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Abstract: Pb–BHA complexes have been shown to be selective for the separation of tungsten and
cassiterite minerals from calcium minerals. These minerals could be enriched synchronously to some
extent using Pb–BHA complexes flotation. However, it is difficult to further improve the quality and
recovery of the scheelite, wolframite, and cassiterite concentrate due to their different behavior in
flotation, such as flotation rate and sensitivities to depressants. Moreover, the super fine particles
create some challenges for the cleaning flotation process. In this study, advanced gravity separators
for super fine particles were introduced for the cleaning process based on the slight difference in the
specific gravity of scheelite, wolframite, and cassiterite. The new process featured pre-enrichment
using Pb–BHA flotation, and upgrading using gravity separation, taking into account both the
similarities and differences in floatability and density of the different minerals. The grades of WO3

and Sn in the concentrate of the new process reached to 61% and 2.89%, respectively, and the recovery
of Sn was significantly improved. In addition, gravity separation is highly efficient, cost effective,
and chemical-free, which is environmentally friendly. This study has proven that physical separation
can be used for the purification of flotation products and provide some solutions for separation
problems of complex refractory ores, which has, up until now, been rarely reported in the literature
and/or applied in mineral processing.

Keywords: tungsten minerals; cassiterite; flotation; gravity separation; Pb–BHA complexes

1. Introduction

Tungsten, which is a hard, refractory, and rare metal, is important in many commercial and
industrial applications. For example, key alloys of tungsten are widely used in the production
of incandescent light bulb filaments, X-ray tubes, electrodes in welding, radiation shielding,
and superalloys. Tungsten’s high strength, hardness, and density make it ideal for military applications
in penetrating projectiles. Tungsten compounds are also often used as catalysts in many industrial
processes, including dehydrogenation, isomerization, polymerization hydrocracking in the chemical
industry, hydrodesulfuration and hydrodenitrification of mineral oil products, and removal of nitrogen
oxides from combustion power plant stack gases by selective catalytic reduction with ammonia.
Tungsten naturally occurs in the earth crust exclusively combined with other elements in chemical
compounds as minerals, and is usually extracted from those minerals. Wolframite ((Fe,Mn)WO4)
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and scheelite (CaWO4) are the main ore minerals of tungsten deposits that occur in sufficient
abundance to be of economic significance. Those tungsten ores are generally subjected to physical
beneficiation techniques such as gravity, flotation, magnetic and electrostatic separation. In particular,
to extract tungsten from fine mineral particles, especially for mineral particles with a size of less
than 10 to 20 microns, flotation methods using fine air bubbles are often adopted, as flotation is a
surface-chemistry based process that takes advantage of the different wettability on mineral particle
surfaces [1–4]. Research regarding floatability and reagents has gained great progress over the past
20 years.

However, with the exploitation and consumption of tungsten deposits of high quality, the need
of low-grade complex ores is increased. Those low-grade tungsten deposits are usually in finely
disseminated form with a complicated composition, containing high calcium gangue minerals and
multi valuable minerals, which create many challenges for tungsten extraction. Firstly, separation
of scheelite from other calcium-bearing minerals by flotation is challenging due to their very similar
surface properties [5–8]. Most attempts have only achieved limited success or specific application
(related to the type or the location of the ore). In addition, some fine cassiterite minerals occur in
nature in association with tungsten minerals, while neither recovering cassiterite from the flotation
tailings of tungsten minerals, nor the synchronous extraction of them, are practicable because of the
great differences between tungsten minerals and cassiterite. Our previous studies [9,10] indicated
that Pb–BHA complexes had good selectivity for the separation of scheelite from calcium minerals by
regulating the Pb/BHA ratio and pH value with the recovery of tungsten minerals being significantly
improved. Tian et al. [11] proved that cassiterite can be separated efficiently from cassiterite–calcite
binary mixed minerals by using Pb–BHA complexes as the collector, and carboxymethyl cellulose as
the depressant. Therefore, it can be speculated that tungsten minerals and cassiterite minerals could
be enriched together by Pb–BHA complexes, which will significantly improve the recovery of fine
tungsten and cassiterite minerals. However, problems appear when it comes to the purification of
tungsten and cassiterite minerals, as they possess different surface wettability and flotation rates.
Also, the depressants used for gangue minerals depression, such as organic colloids (dextrine,
starch), quebracho tannin, sodium phosphates, sodium silicate solutions containing polyvalent cations
(hydrosols), etc. [7,12–14], depress tungsten minerals and cassiterite recovery to some extent. However,
it is hard to gain good further separation of the tungsten and cassiterite minerals by flotation with
multiple attempts. Therefore, new cleaning processes to further improve the concentrate grade and
recovery of the tungsten minerals is needed.

