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Abstract: Geometallurgy is an important addition to any evaluation project or mining operation.
As an integrated approach, it establishes 3D models which enable the optimisation of net present value
and effective orebody management, while minimising technical and operational risk to ultimately
provide more resilient operations. Critically, through spatial identification of variability, it allows
the development of strategies to mitigate the risks related to variability (e.g., collect additional
data, revise the mine plan, adapt or change the process strategy, or engineer flexibility into the
system). Geometallurgy promotes sustainable development when all stages of extraction are
performed in an optimal manner from a technical, environmental, and social perspective. To achieve
these goals, development of innovative technologies and approaches along the entire mine value
chain are being established. Geometallurgy has been shown to intensify collaboration among
operational stakeholders, creating an environment for sharing orebody knowledge and improving
data acquisition and interpretation, leading to the integration of such data and knowledge into
mine planning and scheduling. These aspects create better business optimisation and utilisation of
staff, and lead to operations that are more resilient to both technical and non-technical variability.
Geometallurgy encompasses activities that utilise improved understanding of the properties of ore
and waste, which impact positively or negatively on the value of the product, concentrate, or metal.
Properties not only include those that impact on processing efficiency, but also those of materials
which will impact on other actions such as blasting and waste management. Companies that embrace
the geometallurgical approach will benefit from increased net present value and shareholder value.

Keywords: geometallurgy; orebody knowledge; mine value chain; variability; uncertainty;
operational resilience

1. Introduction

Grade, mineralogy, and rock and mineral textures are variably distributed across metalliferous
and other mineral deposits. This natural variability imparts a direct control on the metallurgical
performance of ore feed across the Life Of Mine (LOM), where metallurgical performance is a function
of mineralogy, grade, texture, and process conditions [1]. Where variability is not spatially quantified,
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then there is increased project risk and potential for revenue loss through reduced Net Present Value
(NPV) [2–5].

Geometallurgy is an interdisciplinary activity that integrates geology, mining/geotechnical
engineering, metallurgy, mineral economics, and geoenvironmental parameters to maximise
project economic value, reduce risk, build resilience, and demonstrate good management of the
resource [1,3,6–11]. Resilience relates to the capability of a mine operation to respond and recover
from a disruptive event. In this context, orebody variability such as a period of sustained very-hard
ore could reduce throughput and thus be disruptive. Geometallurgy allows this event to be forecast
and managed during planning and may, for example, require a flexible process plant, engineered extra
capacity, or a blending strategy.

Geometallurgy is an important strategy for any mining project, where the prime objective is to
improve the profitability of mines through the use of spatial models of rock properties that have a
significant impact on value [4,12,13]. While a key property is the grade of the component of interest,
because it directly influences the revenue from saleable material, attention is increasingly being focused
on other attributes. These non-grade variables may have a less direct but equal impact on value, either
by reducing potential revenue (e.g., lowering recovery and deleterious elements) or increasing mining
or treatment costs (e.g., comminution, grindability, throughput, and reagent use). Collectively, these
variables can be described as being geometallurgical. There are three main areas of activity required to
realise the value of geometallurgy [1,3,6–11]:

• Acquisition of data through sampling and measurement.
• Building spatial models.
• Using these models to optimise value.

NPVs derived from spatial models have a significant impact on project risk reduction, through
improved value resolution on a block by block basis. Development of a geometallurgical model requires
access to samples that specify the key metallurgical processing properties. Beyond standard parameters
collected by drilling, core logging, and geochemical analysis, additional characterisation is required.
Focused and spatially distributed tests, i.e., small tests which characterise metallurgical properties and
provide quantitative information on variability, need to be rapid and inexpensive [6,14–17]. A number
of tests are available across comminution, recovery (e.g., leaching, gravity separation, and flotation),
and geoenvironmental parameters.

The defining outputs from geometallurgy are 3D spatial (e.g., visualisation of drillholes,
sample locations, domain boundaries, etc. (Figure 1)) and block (e.g., interpolated parameters
(Figure 2)) models, where diverse attributes from core logging, mineralogical/textural determination,
and small-scale tests serve to resolve grade, process parameters, and rock mass variability.
The geometallurgical approach emphasises early Mine Value Chain (MVC) intervention, where
geometallurgy can be broadly split into two key approaches related to project status: strategic
and tactical (Table 1). The strategic approach focuses on the whole orebody and long-term LOM
view, whereas tactical geometallurgy relates to the short- to medium-term operational view during
mining [18].
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Figure 1. 3D model from the Canahuire deposit (Peru) displaying drillholes and generic domains 
based on lithology and alteration type. Blue: domain 400 (sub-economic silver mineralization). 
Orange: domain 300 (copper-gold breccia mineralization). Yellow: domains 200 (gold replacement 
mineralisation in limestone). Light blue: domain 100 (structurally-controlled gold in calcareous 
sandstone) (Reproduced with permission from Baumgartner et al. [19]). 

 
Figure 2. 3D block model of bond work index (BWi) values for the Productora and Alice Cu-Au-Mo 
pits (Chile). BWi for the main Productora deposit was estimated using aluminum and potassium 
values as proxies. The Productora pit is approximately 2.4 km long (Reproduced with permission 
from King and Macdonald [20]). 

  

Figure 1. 3D model from the Canahuire deposit (Peru) displaying drillholes and generic domains
based on lithology and alteration type. Blue: domain 400 (sub-economic silver mineralization).
Orange: domain 300 (copper-gold breccia mineralization). Yellow: domains 200 (gold replacement
mineralisation in limestone). Light blue: domain 100 (structurally-controlled gold in calcareous
sandstone) (Reproduced with permission from Baumgartner et al. [19]).
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pits (Chile). BWi for the main Productora deposit was estimated using aluminum and potassium values
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Table 1. General mine value chain showing broad metallurgical–geometallurgical activities, inputs, and outputs.

Stage
Strategic Geometallurgy Tactical Geometallurgy

Exploration-Early Evaluation Resource Definition Drilling Reserve Definition Drilling Feasibility Mining

Study Scoping (SS) Pre-feasibility (PFS) - Feasibility (FS) Grade/ore control
(Expansion studies)

Resources/Reserves Inferred Mineral Resources Inferred and Indicated Mineral
Resources

Mineral Resources and Ore
Reserves

Mineral Resources and Ore
Reserves

Mineral Resources and Ore
Reserves

Key activity Develop orebody knowledge
Drilling and sampling

Develop orebody knowledge
Drilling and sampling

Data analysis and modelling

Develop orebody knowledge
Drilling and sampling

Data analysis and modelling

Develop orebody knowledge
Drilling and sampling

Data analysis and modelling

Develop orebody knowledge
Drilling and sampling

Data analysis and modelling

Inputs

Core logging
Develop proxy tests

Mineralogy
Geochemistry

Metallurgical testwork
Physical testing

Core logging
Proxy tests
Mineralogy

Geochemistry
Metallurgical testwork

Physical testing

Core logging
Proxy tests
Mineralogy

Geochemistry
Metallurgical testwork

Physical testing

Core logging
Proxy tests
Mineralogy

Geochemistry
Metallurgical testwork, incl.

pilot or trial plant testing
Physical testing

Core logging
Proxy tests
Mineralogy

Geochemistry
Metallurgical testwork

Physical testing

Outputs

Establish database
Preliminary characteristics of

mineralisation
Geological model;
Geoenvironmental

Expanded database
Domains

Block model
Preliminary mine plan

Models
Preliminary process design

Geoenvironmental

Expanded database across all
disciplines

Expanded database
Domains

Block model
Mine plan

Models
Flow sheet

Scenario analysis
Economic analysis
Geoenvironmental

Expanded database
Domains

Block model
Mine planModels
Economic analysis

Forecasts
Reconciliation

Geoenvironmental

Potential number of data 1 1000 s 1000–10,000 s +1000 s 10,000–100,000 s 100,000–1,000,000 s

Resource uncertainty 2 High Moderate-High Moderate Low Low

Expected accuracy 3 ±50% ±25% - ±15% ±10%
1 General estimate of number of data across grade, geochemistry, mineralogy, comminution, recovery, etc., actual highly deposit dependent; 2 epistemic uncertainty based on drill spacing,
actual highly deposit dependent; 3 standard globally accepted accuracies for project studies.
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To meet the challenges of global resource needs, more complex orebodies are, and will, have to be
mined. Their inherent challenges include:

• Declining ore grades.
• Geometrically and/or internally more involuted.
• Processing of more challenging ores with refractory and/or textural complexities.
• Deep-seated deposits with potentially high in-situ stress regimes.

