameters shrink with increasing atomic number. Though such trends were not
the main focus of these reports, the crystallographic data clearly indicate the trend is present.

Of the normal rare earth carbonates, the carbonates of lanthanum through neodymium are
isostructural to lanthanite, an octahydrate carbonate, and the carbonates of samarium through thulium
plus yttrium are isostructural to tengerite, a di-/trihydrate carbonate. Ytterbium carbonates and
lutetium carbonates form hexahydrate carbonate phases that are unique from each other and the rest
of the rare earths [50]. Scandium can form a carbonate, but is most likely to form a unique hydroxide
phase. Attempts to reproducibly synthesize and characterize scandium carbonates have met with
limited, if any, success [121,122].

The most comprehensive studies on the normal carbonates are by Caro [120] and Wakita [123].
Caro [120] reported the unit cell parameters for lanthanum, praseodymium and neodymium carbonate
by assigning them to the orthorhombic crystal system within the Pccn space group (Figure 5).
Praseodymium and neodymium carbonate were found to be isostructural to lanthanite. Wakita [123]
determined the unit cell parameters for the normal rare earth carbonates to be isostructural to
tengerite. These were the normal carbonates of samarium, gadolinium, dysprosium, holmium, erbium,
and yttrium. Wakita indexed all of the carbonates isostructural to tengerite using the “Battelle indexing
charts for diffraction patterns of tetragonal, hexagonal and orthorhombic crystals” and assigned to
the orthorhombic crystal system [123]. Both studies have shown that the crystallographic parameters
shrink with increasing atomic number. Caro also reported increasing density with increasing atomic
number, attributable to increasing atomic number and shrinking unit cell volumes. Wakita did not
specifically calculate unit cell density but did mention that until cell densities closely follow the
refractive indices, which increase with increasing atomic number. From Wakita’s explicitly reported
unit cell volumes, it can also be assumed that density increases for the tengerites with increasing
atomic number as unit cell volumes decreased with increasing atomic number.
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Figure 5. Lattice parameter data for the lanthanites and tengerites, the normal rare earth carbonate
hydrates. Values for the lanthanites are from Caro and coworkers [120]. Values for the tengerites are
from Wakita and coworkers [123].

The hydroxycarbonates assume two polymorphs in nature. The hexagonal hydroxycarbonates
are isostructural to the hydroxyl analogs of bastnäsite and the orthorhombic hydroxycarbonates are
isostructural to the ancylite group of minerals plus kozoite. The most comprehensive examinations of the
hydroxycarbonate crystal structures are by Tahara [124] and Michiba [79]. Tahara [124] synthesized the
series of orthorhombic hydroxycarbonates by the decomposition of formic acid under hydrothermal
conditions. Neodymium and samarium hydroxycarbonates were assigned the Pnma space group,
europium through thulium hydroxycarbonates were assigned the P212121 space group, and thulium
and ytterbium hydroxycarbonates were assigned the P42/nmc. Like those of the normal carbonates,
the reported values for the orthorhombic unit cell parameters (Figure 6) shrink with increasing atomic
number. Michiba [79] reported the unit cell parameters for the hexagonal hydroxycarbonates (Figure 6).
The hexagonal hydroxycarbonates were synthesized via the hydrothermal decomposition of formic acid at
temperatures greater than those for the orthorhombic hydroxycarbonates. All of the hydroxycarbonates
were assigned the space group. Like the normal carbonates, both polymorphs of the hydroxycarbonates
have shrinking unit cell parameters with increasing atomic number. These shrinking parameters are also
accompanied by hydroxycarbonate densities that increase with increasing atomic number, which is also
attributable to shrinking unit cell volumes and increasing atomic mass.