Gravity separation [15,16] has been proven to have several advantages over the other mineral
processing techniques due to its excellent properties such as high efficiency, low capital and operating
costs, no additional chemicals, and consequently no environmental concerns. The extensive use of
gravity circuits, and the need to recover super fine particles, have led to the development of specific
devices to recover particles which are too fine to be recovered efficiently using conventional spirals
etc. Some enhanced gravity concentrators are designed for gravity separation at fine particle size
ranges, such as the hang and vibrate of cone concentrator (a Multi-Gravity Separator) [17] and Falcon
concentrator [18]. They are very selective for separation of fine-sized particles (typically −75 to 10 µm)
and have very high upgrading ratios (typically 20 to 1 µm). These gravity separators introduce
centrifugal force, fluid force, shear force, and so on, except for the gravity, which provide possibilities
for improving the cleaning process of the fine rougher concentrates.

In this study, floatability of scheelite, wolframite, and cassiterite using Pb–BHA complexes and
Al-SiO3 complexes were well studied. The mineral composition and size distribution of the raw ore
and rougher concentrates were analyzed to account for the low indexes of the twice cleaning flotation.
Both Falcon Concentrator and the hang and vibrate of cone concentrator were used for the upgrading
of the rougher concentrate to evaluate the feasibility of the cleaning process using gravity separation.
A novel process was developed to further improve the recovery and quality of the concentrate.
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2. Materials and Methods

2.1. Materials

High-purity wolframite, and scheelite samples were obtained from Shizhuyuan Mine, Hunan,
China. Pure cassiterite samples were obtained from Yunnan Province in China. X-ray diffraction
(XRD) and X-ray fluorescence (XRF) data confirmed that the purity of the samples was higher than
97%. The fine size fraction of the samples (less than 74 µm) was used for the flotation experiments.
Analytical grade BHA, lead nitrate, and terpineol (frother) were purchased from Guangfu, Tianjin,
China. Deionized water was used throughout the flotation experiment.

Table 1 is the particle analysis of the raw ore, showing that most of the tungsten and cassiterite
mineral particles fell into the fine particle size range. Specially, most of the valuable minerals distribute
in −0.074 mm fraction, and super fine particles (−0.019 mm) account for more than 30%.

Table 1. Particle analysis of the raw ores.

Particle Size/mm
Yield (%) Grade (%) Distribution (%)

Individual WO3 Sn CaCO3 WO3 Sn CaCO3

+0.074 23.68 0.27 0.08 12.80 17.98 12.90 25.82
−0.074~+0.037 18.54 0.31 0.11 13.41 16.17 13.89 21.18
−0.037~+0.019 27.76 0.40 0.16 11.58 31.23 30.26 27.38

−0.019 30.02 0.41 0.21 10.11 34.62 42.94 25.85
Total 100 0.36 0.15 11.74 100.00 100.00 100.00

2.2. Flotation Tests of Pure Minerals

Pure minerals flotation tests were carried out in an XFG flotation machine with a 40 mL plexiglass
cell. The procedure of the flotation experiments has been described in our previous work [10]. In brief,
2.0 g of pure minerals, including scheelite, wolframite, cassiterite, fluorite, and calcite, was dispersed
into 30 mL DI water at an impeller speed of 1900 rpm. This was followed by the adjustment of the
pH of the suspensions in the range of 3 to 12 using 0.1 mol/L HCl or NaOH solutions. After adding
the Pb–BHA complexes, which was prepared by mixing the PbNO3 and BHA solutions with the
molar ratio 5:3 (the concentration of Pb2+ was 2.5 × 10−4 mol/L and the concentration of BHA was
1.5 × 10−4 mol/L), as the collector and 12.5 µL/L of terpineol as the frother, the suspensions were
homogenized for 3 min. The foams were collected for 3 min and then filtered and dried at 60 ◦C for
12 h. In the kinetic flotation, the collected time ranged from 0 to 300 s and the pH of the suspension
was maintained at 9.5.