Other challenges include:

• Increasing quantities of mine waste that need to be managed appropriately.
• Higher energy, water, and chemical costs.
• Stricter environmental/permitting and social conditions (the social licence to mine).
• Increasing demand for hard to process specialist/critical metals (e.g., rare earth elements and

lithium).
• Commodity market volatility.
• Difficult funding environment.

As a result, efficiencies are required across:

• Orebody definition and revenue prediction.
• Mining methods that deliver a finer feed to the plant comminution circuit at lower cost.
• Optimised energy-efficient comminution circuits.
• Coarse particle beneficiation to reduce grinding.
• Beneficiation equipment and chemistry.
• Water and energy recovery.
• Leading practice social licence to operate.

The geometallurgical approach contributes to the above efficiencies and provides particular
benefits in low-grade complex ores that may display a high variability (e.g., grade, and recovery and
rock properties). Such ores have high risks which can manifest as low or negative profit margins if the
operation is managed in a traditional way.

Some practitioners of geometallurgy still work in the context of 20 or more years ago, when
the approach was dominated by process mineralogy and non-spatial (e.g., low-density of data
not appropriate for block model construction) collection and analysis of data. In addition, current
application can be part-siloed to geologists and mineral process engineers. This contribution provides
a review of where geometallurgy is today and how it ultimately contributes to an optimised and
resilient mine operation. It presents the development of geometallurgy to its current state and where it
may go in the future.

2. Overview of Geometallurgy

2.1. Variability and Uncertainty

Two principle aspects of the geometallurgical approach are the quantification of variability
and uncertainty. Their understatement may have negative impacts on mining, blending, and
processing [3,12,21]. “Variability” reflects fluctuations in successive values (e.g., grade) either in space
(spatial) or time (temporal), whereas uncertainty refers to any value for which there is incomplete
knowledge (e.g., sparse sample data). Variability is a physical phenomenon that can be measured and
analysed, whereas uncertainty is an aspect of knowledge [12].

Two types of uncertainty are identified: aleatory and epistemic uncertainty, or irreducible and
reducible uncertainty [21]. Aleatory uncertainty relates to the inherent variability of a phenomenon
and cannot be reduced, whereas epistemic uncertainty arises from incomplete knowledge of the
phenomenon and can be reduced by more data.
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There may be significant epistemic uncertainty during early stages of the MVC when geological
models are based upon sparse data (Table 1). In mining applications, the emphasis has largely been
on aleatory uncertainty with acceptance that epistemic uncertainty is negligible [21]. Geostatistical
simulation is widely used to quantify the effects of limited data on resource modelling (aleatory
uncertainty), but the model (e.g., variogram and drilling pattern) is generally assumed to have
negligible epistemic uncertainty.

There is additional uncertainty in extraction and processing an ore to produce a final product.
A general approach to integrating this source of uncertainty is to quantify all sources of in-situ
uncertainties and propagate them into simulated processes (e.g., blasting, loading, transport, and
processing). There are two types of process uncertainty:

• Uncertainty associated with in situ variables which is propagated through processes applied
to them. For example, the impact of grade uncertainty on mine design, which could be
assessed by applying the same design process (e.g., optimal open-pit) to a range of simulated
grade realisations.

• Uncertainty transferred to in situ variables by applying a process to them. An example is blasting
a block of ground from which ore is selected.

The traditional approach to resource evaluation is based on kriging of grades and other parameters
in a singular or deterministic 3D block model, where this approach fails to resolve variability or
uncertainty. Optimised block models may be suitable for long-term planning, but are characterised by
the smoothing of modelled variables. This effect potentially leads to the understatement of the impact
of spatial variability at the selective mining unit (SMU) scale.

Uncertainty on the estimated attributes is only reducible by taking higher-quality and
closer-spaced samples [22] and by improving geological understanding. Evaluation activities across the
MVC collect increasingly more data through to the grade control programme, but there is irreducible
residual uncertainty even in the closest economically-viable drilling pattern [12,21].

2.2. Metallurgical versus Geometallurgical Approach

The traditional metallurgical approach to plant design involves the testing of a number of
composite samples that are reported to be representative of the ore body. Testwork is carried
out to determine factors such as grindability, floatability, leach recovery, and/or other parameters.
The testwork is often assumed to be appropriate and precise, and labelled as being “bankable”.
Subsequently, a process plant is constructed and commissioned and at some point, often within the
first year of operation, found to be not performing to design [9]. The common reason for this relates
to insufficient and unrepresentative samples and potentially inappropriate testwork. The traditional
approach generally fails to account and cater for orebody variability [8,9,23,24].

So-called “classical” geometallurgy is a collaboration between geology (mineralogy) and
metallurgy (e.g., process mineralogy), with one discipline supplying the other with information
and vice versa for a better understanding of the orebody and ore characteristics [9]. In essence, pushing
more mineralogical knowledge into the plant design and/or process operation. However, little or
any 3D spatial or block models result from this work and plant design is often based on apparently
“average” ore—which in reality rarely exists.

2.3. Modern Geometallurgy

2.3.1. Defining Modern Geometallurgy

Modern geometallurgy can be defined as “an interdisciplinary activity that integrates geology,
mining/geotechnical engineering, metallurgy, mineral economics, and geoenvironmental parameters
to create spatially predictive 3D block models to maximise the economic value (e.g., NPV) of a mining
project, reduce risk and build resilience”. The ultimate question that a geometallurgical programme
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needs to be able to answer is: “how will block X perform when it is processed?” [18,24]. This leads to
considerations of processing rate, metal or mineral recovery, product quality, and energy and reagent
consumption during processing, which can be applied to develop an optimised mining sequence by
considering production rates, costs, and operating stability [24]. The so-called modern geometallurgical
approach emerged in the early 2000s, with its roots set in the 1980s [2,9].

Coward et al. [25] define key geometallurgical inputs as primary and response variables where:

• Primary variables are rock attributes that are independent of the measurement process employed.
• Response variables are attributes of rock (geology) that measure responses to processes.

A primary variable is intrinsic to the rock, for example grain size, metal grades, mineralogy, and
other rock properties. Most primary variables are additive (e.g., grades per unit mass and mineral
grades per unit volume) and can usually be averaged from both a sampling (compositing) and block
modelling perspective. Response variables describe rock properties that are expressed as a response to
a process or through energy application, for example throughput, grindability, metallurgical recovery,
and intact rock strength. Due to the multivariate nature of these variables, the resulting distributions
of the measured data can be complex (e.g., non-normal, negatively skewed, and bi-modal) and cannot
easily be combined. Arithmetic averages generally do not produce a valid estimate of a number of
samples or blocks [25]. The measurement of primary variables is key to determining response variables
and building orebody knowledge.

Geometallurgy aims to understand metallurgical and mining (rock mass) parameter (e.g., response
variables) variability based on information such as geochemistry, mineralogy, grade, and lithology (e.g.,
primary variables) obtained from spatially distributed samples or sample points. Spatially distributed
small-scale tests can be used as proxies for grade, mineralogy, process parameter, and rock mass
variability to allow for 3D block modelling (Figure 2) [6,14–17,26–28]. The ultimate aim is to predict
the net revenue of each and every block in the model, and the likely variability within that block (e.g.,
grade, recovery, and hardness).