Shrinking unit cell parameters and increasing carbonate density with increasing atomic number
are found in all polymorphs of the rare earth carbonates. This is true for the normal carbonates,
hexagonal hydroxycarbonates, and orthorhombic hydroxycarbonates. As previously discussed,
these trends only exist when consistent methods of analysis and synthesis are applied to the systematic
study of rare earth carbonate crystallography. For the hydroxycarbonates, lattice parameters reported
by many different groups do not greatly vary from those of Tahara or Michiba. This can be
attributed to the well understood crystallography and easily controllable chemical composition of
the hydroxycarbonates. The values for the respective rare earth hydroxycarbonates from Beall [110],
Dal Negro [125], Christensen [107], Dexpert [126], Doert [109], and Kutlu [108] (Figure 6) are very
similar to those presented by Tahara [124] and Michiba [79].
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Unlike the hydroxycarbonates, the reported values for the normal carbonates are rather
inconsistent when considering a wider body of literature. These differing values can be attributed to
different synthesis methods, degrees of hydration, particle size, and choice of crystal system. In many
attempts to characterize the crystallography of the normal carbonates, the exact degree of hydration
varies widely, and the stoichiometry of the carbonate will vary, though it may not be reported as such.
Based upon the general chemical formula of RE2(CO3)3·xH2O, the RE2O3:CO2 ratio should be as close
to 1:3 as possible, with the amount of water being released upon decomposition dependent upon the
exact rare earth. The RE2O3:CO2 ratio is affected by the hydrolysis of the carbonates, of which those
of cerium through europium tend to hydrolyze into the hydroxycarbonate, and degrees of hydration
are sensitive to drying conditions [86]. Further deviations can be attributed to contamination by
precipitation agents, such as sodium/potassium carbonates, where prolonged exposure of the rare
earth carbonates to aqueous solutions of alkali carbonates will create the double carbonate [36–42].

The crystallographic parameters we have selected as representative of the carbonates are based
upon the following. For the hydroxycarbonates, these are the values that have been accepted into the
Inorganic Crystal Structure Database (ICSD) [79,124]. For the normal carbonates, the values for the
lanthanites have been indexed using the same method for the diffraction pattern and crystallographic
parameters accepted into the ICSD for lanthanum carbonate octahydrate by Shinn [88]. The values for
the tengerites by Wakita should be approached with a little more caution than those of the lanthanites
as the ICSD does not include these values. The diffraction pattern and crystallographic pattern for
tengerite in the ICSD is that by Miyawaki [112], who assigned a different space group to the synthetic
yttrium carbonate than that of Wakita.

3.2. Thermochemical Properties of the Rare Earth Carbonates

The thermochemical properties for the rare earth carbonates are differentiated into the distinct
crystal systems for the normal carbonates and the hydroxycarbonates. Considering the distinct
chemical nature(s) of the different rare earth carbonates, the thermochemical properties for the
hydrated normal carbonates are not the same as those for the anhydrous normal carbonates. Likewise,
the thermochemical properties for the hexagonal hydroxycarbonates are not the same as those for
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orthorhombic hydroxycarbonates. Thermochemical properties for the rare earth carbonates have been
determined by both calorimetric and solubility means, with some studies utilizing both methods to
demonstrate that both are valid methodologies [127] when carefully performed and can arrive at
similar thermochemical values. When done correctly, calorimetric methods of deriving enthalpies of
formation can be accomplished in relatively short time periods (minutes/hours vs. weeks/months)
compared to solubility methods. Solubility methods [127–131] require extraordinarily long time points
to ensure that thermodynamic equilibrium has been established. In addition, solubility experiments
also dictate that the initial and final solid phase in contact with water are the same, i.e., the experimental
conditions should not result in a change of the crystallographic phase or chemical composition during
the course of equilibration. For phases with extremely low solubility, like the rare earth carbonates,
appropriate adjustments in ionic strength and pH are utilized to increase the solubility of the solid
phase(s) to concentration levels that can be accurately measured [130,131].