2.3. Gravity Separation

A Falcon centrifugal concentrator (Model SB40) and hang and vibrate of cone concentrator were used
to upgrade the rougher concentrates of scheelite, wolframite, and cassiterite. The optimum parameters
for the gravity separation are obtained by single factor experiments, which are listed in Table 2.

Table 2. The optimized parameters for the gravity separators.

Gravity Separator Parameters

Falcon centrifugal concentrator
Feeding slurry

concentration (%)
Rotation bowl
speed (rpm)

Fluidized water flow
rate (L/min)

32 800 5.0

Hang-vibrate of cone concentrator
Feeding slurry

concentration (%)
Rotation speed of

drum (rpm)
Vibrational frequency

(HZ)

32 2.0 32
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For Falcon centrifugal concentrator [15,18], fluidization water was introduced into the bowl
(concentrate cone) through a series of fluidization holes at the top of its wall. The feed slurry was
then introduced through the stationary feed tube at the bowl center and into the concentrate cone.
When the slurry reached the bottom of the cone, it was forced outward and up the cone wall under the
influence of the centrifugal force. During the separation process, tailings flowed out the top of the cone
into the tailings launder. After the separation was finished, the concentrates were flushed from the
cone into the concentrate launder. The tailing and concentrate were settled, collected, dried, weighed,
and chemically analyzed.

Hang and vibrate of cone concentrator is a multi-gravity separator, which combines the centrifugal
motion of an angled rotating drum (though not at such a high speed) of a Kelsey jig or Falcon
Concentrator, with the oscillating motion of a shaking table, to provide an enhanced gravity separation,
particularly suitable for fine particles separation. The principle of the separation is based upon the
above-mentioned forces that act on the particles in a slurry stream being fed and are distributed onto
the inside of the drum’s surface. With the aid of the scrapers and wash water, the light fine particles
migrated up the drum to discharge over the drum’s top lip, while the heavy large particles flowed
slowly and moved to the concentrate launder with the rotation of the drum.

2.4. Pilot Scale Tests

The real ore flotation tests were performed in the dressing plant of Shizhuyuan Mine Group.
During the pilot scale tests, 200 tons of real ore was treated per day. The mixed solution of BHA
(400 g/t) and PbNO3 (500 g/t) was used as the collector, and terpineol (10 g/t) was used as the frother.
The flotation flowsheet was shown in Figure 1.
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Figure 1. Flotation flowsheet of tungsten minerals using Pb–BHA complexes in Shizhuyuan dressing plant.

2.5. Analytical Techniques

XRD (SIMENS D500, Bruker, Switzerland) analysis WAS used for semi-quantitative characterization
of different crystalline phases. The composition of the samples was analyzed using XRF (AxiosmAX,
Panalytical B.V., Almelo, The Netherlands) and AAS (ICE 3500, Thermo Fisher Scientific, Waltham, MA,
USA). A laser particle size analyzer (Malvern Instruments Ltd., Malvern, UK) was used for particle size
measurement of the raw ore and rougher concentrate.
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3. Results and Discussions

3.1. Flotation Tests in Lab

Figure 2 shows the difference of floatability among scheelite, wolframite, cassiterite, calcite,
and fluorite versus pH. The results indicate that scheelite, wolframite, cassiterite, and calcite could
be well collected by Pb–BHA complexes and the former three minerals show a synchronous flotation
behavior with pH change, while fluorite does not. Our previous work indicated that the colloidal
Pb–BHA particles were positively charged in weakly alkaline conditions, while the surface potentials
of scheelite, wolframite, and cassiterite were negative [18]. Therefore, the Pb–BHA complexes could
be adsorbed on the mineral surfaces by electrostatic force, leading to the similar variation trend in
the recovery of scheelite, wolframite, and cassiterite minerals with increasing the pH of the flotation
system. In fact, the floatability of scheelite, wolframite, cassiterite, and calcite were different from
each other. The recovery of scheelite was much higher than that of wolframite and cassiterite, and the
effective pH range was also larger. Scheelite, wolframite, and cassiterite could be collected concurrently
using Pb–BHA complexes at pH 9 to 10. The synchronous collecting of those minerals enhanced the
recovery of tungsten minerals and cassiterite from a polymetallic deposit, such as the Shizhuyuan Mine.
At this condition, the calcite was also, inevitably, collected to some extent, creating some difficulties
for the upgrading of the concentrate. Figure 3 shows the difference in the flotation rate of scheelite,
calcite, wolframite, and cassiterite using Pb–BHA complexes. The flotation rate of wolframite and
cassiterite were lower than that of scheelite. It was difficult to get the maximum recovery and best
grade of different minerals by flotation simultaneously.