The outcomes of a geometallurgical programme will depend upon its objective, and ultimately
the amount of data that feeds into the modelling process. Key issues relate to data quality and density,
and the actual data collected. The number of process parameters is important, and may vary from a
few (e.g., 1 or 2) to many (e.g., >10), where the density of that data will reflect the degree of variability
resolution and for what purpose it can be used. Detailed data across five key parameters, for example,
may provide high resolution variability models that are appropriate for a feasibility study to provide a
full scenario-based analysis of NPV outcomes [12]. Conversely, low-density data across the same five
key parameters may provide limited resolution variability models that are appropriate for a scoping
study and provide a general forecast of NPV. In all models, the spatial distribution of the data impacts
on the production timeframe of the model, where wide coverage may relate to whole-deposit LOM,
and restricted coverage only a very limited period.

Geometallurgy is applicable to both metalliferous and industrial minerals projects, and across
open pit and underground mines [11,22,29–32]. It has generally been applied to large deposits and
open pit mines [33–36], though is equally applicable to small operations [22]. Geometallurgy can be
split into two distinct, but complementary stages: strategic and tactical geometallurgy, which will be
expanded upon later in this contribution.

2.3.2. Value of Geometallurgy

The principal value of geometallurgy ranges from improved understanding of orebody
knowledge, through to more informed resource to reserve conversion and more adaptable mine
plans, leading to an increase in the project NPV (Table 2).
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Table 2. Published examples of geometallurgy adding value.

Example Overview Value Reference

San Antonio Au, South
America

PFS and operational
(underground) execution lead to
smaller high-grade selective
underground mine with smaller
more sustainable footprint

Increased NPV by US$15M
Reduced CAPEX
Revised mine plan
Improved resource-reserve
conversion

Dominy et al. [22]

Ruashi Cu-Co, DRC

Operational (open pit)
application lead to model of
throughput, acid consumption,
and recovery. This drove an
improve stockpile and plant
feed strategy

Increase NPV by US$127M Macfarlane and
Williams [32]

Olympic Dam Cu-Au,
Australia

Operational (underground)
execution across the short,
medium, and long term mine
plan

Reduced technical risk across
the current operation and future
expansions due to variable ore
properties

Ehrig [1]; Liebezeit
et al. [35]

Cripple Creek and Victor
Au, USA

Operational execution across the
short, medium, and long term
mine plan

Optimisation of different ore
types to two separate process
plants

Leichliter and
Larson [34]

Productora Cu-Mo-Au,
Chile

PFS stage execution to optimise
mine and processing (flotation
and heap leach) schedules

US$25M increase in NPV
5% reduction in CAPEX

King and
Macdonald [20]

Degrussa Cu-Au, Australia
Operational execution to
quantify key metallurgical
variability

Forecasting to allow improved
blend strategies and plant
performance

Butler at al. [30]

Orapa kimberlite
(diamond), Botswana

Operational (open cut)
application to model kimberlite
comminution properties

Feed optimisation to two
process plants
Improved NPV

Lechuti-Tlhalerwa,
Gilika and
Field [36]

Canahuire Cu-Au-Ag, Peru Evaluation (PFS) stage execution
in complex orebody

Preliminary definition of
domains and potential
metallurgical recovery
variability, ARD potential, and
penalty elements

Baumgartner
et al. [19,37]

La Colosa Au, Colombia PFS stage execution in complex
orebody

Definition of comminution
domains Montoya et al. [33]

From a management and corporate perspective, an effective geometallurgy programme will have
resulted from the close collaboration of the project/mine technical teams across all disciplines. Beyond
any technical and NPV value-add afforded by geometallurgy, multi-disciplinary working practices
will also yield non-tangible dividends.

Mineral Resource to Ore Reserve conversion is generally within the range of 25–50%, depending
on deposit type and commodity. The application of geometallurgy generally has the favourable
consequence of increasing this conversion through the evaluation of alternate mining and processing
scenarios. In the case study reported by Dominy et al., the application of geometallurgy increased
the resource to reserve conversion factor from 50% to 70% based on a revised mining and process
strategy [22]

2.3.3. Comparing and Communicating Geometallurgical Programmes

A downside to modern geometallurgy is that there are a number of definitions and perspectives
on the topic [9]. Some still consider that classical geometallurgy is appropriate in the modern
world. The clear mantra is that of collaboration between the relevant disciplines. This requires
a common understanding of geometallurgical programme goals to be obtained, which requires open
and consistent communication. Jackson, McFarlane, and Olson Hoal propose a multi-dimensional
construct to assist in the communication of programme context and purpose [7].
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The geometallurgical framework (Figures 3–5) comprises six dimensions—parameters, resolution,
variability, timeframe, application, and project stage (modified from Jackson, McFarlane and Olson
Hoal) [7]:

• Parameters: refers to the process parameters being modelled in the programme. These may range
from rock mass (RQD and RMR), though to recovery (gravity, leach and flotation), comminution
(BWi, SMC and Ai), and/or geoenvironmental parameters (NAF and PAF).

• Resolution: refers to the level of detail in a programme that may range from high to low. In some
cases, a detailed knowledge of the parameter (e.g., flotation) and its components (e.g., mineralogy)
are needed, whereas in others a relative indication is required. It links to data density, where more
data leads to better resolution (e.g., lower uncertainty).

• Variability: A generic domain is a 3D volume based on a geological variable(s) such as lithology
or alteration, which may or may not be statistically homogenous for the response(s) in question.
A process specific domain is a 3D volume where the response variable under consideration comes
from a statistically homogenous population. Within a given domain, there will be a range of
variability knowledge from limited to high, where knowledge extends to many or all drill holes
within the domains.

• Timeframe: refers to the volume of mineralisation in question as nominal production periods.
The shortest time period is limited—essentially a snapshot sampling campaign of a section of the
deposit or across the deposit with a broad life of mine view. Other periods are project dependent
as short-term (e.g., 6 months), medium-term (e.g., 6–18 months), and long-term (e.g., >18 months
or more) production periods.

• Application: relates to how the geometallurgical information is used and ranges from proactive
(e.g., developing the programme) through to enough data to provide key parameter forecasts on
a given timeframe, and ultimately full scenario-based assessment.

• Project stage: at what stage of the MVC the project sits.

The geometallurgical framework provides a useful reference and comparison tool. In Figure 3,
the two broad end members of geometallurgical study are presented. Orange blocks indicate an early
stage strategic programme, where only a few parameters are modelled with low resolution and for
a limited part of the mineralisation. In the tactical case, the red blocks indicate an advanced tactical
programme, where a number of parameters are modelled with high resolution in defined domains.
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Figure 3. Geometallurgical framework (modified from Jackson, McFarlane and Olson Hoal [7]).
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Figures 4 and 5 show two projects ranging from an operating mine to advanced exploration.
The San Antonio project (Figure 4) models six parameters (e.g., grade, GRG recovery, flotation recovery,
sulphide content, density, and hardness) to provide a detailed model of variability in generic domains
to support the medium-term mine plan (6–12 months) and including the short-term mine plan
(3–6 months). The programme allows optimisation of both mining and processing in an active
mine. The Canahuire project (Figure 5) uses eight parameters (e.g., penalty elements, ARD indices, and
grade) to provide a moderately detailed model of variability in generic domains to support a broad
whole deposit plan. The programme supports design at the advanced exploration stage towards a
scoping study.Minerals 2018, 8, x FOR PEER REVIEW  10 of 32 
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2.3.4. Building Orebody Knowledge

Orebody knowledge comprises an understanding of orebody characteristics relevant to geological,
mining, processing, and geoenvironmental issues (e.g., grade, mineralogy, contaminants, alteration
patterns, ore hardness, and geotechnical properties). These characteristics will display variability and
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uncertainty based on the level of data density. Limitations in their interpretation and modelling will
increase technical and business risks. Poor orebody knowledge leads to sub-optimal mine and/or
plant design, lower than expected operational performance, and loss of reserves. Orebody knowledge
must be developed in a coherent fashion and to a level of detail that minimises risk and allows the
identification of value-maximising solutions (Figures 3–5). High quality core, data readings, samples,
sub-samples, and subsequent testwork are required to support estimates or studies to be reported
within the framework of any international code.