The hydrated normal carbonates can be classified along the same lines as per their crystallography:
the octahydrate lanthanites, the di-/trihydrate tengerites, and the hexahydrates of ytterbium and
lutetium. It should be noted that thermochemical properties for scandium carbonate are not presented
as no definitive conclusion has been reached in literature regarding the exact composition of scandium
carbonate, if it exists at all [121,122]. The thermochemical values of the hydrated normal carbonates by
Karapet’yants [129,132] (Figure 7) make this apparent, with three distinct “levels” of thermochemical
values (Gibbs free energies and enthalpies of formation). Though the report makes scant mention of the
crystallographic identities, we assume that these hydrates are the isostructural groups associated with
the degrees of hydration as the amount of water is strongly linked to the crystallographic phase [6].
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The Gibbs free energies and enthalpies for the anhydrous normal carbonates are smaller in magnitude
than those for the hydrated normal carbonates (Figure 7). The difference in the thermochemical quantities
between the respective anhydrous and hydrated carbonates can be correlated with the enthalpy of
hydration. Both Gibbs free energies and enthalpies of formation for the anhydrous normal carbonates
decrease in magnitude with increasing atomic number, with a europium exception attributed to a strong
tendency to form the divalent cation. This trend directly carries over to the hydrated carbonates and is
found within the isostructural carbonate groups (i.e., lanthanites, tengerites, and hexahydrates).

The thermochemistry of the hydroxycarbonates is separated between the orthorhombic and
hexagonal polymorphs, which are isostructural to ancylite and hydroxyl-bastnaesite, respectively.
This requires that the presented thermochemical values account for the distinction between these
two phases. Compared to studies of the thermochemical properties for the normal carbonates,
studies of the thermochemistry of the hydroxycarbonates are not as extensive, but have been
conducted more recently. Studies by Rorif [127] and Shivaramaiah [99] (Figure 8) have determined
the enthalpies of formation for a number of hydroxycarbonates spanning the rare earths. In general,
the enthalpies of formation for both hexagonal and orthorhombic hydroxycarbonates decrease in
magnitude with increasing atomic number, and the hexagonal hydroxycarbonates are lower in
magnitude than the orthorhombic hydroxycarbonates. The comparison of the orthorhombic and
hexagonal hydroxycarbonates by Rorif [127] has led to the determination that though the orthorhombic
hydroxycarbonates may be isolated at standard conditions, the orthorhombic carbonates are metastable
compared to their hexagonal polymorphs.
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Overall, the present body of thermochemical values has allowed us to draw the following
conclusions: the hydrated normal carbonates form preferentially over the hydroxycarbonates
at standard conditions, the orthorhombic hydroxycarbonates are preferred over the hexagonal
hydroxycarbonates at standard conditions, and thermochemical properties for normal carbonates and
hydroxycarbonates decrease in magnitude with increasing atomic number. However, additional studies
into the thermochemistry of other hydroxycarbonates such as those of holmium, erbium, ytterbium,
and gadolinium will flesh out the body of literature available. Literature on the thermochemical
parameters for the normal carbonates may require revisiting as the work by Karapet’yants [129,132]
was conducted over 40 years ago. More recent analytical methodologies may prove beneficial to
refining and improving the thermochemical quantities for the hydrated normal carbonates [130,131].

3.3. Thermal Behavior of the Rare Earth Carbonates

Literature regarding the thermal behavior of the rare earth carbonates has attempted to identify
certain trends, intermediate phases, or simply show the decomposition profile to demonstrate that
they have synthesized the desired rare earth carbonate. In general, all rare earth carbonates will follow
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the sequence of dehydration, partial decarbonation, and full decarbonation. The dehydration process
can account for 5% to 20% of the mass loss; the lanthanites can lose up to 23% of their initial mass due
to dehydration. Dehydration mainly occurs below 100 ◦C with any additional water, or crystalline
water in the hydroxycarbonate, being lost between 200 and 500 ◦C. Following dehydration, carbonates
will partially decompose into the oxycarbonates. The oxycarbonates will then decompose into the
respective oxide.