Depressants for calcite have been widely reported in previous studies [12,18–20], and aluminum
silicate solutions (Al-SiO3) have been proven to be effective for scheelite flotation with Pb–BHA
complexes as the collector [9,21,22]. Al-SiO3 was used as the depressant for the upgrading of the
rougher concentrate in this research. The effect of Al-SiO3 complexes on floatability of scheelite,
wolframite, cassiterite, and calcite is shown in Figure 4. It can be seen that the recovery of all the
minerals was depressed at different degrees, especially at high Al-SiO3 dosage. Obviously, Al-SiO3

was not suitable to improve the upgrading of the concentrate. The inhibition effect of the depressant
on upgrading is a common issue in flotation. As is well known, floatability of the minerals greatly
depends on the surface properties of the minerals, such as the crystal anisotropy, which can be greatly
influenced by the depressant [23–26]. Take scheelite as an example; the wettability of the (001) plane of
scheelite decreased slightly, whilst increasing the dosage of Al-SiO3, while the wettability of the (112)
plane decreased significantly. If the (112) plane are the main scheelite cleavage planes, the recovery of
scheelite will be significantly affected by the use of Al-SiO3 in flotation [9].
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Figure 2. The floatability of scheelite, wolframite, cassiterite, fluorite, and calcite minerals with Pb–
BHA complexes as the collector (CBHA = 1.5 × 10−4 mol/L, CPb = 2.5 × 10−4 mol/L, Cterpineol = 12.5 μL/L). 
Figure 2. The floatability of scheelite, wolframite, cassiterite, fluorite, and calcite minerals with Pb–BHA
complexes as the collector (CBHA = 1.5 × 10−4 mol/L, CPb = 2.5 × 10−4 mol/L, Cterpineol = 12.5 µL/L).
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as the collector (CBHA = 1.5 × 10−4 mol/L, and CPb = 2.5 × 10−4 mol/L, pH = 9.5).

3.2. Flotation in Pilot Scale Tests

Table 3 shows the flotation process and the recovery of scheelite, wolframite, and cassiterite in
different flotation units of the Figure 1, respectively. Scheelite, wolframite, and cassiterite can be well
collected in the roughing flotation with the recovery rate at 81.81%, 78.48%, and 68.86%. The recovery
rate decreased significantly in the cleaning flotation due to the use of depressants, especially for
wolframite and cassiterite, which is consistent with the previous results. The cassiterite recovery of
cleaning flotation I and II were only 71.34% and 58.82%. No improvement was found for the grade of
the cassiterite, indicating that most of the cassiterite minerals were depressed in the cleaning process.
Overall, synchronous flotation of tungsten minerals and cassiterite seems to be not efficient in the
cleaning process.
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Table 3. Grade and recovery of scheelite, wolframite, and cassiterite in different flotation units.

Grade in each Flotation Unit/% Recovery in Each Flotation Unit/%

Scheelite Wolframite Cassiterite Scheelite Wolframite Cassiterite

Roughing flotation 12.12 6.18 0.56 81.81 78.48 68.86
Cleaning flotation I 32.86 13.83 1.24 91.23 86.38 71.34
Cleaning flotation II 41.20 16.86 1.02 88.69 81.76 58.82

Scavenging flotation I 0.43 0.31 0.27 37.66 41,38 45.22
Scavenging flotation II 0.11 0.12 0.19 27.72 32.16 39.34
Scavenging flotation III 0.08 0.10 0.11 12.5 16.44 18.98