The basis of developing orebody knowledge is that of drilling, sampling, and measurement
collection. The integration of core logging (e.g., lithology, alteration, EQUOtip, and RQD),
mineralogical (e.g., QXRD/PXRD), geochemical (e.g., PXRF/LIBS and ICP-AES/MS), physical
testing (e.g., JKRBT, SPI, BWi, and A*b), metallurgical recovery (e.g., GRG, JKFI, and leach), and
geoenvironmental (e.g., NAF and PAF) data leads to the prediction of key parameters through
correlation and block modelling (Figure 2).

Traditional metallurgical testwork requires a significant amount of sample material (often
10–200 kg; Dominy et al. [23]) and is time consuming and expensive to complete. They typically
yield hundreds of results at the Feasibility Study stage, whereas a geometallurgical programme will
result in thousands of spatially distributed data points that can be used to inform a block model [8,38].

Metallurgical testwork is carried out to determine factors such as grindability, floatability, leach
recovery, and/or other parameters, and is critical for plant design. Subsequently, a process plant is
constructed and commissioned and at some point, often within the first year of operation, may be found
not to be performing to design. The common reason for this relates to insufficient and unrepresentative
samples and potentially inappropriate testwork [2,22–24]. Additionally, metallurgical variability is
not resolved due to: (a) sample compositing, and/or (b) not enough spatially distributed samples.
In essence, testwork results are often precise, but with uncertain representativity [23]. McCarthy [39]
identified a number of common flaws in feasibility studies which lead to operational underperformance
for which 15% related to metallurgical sampling and testwork, and 12% process plant design issues.

Traditional metallurgical samples are not appropriate for geometallurgical studies, given that
numerous spatially distributed samples or proxies are required to inform a block model(s). Proxies
will, however, be validated against traditional testwork results, therefore traditional testwork samples
are an inherent part of geometallurgy. Table 3 presents an example protocol for the determination of
key primary and response variable parameters from drill core [40]. Other case specific examples of
protocols are provided in Carrasco, Keeney and Walters, Ehrig and Pitard, and Dominy et al. [22,41,42].

Table 3. Example geometallurgical test programme for a porphyry copper-gold mineralisation based
on half HQ core (modified from Keeney [40]).

Stage Activity Test work Outcome Mass used

1 Continuous core
logging

Logging and photography
GEOTEK logger

HyLogger
EQUOtip

Intact core characteristics
Half HQ core in

2 m lengths
(approx. 8.5 kg)

2 Texture GEOTEK camera
AMA

Core image
Polished tablet image 0.5 kg

3 Comminution Crushing
Rotary breakage device

A*b
JKCI 2 kg

4 Analysis Assay
Geochemical analysis

Assay for economic
metal(s)

Multi-element analysis

Approx. 6 kg
(sub-sampled for

stages 5–7)

5 Mineralogy AMA AMA on screened
fractions 1–2 kg

6 Grinding Batch grind Batch grind on four size
fractions 1–2 kg

7 Flotation JK flotation index
JKFI

AMA and assays on
selected products

1–2 kg
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Data management is a significant consideration for any geometallurgical programme [43].
While geologists are experienced at dealing with thousands of samples and their associated assays,
metallurgists have traditionally carried out relatively few tests and consequently often manage data
in spreadsheets. Data can range from, for example, >1.6 M geochemical assays from 2200 km of drill
core at Olympic Dam, Australia [42,43], to 4500 assays from 16 km of drill core at San Antonio [22].
Geometallurgy presents significant data management challenges as a result of the large volume of
data generated. Considerations for any data management system include storage space, data integrity,
accessibility, sample provenance, maintenance and ease of use, integration with data providers, and
the ability to modify the system to adapt to changing requirements [43]. Based on experience of
the authors, the best database is a bespoke one that is designed for the specific project/mine in
question. This should be fully portable to whatever software is applied for modelling, estimation, and
mine planning.

3. Stages and Strategies for Modern Geometallurgy

3.1. Introduction

The geometallurgical approach emphasises early stage intervention and progression across the
MVC (Table 1) [1,19,20,37]. The project/tactical approach focuses on the whole orebody and long-term
LOM view, whereas operational/tactical geometallurgy relates to the short- to medium-term view
during mining. Operational geometallurgy adds to, and draws from, the project database [18,35,44],
and is focused on defining feed variability for forecasting and blending purposes. The strategic and
tactical geometallurgy definitions of McKay et al. [18] are used throughout this contribution.

3.2. Strategic Geometallurgy

Strategic geometallurgy delivers value to a Mineral Resource during the development, planning,
operation, and closure phases [18]. The model is created in stages, commencing during exploration and
project evaluation (studies) phases with the first set of drilling. It seeks to meet the needs of production,
and is not complete until mining, remediation, and other activities requiring information on the spatial
variability of relevant parameters are completed. The global strategic geometallurgical model is also
strengthened by local information acquired in a tactical geometallurgy programme (Table 4).

Table 4. Framework for the development and maintenance of a strategic geometallurgical programme
(modified from McKay et al. [18]).

Stage Activity Actions Outputs

1 Drilling
Core logging
Core imaging

Down-the-hole measurements

Rock types/alteration
Geotechnical
Geophysical

2 Testwork

Analysis
Mineralogy

Physical testwork
Recovery testwork

Assays/geochemistry
Metal/mineral deportment
Comminution/hardness
Flotation, leach, gravity

3 Data management Database Validated database

4 Modelling
Domain analysis

Geological modelling
Geostatistical modelling

3D block models

• Geology/grade
• SG
• Throughput
• Recovery
• Deleterious elements
• AMD parameters

Financial model
Mine plan/schedule
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The strategic geometallurgical block model is a representation of a 3D orebody that contains
information on a broad range of characteristics, including: grade(s), lithology, geological contacts, ore,
gangue and deleterious minerals, geotechnical structures, rock texture, hardness, mineral recovery,
and environmental parameters. The block model provides the information base for developing an
optimised mine model, metal production schedule, and cash-flows over the LOM and medium-term
time-frame (e.g., 5 year).

The most critical part of constructing a geometallurgical model is the input drilling, sampling,
testwork, and assaying. The core, rock chips, and fine or coarse splits produced are the most important
single repository of knowledge that exists for the orebody. Drill core is not only used for obtaining
geological and assay information but provides data to populate the block model. Geotechnical
parameters (e.g., fracture frequency and RQD) can be modelled as an indicator of ore hardness and
potentially correlated with blastability, crushing, and grinding hardness. Geophysical data can be
obtained either down-hole or from core to provide indicative measurements on rock type and qualities.

Numerous tests can be performed to measure hardness, flotation recovery, leach recovery, and
other parameters given enough samples. These are relatively expensive and use large quantities of core
and require commercial laboratory facilities. Testing must be sufficient to understand the variability of
the ore. Rock types that have high degrees of variability should receive enough testing until its impact
is resolved. Processing additivity should be established for ores that will be blended or stockpiled
together. The testing should also aim to assess the often complex relationship between the predictive
bench-scale test results and actual industrial plant behavior (or scale-up).