The normal carbonates in general follow the decomposition pathway of:

RE2(CO3)3·xH2O↔ RE2(CO3)3 + xH2O (1)

RE2(CO3)3 ↔ RE2O2(CO3) + 2CO2 (2)

RE2O2(CO3)↔ RE2O3 + CO2 (3)

The hydroxycarbonates in general follow the decomposition pathway of:

RE(CO3)OH·xH2O↔ RE(CO3)OH + xH2O (4)

2RE(CO3)OH↔ RE2O2(CO3) + CO2 + H2O (5)

RE2O2(CO3) ↔ RE2O3 + CO2 (6)

Thermal decomposition profiles are affected by the decomposition atmosphere and heating rate.
Relative to air, humidified air will not stabilize the hydrates or water bearing phases, CO2 atmospheres
will stabilize all carbonate phases, and vacuum atmospheres will expedite the decomposition of all
phases [84,85]. High heating rates can mask the existence of intermediate phases [89,90,133,134] and make
the accurate identification of phase transitions difficult. With all that said, most systematic studies on the
thermal decomposition of both hydrated normal carbonates and hydroxycarbonates do not necessarily
present specific values according to which the onset of thermal decomposition, and therefore trends across
the rare earths, can be identified. This makes the specific identification of trends difficult, but correlations
with increasing atomic number have been reported. In general, the decomposition temperature for all
rare earth carbonates and all intermediate phases (anhydrous and oxycarbonate) trends downwards
with increasing atomic number. It should be noted that the thermal decomposition of the rare earth
oxycarbonates have been previously characterized [86,135–137].

Comprehensive studies of the normal carbonates by Head [84,85], Domingues and
coworkers [133,134], Wendlandt [138], and Foger [139] demonstrate correlations in the stability of the
representative intermediate carbonate with respect to atomic number. In general, the intermediate
carbonate phases, the anhydrous normal carbonate and dioxymonocarbonate, will trend toward
lower decomposition temperatures in air with increasing atomic number. It should be noted that this
correlation is not perfect [84,85] and these exceptions, such as the greater decomposition temperature
of gadolinium carbonate over the europium carbonate, multiple dehydrations steps for neodymium
carbonate [89], and the complex decomposition of praseodymium carbonate [90], can be attributed to
the unique electron configurations of the respective rare earths.

In contrast to the normal carbonates, the thermal decomposition behavior of the
hydroxycarbonates has not been as comprehensively studied. A limited number of studies on the
hydroxycarbonates by Eyring [89,90], Charles [83], and D’Assuncao [140] have demonstrated the
general decomposition pathway as outlined by equations 3–5. Charles [83] gives a relatively qualitative
view on the decomposition pathways of the hydroxycarbonates and the studies by Eyring [89,90] are
in general agreement with this decomposition pathway.

D’Assuncao [140] has given one of the most comprehensive reports on the decomposition profiles
of the rare earth hydroxycarbonates, but it should be noted that no mention of crystal phase for the
rare earth hydroxycarbonates was given and thus it is difficult to assess to which hydroxycarbonate
phase the results can be ascribed. Specific transition temperature(s) were also not reported as the
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high heating rates, which have also been known to shift the transition/decomposition temperature
higher [89,90,133,134], most likely made this very difficult. Based on the provided decomposition
profiles and associated decomposition temperature ranges, we make the following conclusions:

(1) Decreasing carbonate product crystallinity (lack of distinct plateaus in decomposition profiles)
with increasing atomic number, with the relatively high heating rate (~20 ◦C/min), makes
decomposition transition temperature difficult to identify.

(2) Dehydration of the hydroxycarbonates, due to their greater amorphous nature, occurs at much
lower temperatures than those of the lighter hydroxycarbonates.

(3) Within the lighter hydroxycarbonates (La-Eu), the temperature at which the partial decarbonation
to form an oxycarbonate occurs trends downwards with increasing atomic number.