3.3. Mineral Composition and Characters of the Rougher Concentrate

Table 4 and Figure 5 show the mineral composition and phases of the rougher concentrate. Most of
the scheelite, wolframite, and cassiterite minerals were recovered with a high enrichment ratio in the
roughing flotation. The selectivity of Pb–BHA complexes on calcium minerals was confirmed by the
lower enrichment efficiency of calcite and fluorite. Quartz, the main gangue mineral in the rougher
concentrate, was not a concern here as it can be separated easily. XRD results show that quartz, chlorite,
muscovite, feldspar, and amphibole also exist in the rougher concentrate, which could be due to the
entrainment of super fine particles in the foam. The existence of those minerals made it easier for the
grinding process to get muddy because of their lower hardness [27–29], posing great challenges for the
separation of them from the valuable minerals by flotation. As shown in Figure 6, D50 of the rougher
concentrate was 0.021 mm, which falls into the fine particle size range, causing problems for further
improvement of the concentrate quality.

Table 4. Multi-elementary analysis results of the rougher concentrate/%.

Elements WO3 Sn Fe Mn Ti Zn Zr Pb

Content (%) 10.58 0.54 7.94 0.99 0.39 0.18 0.02 0.17

Elements Mo Ca(CaF2) Ca(CaCO3) SiO2 Bi As Cr Else

Content (%) 0.13 14.68 18.54 29.27 0.09 0.05 0.04 16.39
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3.4. Flotation and Gravity Separation Combination in Pilot Scale Tests

Roughing flotation using Pb–BHA complexes has been proven to be effective in the recovery of
scheelite, wolframite, and cassiterite minerals, which takes full advantage of their similar floatability. It
should be noted that scheelite, wolframite, and cassiterite are heavy minerals with a density of 6.1, 7.2 to
7.5, and 6.8 to 7.1 g/cm3, respectively, which are much heavier than that of most gangue minerals, such
as quartz, calcite, and fluorite. With great progress in new gravity separation equipment development
over the last 20 years, gravity separation is always a preferred technique [15,30]. Some advanced gravity
concentrators have been developed for the gravity separation of fine mineral particles. The combination
of flotation and gravity separation, which depends on the surface chemical and physical properties of
the minerals, is considered to be effective in further improving the recovery of the minerals.

Flotation and gravity separation using falcon concentrator or hang and vibrate of cone
concentrator were conducted for the cleaning process. It can be seen in Table 5 that cleaning process
using flotation shows the highest recovery of tungsten minerals, while the grade of the concentrate
was about 55%, which was lower than that of gravity separation. The recovery of cassiterite was only
at 29.18% by flotation, indicating a great loss of cassiterite in the tailings. Gravity separation, especially
when using hang and vibrate of cone concentrator, was found to be effective for the recovery of both
tungsten minerals and cassiterite, with the quality of the concentrate significantly improved.

Table 5. Results of cleaning process using flotation and gravity separation by Falcon concentrator or
hang and vibrate of cone concentrator.

Product Yield
WO3 CaCO3 CaF2 Sn

Grade Recovery Grade Recovery Grade Recovery Grade Recovery

Flotation
Concentrate 16.18 55.64 87.83 1.98 1.79 6.99 8.63 1.01 29.18

Tailing 83.82 1.49 12.17 20.99 98.21 14.28 91.37 0.47 70.82
100.00 10.25 100.00 17.91 100.00 13.10 100.00 0.56 100.00

Falcon Concentrator
Concentrate 12.86 60.88 76.38 0.91 0.65 5.82 5.71 2.62 60.17

Tailing 87.14 2.78 23.62 20.42 99.35 14.17 94.29 0.26 39.83
100.00 10.25 100.00 17.91 100.00 13.10 100.00 0.56 100.00

Hang-vibrate of
cone concentrator

Concentrate 13.92 61.35 83.15 0.87 0.68 4.81 5.13 2.89 74.50
Tailing 86.08 2.01 16.85 20.70 99.32 14.38 94.87 0.16 25.50