Data acquired during drilling, logging, and testing must be stored in a relational database.
Successful data management that supports and enables both strategic and tactical geometallurgical
initiatives need to provide real-time access to all data. Data management increasingly relies on
new technologies and automated/semi-automated workflows to capture data objectively (e.g.,
hyperspectral core scanning systems), use machine-learning algorithms for interpretation, and to
construct 3D models with implicit modelling software. The key objective of strategic geometallurgy is
to create iterative models to guide mining and processing decisions in the context of metal production
and cash flows.

3.3. Tactical Geometallurgy

The multiple data streams used for tactical geometallurgy include the grade and metallurgical
response information from both the block model and recent ore control drilling, in additional to the
short-term mine plan, pit conditions and access, ore availability, equipment availability, stockpile space,
and plant performance [18]. Tactical geometallurgy can be viewed as the (near) real-time application
of the strategic model to enhance the mining process (Table 5).

The processing plant takes parcels (e.g., blocks) of ore and turns them into value, which requires
the feed to conform to specific characteristics of grade (e.g., measured by drilling and testing),
size distribution (e.g., created by drilling, blasting and crushing), and metallurgical performance
characteristics (e.g., measured by drilling and testing). This process is better described as ore control as
opposed to the more traditional grade control. Tactical geometallurgy aims to produce predictable ore
based on the use of data inputs from long-term (strategic) and short-term (ore control) models.

The tactical geometallurgical block model is created to support the short-term mine plan, where
model implementation is dependent upon mine type and scale (e.g., large open pit versus small
underground). The timeframe between tactical modelling and mining is likely to be on the scale of
2–6 months, depending on the frequency of ore control. Where RC drilling is used for open pit ore
control, the timeframe is likely to be on the scale of months. A tactical model is based upon data both
from the strategic model and ore control drilling.

The chips produced from ore control drill and blast drilling (assuming open pit mining) can
provide a source of pre-crushed ore intervals which can be used for variability testing. Important
considerations for the effective use of drill chips for testing are the size distribution of the chips



Minerals 2018, 8, 560 14 of 33

produced and the quality of the ore control sampling and splitting. RC drills can be fitted with
modules to collect chip samples, where they provide sufficient mass for metallurgical testwork,
an advantage over more limited and widely-spaced diamond drill cores. Ore control drill chips may be
used for chemical analysis (e.g., metals, lithogeochemical, and traces), mineralogical analysis, grinding
hardness, flotation recovery, and rheological and geoenvironmental information. Inherent problems of
the representative sampling of RC drill chips relate to non-optimal sub-sampling (e.g., splitting) and
fines loss (e.g., FSE, DE, EE, and WE; see Table 6). Sampling protocols require appropriate optimisation
through material characterisation and TOS application [22,23]. The utilisation of state-of-the-art
sampling units may be required (e.g., the Progradex™ system) [45].

Table 5. Planning framework for development and maintenance of tactical geometallurgical
programme (modified from McKay et al. [18]).

Stage Activity Actions Outputs

1

Drilling (Open pit: RC, core,
and/or blasthole)

(Underground: RC, core,
blasthole, or faces)

Measure-while-drilling
Core/chip logging

Rock types/alteration
Geotechnical
Geophysical

2 Testwork

Analysis
Mineralogy

Physical testwork
Recovery testwork

Assays/geochemistry
Metal/mineral deportment

Comminution/hardness
Flotation, leach, gravity

3 Modelling
Domain analysis

Geological modelling
Geostatistical modelling

Update strategic block model
Ore control block model

Integrated pit or underground
mappingBlock allocation

4 Mining Mine design/planning
Reconciliation

Blast design (stope or bench)
Blending strategy

Stockpile management
Validated model

5 Processing Plant feed optimisation
Reconciliation

Optimised plant
Validated model

In parallel, information from drilling can be correlated with hardness measurements and whole
rock analysis, RQD, or point load testing (e.g., EQUOtip) so that drill-based predictions are calibrated.
In the underground environment, diamond core samples and face samples will have to be optimised
to provide the data [35,42,46].

While the strategic model provides the initial framework of geology, grade, and processing
performance information, additional data in the tactical programme is modelled to define the value of
each block. Geometallurgy does not end with the delivery of ore to the plant. Ore feed passes to the
crushers, mills, and concentrator or leach pad, and ultimately smelters and refineries, and on to waste
piles and into tailings dams. Each unit process has quality specifications that will impact upon the
overall value of each ore block.

3.4. Geoenvironmental Aspects of Geometallurgy

Orebodies are non-renewable resources whose extraction may produce significant quantities of
waste. It is estimated that globally, 20–25 Gt of waste rock and 14 Bt of mine tailings are produced by the
mining industry [47,48]. Appreciably, the quantity of waste produced far exceeds the tonnage of metal
recovered, suggesting that what we are really mining is not ore, but waste. Therefore, determining
the waste properties must be given appropriate attention with associated costs built into the mine
budget if mine closure is to be appropriately executed and signed off by the regulatory authorities.
If inadequately determined and managed, mine waste can pose several geoenvironmental risks.
For example, the generation of mineral dusts (i.e., from dry-stack tailings surfaces) potentially poses
human health risks to employees and communities in proximity to mining activities [49]. However, the
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most significant risk associated with mine waste is the formation of acid and metalliferous drainage
(AMD) generated by the oxidation of sulphides, commonly present in these wastes [50]. The cost of
managing the AMD is considerable with recent estimates stating that the rehabilitation of one hectare is
at least AU$100,000 [47,48]. To minimise long-term environmental liabilities associated with managing
these impacts (potentially affecting project NPV), better identification of the geoenvironmental risks
posed at the earliest LOM stages is required.

The key to improving the management of AMD is to examine and define the mineralogical
properties of waste. Traditionally, a select number of representative samples are collected and
subjected to a range of static geochemical tests [50,51] to determine whether they are PAF or NAF,
therefore enabling the planning of waste handling schedules and the final landforms. However, by not
determining the mineralogical properties, only an approximation of the mineral reactions that may
occur in the final waste repository or landform can be afforded. Further, if waste materials are actually
of value to the operation (i.e., if clays are present which could be used for waste capping or neutralising
materials e.g., Savage River mine, Tasmania [52]) then by examining mineralogy, these beneficial
properties can be revealed. Further, additional commodities could be extracted from the waste if,
for example, the mineral chemistry of mine tailings are examined during metallurgical testwork, and
if discovered, its recovery could be built into the metallurgical flowsheet. New mineralogical tools
are available to enable the definition of these waste properties [53]. Their application at the earliest
LOM stages will enable effective mine closure planning as remediation and rehabilitation strategies
can be developed based on the deposits properties and realistically costed, with ample opportunities
for community feedback and regulatory consultations, thereby ensuring the social licence to operate
is granted. During operational phases of the LOM, mineralogical investigations supported by static
chemical testing should be performed as part of ‘waste control’ to check placement against plan.
At mine-closure, regular monitoring should be performed to evaluate the success of rehabilitation and
if necessary, the strategy should be amended if pollutant linkage chains are identified.

4. Key Dimensions of Geometallurgy

4.1. Introduction

Geometallurgy includes many disciplines and sub-disciplines applied across the MVC. Beyond
consideration of traditional geological, mining, and minerals engineering topics integrated into project
studies and mine plans (Table 1), other areas have become important, particularly geoenvironmental
parameters such as AMD potential and contents of environmentally deleterious elements. These are
now being integrated into 3D models to guide the mining operation and requirements for blending
and/or treatment.

The mining industry is expanding to include many non-typical disciplines such as data
analytics/data science, artificial intelligence/machine learning, and automation/robotics, as well as the
introduction of innovative technologies. All of these will have a positive impact onto geometallurgical
studies. However, traditional activities are important and should not be lost in the rush for new
technology application. This section provides an overview of selected key dimensions of geometallurgy
that warrant discussion—it is not intended to be an all-encompassing coverage. It repeats and develops
upon some topics previously discussed in this review.