(4) Oxycarbonate decomposition temperature trends downwards with increasing atomic number,
which was also found for the oxycarbonates of the hydrated normal carbonates.

It should be noted that few if any of these observed decompositions represent equilibrium
reactions, with these observations being kinetic rather than thermodynamic. These reactions have
not been shown in these studies to be reversible and particle sizes were not necessarily controlled.
Since particle size and therefore particle packing was not necessarily controlled, deviations in
decomposition temperature due to these factors were also not controlled. Yet, these studies provide
valuable insight into the thermal decomposition of the carbonates.

In comparing the available literature on the thermal decomposition of the rare earth carbonates,
the normal carbonates have been better studied with many reporting the same downward trend in
decomposition temperature of all intermediate phases with increasing atomic number. No distinct
trend across the entire rare earth series could be established for the hydroxycarbonates due to the
isolated nature of the literature, studying only one hydroxycarbonate at a time, and the high heating
rate used in the most encompassing study. To firmly establish decomposition temperature trends,
for either normal carbonates or hydroxycarbonates, with respect to atomic number, future studies
should utilize extremely low heating rates (e.g., 0.25 ◦C/min) [84,85,89,90], same crystallography
(i.e., normal carbonates vs. hexagonal hydroxycarbonates vs. orthorhombic hydroxycarbonates),
and same atmosphere (e.g., air or CO2) [84,85].

3.4. Behavior of Rare Earth Carbonates in Aqueous Environments

The rare earth carbonates are known for two particular behavior patterns in water: they are
very insoluble but undergo hydrolysis. Both normal carbonates and hydroxycarbonates are very
insoluble water, with systematic studies such as those by Jordanov [141], Caro [48], Spahiu [142],
and Rorif [127] showing Ksp values on the order of 10−35–10−20. Yet, insolubility does not
translate to resistance to hydrolysis. At ambient conditions, Caro demonstrated the tendency of
the lighter normal rare earth carbonates (La-Eu) to readily hydrolyze while the heavier normal
carbonates are resistant to hydrolysis [49]. All normal rare earth carbonates will hydrolyze into their
respective hydroxycarbonates in water when temperature is increased close to 100 ◦C. Studies on the
hydrothermal behavior of the RE2O3-CO2-H2O ternary system by Kutty and coworkers [43–47] show
that at isobaric conditions (fixed mole fraction CO2) the hydroxycarbonates are the preferred phase at
elevated temperatures.

The normal carbonates have Ksp on the order of 10−35–10−30 (Figure 9), much lower than the
those of the hydroxycarbonates (10−20–10−15), as determined at neutral pH and with sufficient pCO2.
Since solubility measurement requires that the solid in contact with water does not undergo a chemical
change, this extremely low normal carbonate solubility is relevant with the caveat that the applied
pCO2 prevents hydrolysis into the hydroxycarbonate. Caro demonstrated that the normal carbonates
are stable at a pCO2 of 1 atm [50]. Both Jordanov [141] and Caro [48] utilized this knowledge to obtain
solubility data on the entire series of normal carbonates, demonstrating increasing solubility with
increasing atomic number. Normal yttrium carbonate falls within the expected range based upon
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ionic radius of the trivalent cation (Figure 9). Analysis of multiple solubility reports by Spahiu [142]
have also concluded this general trend. Other collections of systematically acquired solubility data all
show varying degrees of solubility for each of the carbonates, but in general demonstrate increasing
solubility with increasing atomic number.
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Figure 9. Solubility products and raw data for the normal carbonates are presented from Caro
and coworkers [48], Jordanov [141], and Spahiu [142]. In general, the solubility of the normal
carbonates increases with increasing atomic number. The dotted lines are the values for scandium
carbonate and yttrium carbonate as reported by the respective authors and are presented for reference.
Solubility products for the hexagonal and orthorhombic hydroxycarbonates are from Rorif [127].
No trend with respect to atomic number may be established, but the orthorhombic carbonates are in
general more soluble than their hexagonal counterparts.