100.00 10.27 100.00 17.94 100.00 13.05 100.00 0.54 100.00

It should be noted that gravity separation was not shown to be efficient for the separation
of ultrafine particles with a size of less than 10 µm. As shown in Table 5, the recovery of WO3

in the gravity separations was lower than that of the cleaning flotation. As a result of that, the
collecting ability of gravity separations for the ultrafine mineral particles (<10 µm) was worse than
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that of flotation. Although, the optimum particle size in flotation ranges from 10 to 100 µm [31,32].
Ultrafine particles tend to be caught in streamlines created by the rising bubbles instead of attachment
with the bubbles. This problem would be solved if some coarse particles could serve as the carrier for
the fine particles (defined as carrier flotation) or the fine particles could aggregate with each other to
form a larger particle, (defined as flocculation flotation). It has been reported that hydrophobic fine
particles could aggregate with each other or a large particle to form larger particles, thereby improving
the flotation recovery [33]. The mechanisms of shear-flocculation and carrier flotation are governed
by physical, chemical, and geometrical variables, which have been investigated comprehensively
in Subrahmanyam’s review paper [34]. After research for almost three decades, it has been widely
accepted that carrier flotation and shear-flocculation can be used for pre-treatment of fine particles in
flotation. Numerous studies have reported improvements in the recovery of fine particles by using this
technique, with the recovery rate increased from 20% to 50% compared to the conventional flotation.
Feeding the tailings of gravity separation and fine particles to the roughing flotation for a further
recovery is thus proposed. The effect of the stirring rate on the shear flocculation was studied in
the lab and the results are shown in Figure 7. Initially, the recovery of tungsten minerals increased
significantly when increasing of the stirring rate. Where a downward trend, followed by optimum
tungsten minerals recovery was observed, this was more noticeable for coarse particles. Aggregation
of fine particles promotes the flotation of the gravity tailings, with the optimum recovery is said to
be around 78%. When the gravity tailings were fed back to the raw ores containing coarse particles,
the recovery was improved dramatically. Both carrier flotation and flocculation floatation contributed
to the recovery of fine particles. Moreover, the increased tungsten recovery with the increased stirring
may also result from increased probability of collision between fine particles and bubbles and the
increased entrainment. As shown in Figure 7, the improved concentrate grade with the increasing of the
stirring indicates that it is not due to the increased entrainment but from carrier flotation, flocculation
floatation and increased ore collision between bubbles and particles. However, the decreasing of the
grade may from an increasing entrainment.
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A new closed-circuit process, pre-enrichment using flotation with Pb–BHA complexes,
upgrading using gravity separation and feeding the tailing of gravity separation back to rougher
flotation, was developed to further improve the recovery and grade of tungsten minerals and cassiterite.
A pilot-scale experiment was conducted with Figure 8 illustrating the flotation process. Table 5 shows
that a concentrate with 61% WO3 and 2.89% Sn can be obtained, and the recovery of cassiterite was
significantly improved. This concentrate meets the requirements for the following metallurgy process.
Cassiterite in the concentrate could be further enriched and recovered either by mineral processing or
metallurgy process. Moreover, gravity separation is highly efficient, cost effective, and chemical-free.
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4. Conclusions

For the flotation of the polymetallic minerals in the Shizhuyuan Mine Group, Pb–BHA complexes
can effectively collect scheelite, wolframite, and cassiterite in the rougher flotation synchronously.
But in was hard to increase the grade of these minerals in the concentrate to the expectations following
twice-cleaning flotation. The XRD and size distribution results revealed that the rougher concentration
included the fine gangue particles, which was easier to be entrained into the concentrates in the
cleaning flotation. The advanced gravity separation equipment was applied to deal with the rougher
concentrates. Comparing with the grade and recovery of WO3 (55.63% and 87.83%) and Sn (1.01% and
29.18%) in the cleaning flotation, the grade and recovery were 60.88% and 76.38% for WO3 and 2.62%
and 60.17% for Sn using the falcon concentrator, while the results were 61.35% and 83.15% for WO3

and 2.89% and 74.50% for Sn using the hang and vibrate of cone concentrator. Theses process indexes
indicated that the advanced gravity separation dealing with the rougher concentrate could effectively
enhance the grade of WO3 and Sn and the recovery of Sn, with a slight decrease in the recovery of
WO3. In addition, the results of hang and vibrate of cone concentrator are comprehensively superior
to that of Falcon concentrator. Therefore, the advanced gravity separation is a high-efficiency and
low-cost method to displace the traditional cleaning flotation to deal with the complexed polymetallic
rougher concentrates.
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