4.2. Sampling

4.2.1. Introduction

Sampling is a basic component during all stages of the MVC and if done optimally, is
key to reducing uncertainty [54,55]. It includes the sampling of in-situ material (e.g., drilling,
linear, and bulk sampling [22,23,46,55]) and broken rock (e.g., stockpile, belt, and percussion drill
sampling [22,23,46,55]) for geological (e.g., resource definition), metallurgical (e.g., for plant design),
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geometallurgical (e.g., variability and spatially distributed samples), and geoenvironmental (e.g., NAF
and PAF) purposes [51]. Despite its obvious importance, sampling is frequently considered a
second-class citizen and does not receive the rigorous treatment that it requires [23,24,46,55,56]. It is
highly relevant to any geometallurgical programme, since grade, metallurgical, and geoenvironmental
samples will still need to be collected and tested/assayed.

The quality and type of samples collected are as important as the testwork and assaying applied.
The key characteristic of any set of samples is that they represent a given domain and quantify its
variability. There are those who think that stating a sample(s) is representative makes it representative
without justification. There is a need to consider both: (1) in situ, and (2) testwork sub-sample
representativity [23,42,57]. Early ore and waste characterisation and domain definition are required,
so that sampling, testwork, and assaying protocols can be designed to suit the style of mineralisation
in question.

4.2.2. Theory of Sampling and Sampling Errors

The Theory of Sampling (TOS) provides an insight into the causes and magnitude of errors
that may occur during the sampling of particulate materials (e.g., broken rock) and is applicable to
geometallurgical sampling in its widest sense [23,51,54,55].

Sampling error is defined in the context of TOS, where actions may lead to uncertainty and
create an overall measurement error [54,55]. TOS attempts to break down this error into a series
of contributions along the sampling value chain (e.g., the planning to assay-measurement process:
Table 6).

Table 6. Sampling value chain.

Location Site/Field Laboratory

Stage
Planning Collection Transport Preparation Testwork Assaying

1 2 3 4 5 6

Activity Scope Develop Execute

Observe Collect
Bag and tag

QAQC
Integrity/security

Chain of
custody

Integrity/security
Chain of
custody

Equipment
operation

Equipment
clean QAQC

Integrity/security

Equipment
operation

Equipment
clean QAQC

Integrity/security

Equipment
operation

Equipment
clean QAQC

Integrity/security

Sampling errors
In-situ nugget
effect FSE, GSE

DE, EE, WE
PE FSE, GSE DE,

EE, WE, PE
FSE, GSE DE,
EE, WE, PE PE AE

Dominant effect on results Precision Bias Bias Precision (if
splitting) Bias

Precision (if
splitting) Bias Bias

Material risk assuming average practice High Low Moderate Moderate Low

Material risk assuming optimised practice Moderate Low Low Low Low

FSE: fundamental sampling error. GSE: grouping and segregation error. DE: delimitation error. EE: extraction error.
PE: preparation error. WE: weighting error. AE: analytical error.

The heterogeneity or variability of a given variable (e.g., grade, density) can be quantified by the
nugget effect and has a direct link to TOS [54,55,58]. The nugget effect is a quantitative geostatistical
term describing the inherent variability between samples at very small separation distances, though
in reality has a wider remit than just differences between contiguous samples. The magnitude of the
total nugget effect relates to the geological or in-situ nugget effect (GNE) and the sampling nugget
effect (SNE).

The GNE relates to [55,58]:

# Distribution of single mineral grains or clusters distributed through the ore domain(s).
# Continuity of structures or domains such as high-grade carriers within the main host structure or

vein-lets within wall rocks.

The SNE relates to [55,58]:

# Sample support (sample size—volume-variance).
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# Sample density (number of samples at a given spacing—information effect).
# Sample collection, preparation, testwork, and assay procedures.

A high GNE leads to high data variability, particularly where samples are too small and protocols
not optimised. The SNE component is related to errors induced by inadequate sample size, sample
collection, preparation methods, and measurement procedures. Throughout the MVC, optimised
sampling protocols aim to reduce the SNE, thereby also reducing total nugget variance, skewness of
the data distribution, and number of extreme data values [22,42,55,56,58].

4.2.3. Geometallurgical Sampling

In the geometallurgical context, samples are taken for both direct testing (e.g., grade, comminution,
recovery, and geoenvironmental parameter determination) or for proxy measurement (e.g., EQUOtip
to correlate with hardness; Table 7). Samples have varying supports and spatial coverage, and thus
resolution of variability.

Table 7. Geometallurgical sampling matrix (modified from Keeney [40]).

Type Description Relationship
to Processing

Cost per
Sample

Number of
Samples Sample Support Spatial

Coverage

Level 4
Core composites
for metallurgical

testwork
Direct High Low

Domain or
variability

composites (>50 kg)
Very limited

Level 3
Discontinuous

core intervals for
physical testwork

Direct Moderate Low-moderate Relatively short
lengths (<1 m) Limited

Level 2
Continuous
core-based

measurements
Proxies Low High

Measurements taken
along entire core

length, potentially
100 s m

Very good

Level 1 Continuous core Direct Low High 1–2 m continuous
core composites Very good

Traditional metallurgical samples are generally Level 3 or 4 types, being relatively large
and of limited spatial distribution (Table 7). Level 1 and 2 samples are the most valuable for
developing geometallurgical block models, as they relate to drill core throughout the mineralised (and
diluting) domains.

4.2.4. Programme Quality Assurance/Quality Control

Quality assurance/quality control (QA/QC) is critical throughout all programmes. Metallurgical
sampling and testwork should be fully integrated into geometallurgical studies. The necessity for
quality management is relatively well understood by most mining professionals. There are a number
of tools available for those managing grade data; though in some cases there is minimal understanding
of why quality control activities are being undertaken or how to interpret the results. Traditional
metallurgical testwork is critical for plant design and is an inherent part of geometallurgy. In a
geometallurgical study, multiple spatially distributed small-scale tests are used as proxies for process
parameters. These will be validated against traditional testwork results. Quality management practices
now need to be applied to geometallurgical variables, which requires application of the concepts of
TOS and statistical process control. Ehrig, Liebezeit and Macmillan and Dominy et al. make some
general recommendations to this end [22,23,59].

Errors are additive throughout the sampling value chain and generate both monetary and
intangible losses. The aim is to collect representative samples to accurately describe the material
in question. Sample collection is followed by reduction in both mass and fragment size to provide a
sub-sample for testwork or assay. This entire process can be particularly challenging in the low-grade
environment (e.g., precious metals) and may require special protocols.
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4.2.5. Compliance with Reporting Codes

Given that most geometallurgical activities feed into economic studies and resource/reserve
estimates that will be publicly reported, it is important to ensure that the data produced are
fit-for-purpose. The public reporting of metallurgical sample and testwork results are as important
as grade results, but frequently receive less rigor. The JORC 2012 Code has global application
for the reporting of exploration results, Mineral Resources, and Ore Reserves [60]. It requires the
Competent Person(s) to provide commentary on any sampling, testwork, and assaying process. From a
geometallurgical perspective, Table 1 (Section 4) of The Code [60] requires disclosure of metallurgical
factors and assumptions as part of reporting Ore Reserves (Table 8).

Table 8. Extract from The JORC Code Table 1 (Section 4) pertaining to metallurgical testwork [60].

Metallurgical factors
or assumptions

1 The metallurgical process proposed and the appropriateness
of that process to the style of mineralisation

2 Whether the metallurgical process is well-tested technology or
novel in nature

3

The nature, amount, and representativeness of metallurgical
test work undertaken, the nature of the metallurgical
domaining applied, and the corresponding metallurgical
recovery factors applied

4 Any assumptions or allowances made for deleterious elements

5
The existence of any bulk sample or pilot scale test work and
the degree to which such samples are considered
representative of the orebody as a whole

6
For minerals that are defined by a specification, has the ore
reserve estimation been based on the appropriate mineralogy
to meet the specifications?