Hydroxycarbonate solubility, for both orthorhombic and hexagonal phases, has been explored on
a limited basis. Many of these studies have focused on the lighter lanthanide carbonates, particularly
neodymium carbonate as it is a chemical homologue for radioactive actinide carbonates [16,19].
As such, understanding their aqueous solubility has been crucial as the hydroxycarbonate phases are
the solubility limiting phases in natural water systems in the distribution of actinides/lanthanides.
Yet, comprehensive studies on a scale similar to those of the normal carbonates are scarce. Rorif [127]
presented a comparison of the aqueous solubilities of the hexagonal and orthorhombic lanthanum,
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neodymium, samarium, and europium hydroxycarbonates. Though no trends with respect to atomic
number can be established, there is a marked difference in solubility between the hexagonal and
orthorhombic hydroxycarbonates (Ksp = 10−25–10−23 vs. 10−22–10−20, respectively). Across the
board, the orthorhombic hydroxycarbonates are more soluble than their respective hexagonal
hydroxycarbonates (Figure 9).

4. Final Remarks

The rare earth carbonates, both normal and hydroxycarbonates, are important in understanding
the distribution of rare earths in geological settings. Since the rare earths are chemically related to the
actinides, understanding the behavior of the rare earths also furthers our knowledge of the distribution
and chemistry of nuclear fuels and radioactive actinides in natural water systems, which contain CO2.
Industrial production of rare earth solids fundamentally requires a consistent and sound understanding
of the crystallographic, thermochemical, thermal decomposition, and aqueous properties of the rare
earth carbonates. Since many geological sources of rare earths are enriched carbonate minerals and
the downstream production of other rare earth solids begins with the rare earth carbonates, the fully
comprehensive understanding of these properties is of utmost importance. With+ that said, the current
understanding of physical and chemical properties of the rare earth carbonates has been limited
to extrapolations based upon what has been explored, i.e., representative rare earths for the light,
middle, and heavy rare earths. As in the case of nuclear fuel applications, neodymium and europium
carbonates/hydroxycarbonates have been studied as chemical homologues for americium.

Trends in crystallography, thermochemistry, aqueous behavior, and thermal decomposition
of the rare earth carbonates have informed us that physical and chemical parameter trends with
respect to atomic number found for the rare earth elements also carry over to the carbonates.
The shrinking lattice parameters, decreasing magnitude in thermochemical parameter(s), downward
trending decomposition temperatures, and increasing solubility with increasing atomic number
have basis within the concept of the lanthanide contraction and the chemical implications thereof.
However, these parameters and trends can yet benefit from further refinement and studies. The lattice
parameters for the normal carbonates, besides those for lanthanite-(La) and tengerite-(Y), are not
found in ICSD, whilst those for the hydroxycarbonates for both hexagonal and orthorhombic
polymorphs can be accessed through ICSD. The most comprehensive studies of normal carbonate
thermochemistry can only be found in obscure compilations such as that by Karapet’yants. More easily
accessible compilations contain the thermochemical values for singular carbonates or the anhydrous
variants. Hydroxycarbonate thermochemistry is limited to the lighter rare earths with a small
sampling of the heavier rare earths. The aqueous solubility of the carbonates is subject to the
same limitations as the available thermochemical literature, i.e., normal carbonate solubility is found
in obscure literature or data for anhydrous variants are reported as valid for hydrated variants,
and hydroxycarbonate solubility is limited to the lighter rare earths plus a sampling of the heavier rare
earths. The thermal decomposition profiles and our understanding thereof for all carbonates would
benefit from reevaluation. By utilizing extraordinarily slow heating rates, standardized atmospheres,
and standardized transition analyses, firmer correlations may be established in the already established
general correlation in the downward trending decomposition temperature with increasing atomic
number. Updating these values and making them readily accessible would benefit our understanding
of the rare earth elements.
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