Items (3) and (5) in Table 8 are the most relevant to geometallurgical sampling, testwork, and
assay programmes. Item (3) looks for clarification around the “what, where, and how” of sampling,
whereas (5) focusses on validation via bulk sampling and/or pilot work. Both look for some discussion
on representativity. Item 3 requires specific comment on the representativity of metallurgical samples
and in addition, criteria listed in The Code Table 1-Section 1 (“Sampling Techniques and Data”) [60]
are also relevant. Project study reports often fail to detail the spatial extent of metallurgical sampling,
or the number of composites collected and their relative masses. It is common for a feasibility study
report to state that “the sampling and testwork programmes have been extensive and due care was
taken in selecting and compositing representative samples” with little justification as to why samples
are considered representative [23].

There is now a need to move towards proper quantification of geometallurgical sampling,
testwork, and analytical errors. The new DS3077 horizontal standard provides a framework on
which to produce transparent protocols and develop rigorous QA/QC [61].

4.3. Ore and Waste Characterisation

4.3.1. Analysis of Textures

Characterisation of whole rock and processed materials provide benchmark understanding of
the ore and its subsequent performance in the plant. By analysing these two materials specifically,
opportunities are presented to better understand the processing behaviours and deportments.

The textures of ore influence its beneficiation and flotation performances, the quality of the
concentrate, and provide an indication of tailings characteristics. A common understanding of the term
“texture” relates to the grain size, which can be coarse, medium, or fine-grained, with varying grain
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shapes. Alternatively, some describe textures in a mineralogical sense, i.e., high clay, quartz, or mica.
The term texture is not a one-size-fits-all description, but it must be clear what it is and be consistent.
Texture should include descriptors relating to structural features. For example, these could be forms of
discontinuities (e.g., fractures or faults) and/or intruded features such as veins. Tighter definitions
need to be derived; new definitions of textures or structural features would ideally be owned deposit
to deposit, though there will be similarities between like deposits (i.e., porphyry to porphyry).

Here it is suggested that textures are characterised on three scales: macro-, meso-, and micro-scale.
Macro is mine-scale (e.g., pit bench or underground face; a geological scale), meso is core-scale, and
micro-scale is particle and mineral grain sized. Rarely is texture utilised at bench or face scale, it is
often introduced at the meso-scale and commonly used on the micro-scale. Texture is concerned with
the relationships of minerals at particle to grain scale. It is the description of mineral intergrowths,
associations and grain sizes, and disseminations and inclusions. An example of understanding textural
issues is measuring a “problem mineral” which is microns in size, wholly locked into a target mineral
in the concentrate. The problem mineral is then seen as a penalty in the concentrate. However,
if identified sufficiently early during textural characterisation and analysis, it may be possible to
reconfigure a circuit and insert suitable processes or technologies to remove those minerals from going
further downstream. Automated methodologies for the analysis and classification of rock textures are
now being developed [62,63].

4.3.2. Advanced Mineralogical Characterisation

Mineral characterisation is a significant part of any geometallurgical programme at any stage in
the MVC. There are several methods for collecting mineralogical data and imagery, in an operational
environment and in laboratory setting. These data could be in the form of raw data for processing,
providing large data sets and image files to correspond.

A wealth of information and data came into existence with the development of Automated
Mineralogical Analysis (AMA) around thirty years ago. This has proved to be a very successful
analytical tool which is still used and under development today. AMA is deemed a routine tool
and utilises scanning electron microscopy (e.g., TIMA, Mineralogic, MLA, and QEMSCAN) [64].
AMA are specialised systems with software designed exclusively for the characterisation of ores.
Specific programmes are tailored for minerals of interest (e.g., Au), which present challenging textures,
or rarity of abundance. Programmes may also be manipulated to capture the internal elemental
differences through increasing X-ray measurement times. This is particularly useful when trying
to understand stoichiometry/elemental substitutions, such as auriferous pyrite or Au grains with
substituted elements.

A key outcome of geometallurgical data collection is the concomitant increase in orebody
knowledge. The spatial mapping of geochemistry, mineralogy, and texture is central to the
geometallurgical approach. The spatial understanding of mineralogy, texture, and other primary
geological characteristics will result in enhanced genetic models and improved understanding
of orebody paragenesis. Multi-element assays should be supplemented with mineralogical data,
including quantitative XRD and AMA. This can be used to develop a set of assay-to-mineral conversion
algorithms so that the mineral composition can be inferred.

While application of optical microscopy, AMA, and laser ablation (LA-ICP-MS) in conjunction
with assay and geological logging data is a typical suite of tools, the use of high-resolution X-ray
computed tomography (HRXCT) is recently being used in research to investigate a range of ore
types [65].

HRXCT is useful when characterising textures for liberation studies, but also extremely useful for
characterising rock mass for leaching purposes, whether that be heap leaching or in-situ potential [66].
The latter requires information about pore connectivity, providing a relationship between that and flow
of lixiviants for metal recovery. 3D analysis provided by the HRXCT software allows a determination
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of particle shape or morphology and could provide key information about the best comminution
approach and recovery practices thereafter [65,67].

Continuous HRXCT scanning of drill core is the ultimate goal and will provide many advantages
to a project across early stage commencement, automation, and speed. Semi-continuous scanning is
now possible via the OreXplore™ system. The combined HRXCT and XRF unit is capable of scanning
four one-metre lengths of up to NQ size core in one session. The HRXCT component provides 3D
imaging of mineral shape and distribution, texture, and structural features supported by elemental
analysis. Mineral particle resolution by HRXCT is around 200 µm, though this is dependent upon a
number of factors. XRF detection limits are around 10 ppm (e.g., Mo, Sn and Sb) or 100 ppm (e.g., As,
Pb, W and Zn) for base metals. At the current time, the detection limit for Au is 100 ppm and Ag 10
ppm. The application of specific software provides a visualisation platform, which allows interrogation
of the mineralogy, texture, and structure with elemental composition.

4.3.3. Automated Core Scanning

Much non-grade information derived from drill core is a function of visual inspection as part of
geological and geotechnical logging. Visual logging is generally highly subjective, experience-based,
and often conducted by relatively junior personnel. Automated core logging, across short wave
length infrared reflectance, thermal infrared reflectance, and petrophysical technologies, are playing an
increased role in characterisation across geological and engineering parameters [68–72]. For example,
the HyLoggerTM automated spectral analysis and imaging system collects systematic short wave
length infrared reflectance spectra [73]. These can be classified into the dominant responsive mineral
species and their compositional variations (e.g., chlorites, white micas, and clays).

Distribution of “soft” responsive phases show relationships to comminution behaviour related
to decrease of bulk strength [69]. Such information can also be used alongside assay data to
enable the prediction of geoenvironmental characteristics (i.e., the propensity of a unit to offer
neutralising capacity) as documented in Parbhakar-Fox and Lottermoser [74]. More recently, classified
mineralogy information from drill core obtained from Corescan™ have been used to develop new
geoenvironmental indexes including the geoenvironmental domaining index [71] and the automated
acid rock drainage index [75,76], which alleviate issues associated with subjective logging. Developing
additional machine learning algorithms to predict other geometallurgical indices represents a future
direction for the mining industry which is being facilitated by the ability of new computing platforms
to process big data.

4.3.4. Down-the-Hole Prediction

Data collection for down-the-hole (DTH) or measure-while-drilling (MWD) is under continuous
development. Over the last decade established methods have been created, such as understanding rock
hardness and rock mass through rate of penetration (ROP) and torque [77]. Techniques are starting to
differentiate lithologies using petrophysics and fuzzy interference systems by applying multivariate
analysis, neuro-adaptive learning algorithms, and/or machine learning [78–80]. MWD real-time data
can be processed and provide an approximation of rock strength whilst physically drilling [81]. Sensors
collecting data are related to pressures on the bit, torque, and speed or ROP. Machine-learning practices
are being utilised to discriminate geology/lithologies from the real-time MWD data. If proven to
successfully (with high confidence) differentiate geologies consistently, the data can be integrated
into ore body knowledge systems, including engineering geology and geotechnical engineering as
well as infrastructure projects. Neural networks and deep learning systems afford the opportunity to
create more certainty from uncertain data, which is ideal for lithological and geological mapping and
discrimination difficulties [82].
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4.4. Domains and Models

4.4.1. Domains

In a geometallurgical programme, key aspects such as sample selection and testwork, domaining,
definition of response variables, and modelling must be optimised to the data spacing and output
required (e.g., Figure 3: resolution, variability, and project stage). The design of a programme will vary
from deposit to deposit dependent upon degree of complexity and heterogeneity, where no singular
approach is applicable globally.

Traditionally, the modelling of an ore body has been restricted to the geological domain: the
definition of physical regions with homogeneous properties based on lithology, mineral grade, and
style of mineralisation, densities, and grade(s). Processing domains are less often defined and are
a key output of the geometallurgical approach (Figure 2). The selection of a modelling approach
for geological, grade, and processing properties in 3D space involves a trade-off between geological
realism and conditioning capabilities.

Geometallurgy emphasises the need for 3D models for mine and process optimisation with
multiple, sometimes unconventional attributes. A key output of geometallurgical modelling is
the definition of geometallurgical domains. In principle, a geometallurgical domain is a 3D
volume in which it is reasonable to assume that a particular variable comes from a homogenous
population (Figure 1). Generic volumetric 3D domains based on a geological variable(s) such as
lithology or alteration may or may not be statistically homogenous for the parameter(s) in question.
A process-specific domain is a 3D volume where the variable under consideration (e.g., flotation
recovery) comes from a statistically-homogenous population. The geological drivers of the response
variables will have to be resolved during domain definition.

Mineral deposits are typically multivariate systems with many factors contributing to their overall
complexity. A deposit can cut across several lithological units and have differing mineralisation
and alteration styles, which will affect metallurgical response. Using lithological boundaries to
control the distribution of metallurgical indices and testwork without effective evaluation may prove
erroneous. Early stage geometallurgical domains are more likely to correlate with lithology and/or
mineralisation/alteration style (Figure 1). Note that comminution and recovery domains may be
different. In practice, geometallurgical domains are qualitative attributes which have to be amenable
to spatial block modelling.

4.4.2. Models

Complementing the traditional grade model, geometallurgical block models display the
distribution of key metallurgical and mining parameters throughout the orebody to support financial
analysis and mine planning [13,83,84]. Coward and Dowd summarise an approach to geometallurgical
modelling as [13]:

• Identify the variables required to understand critical process responses.
• Sample and measure these variables.
• Develop techniques to estimate and simulate these characteristics spatially at the correct scale

and incorporate the values into block models.

The traditional modelling approach considers a single or deterministic estimate (e.g., the kriging
mean) which does not effectively represent variability. Smoothed kriged models will generally be
insufficient for optimising processing operations in heterogeneous mineralisation. A model which
underestimates variability will understate the local variation in properties, which should be considered
in the design and operation of the mine and plant. In addition to estimates with too low variability,
kriging may introduce a bias for variables such as metallurgical properties, which do not combine
linearly [25,85]. Geometallurgical domains may be more optimally defined via conditional simulation,
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which provides multiple outcomes for scenario evaluation [86,87]. Such an approach provides a better
opportunity to determine how NPV changes across various scenarios.

While resource models focus on modelling of the primary variables that drive metallurgical
responses, building of geometallurgical models separately may involve direct modelling of response
variables in the 3D block model [25]. A complication with the estimation of response variables
with classic techniques based on a variogram is their non-additivity [25,86,87]. Hence caution is
required if undertaking the direct modelling of response variables. This can complicate the definition
of geometallurgical domains which may benefit from fuzzy classification algorithms such as the
Gustafson-Kessel clustering algorithm [88]. Some recent developments in multivariate domaining are
reported by Sepulveda et al. and Addo et al. [89,90].

Much of the sustainability and energy efficiency dimensions derived from geometallurgy are
driven by mineralogy. While grade may be a useful proxy for mineralogy, it is not necessarily the most
appropriate attribute to use during estimation of recovery. In general, mineral grades (e.g., percentage
bornite) are more effective as these are additive, which makes modelling of this primary variable
relatively straightforward [25,85].

It is critical to ensure that the entire geometallurgical process, inclusive of data collection and
test work, data storage and interpretation, and modelling and analyses are of the highest quality
to ensure that any Mineral Resource and Ore Reserve estimates and subsequent economic studies
can be reported in accordance with the JORC Code 2012 or other international reporting code as
appropriate [8,22,44,60]. Most importantly, the modelling of key variables (e.g., rock mass parameters,
density, metal recovery, and hardness) provides a more efficient method to convert Mineral Resources
to Ore (Mineral) Reserves beyond the simplistic application of average modifying factors.

4.5. Financial Modelling

In the simplest sense, the net revenue from a mine or block relates to metal content, recovery and
price, less operating costs, penalties, and royalties:

Net Revenue = (Metal content × Recovery × Price) − (Operating cost − Penalties − Royalties)

All aspects of this simple relationship link in with geometallurgical modelling where metal content
is grade (which may be variable), recovery relates to ore properties (e.g., a function of mineralogy,
grade, texture, and process conditions), operating costs relate to mining and processing (e.g., mining
method and capacity, geotechnical conditions, plant throughput, plant circuit, etc.), and penalties
relate to deleterious elements in the product (e.g., ore mineralogy and chemistry). A major input into
operating cost is that of plant throughput, which is a function of rock parameters (e.g., density, A*b,
BWi, and feed/product size), machine parameters (e.g., mill dimensions, speed, load and feed load),
and plant circuit. Grinding energy is a major factor in operating cost, so its optimisation and prediction
in the geometallurgical model is critical [3,91,92]. Metal price and royalties lie outside of technical
prediction, though are of course important. Most of the revenue inputs can be modelled on a block by
block basis to provide a “value” based model [18].

Deterministic modelling that provides a single project NPV does not capture small-scale (e.g.,
SMU) variability, orebody variability, or process uncertainty. Whereas a scenario based approach
backed by simulation provides for NPV distributions, both on the block by block-scale and across
the LOM [12,13]. Block models form the basis for project economic evaluation. Approaches such as
scenario thinking to project evaluation encourages the project team to re-perceive the systems aspects
of the project and allows empirical testing of different strategies [4]. This can be achieved by modelling
spatial variability and uncertainty of the deposit throughout the value chain. Modelling seeks high
NPV options that are robust in the face of potential scenarios across the LOM [93].
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4.6. Acid and Metalliferous Drainage Prediction

Undertaking effective environmental ore characterisation at the pre-feasibility and feasibility
stages is essential for both efficient mine operations and reducing environmental impacts after mine
closure. Environmental parameters requiring characterisation include the propensity of a rock unit to
generate acid, mapping deleterious element deportment, and characterising the release of toxic dusts
as a result of blasting [50,94]. However, AMD prediction is not a one-test discipline, a combination
of static tests is typically performed to permit sample classification. Consequently, the number of
samples typically put through a static testing programme may be compromised, resulting in inadequate
characterisation of the AMD risks posed by future waste materials [50,51].

In general, static testing enables the definition of waste units. Longer-term (i.e., >30 weeks)
kinetic tests may be performed on select waste materials (e.g., samples from waste units recognised as
PAF) at the earlier LOM stages. Collectively, these help to predict the AMD characteristics of waste
units, informing waste engineering and waste handling/scheduling plans. However, limitations
with these methodologies have been recognised and have been discussed in the literature with the
increasing use of mineralogy promoted as a means to overcome these [50,53,95]. Ultimately, integration
of mineralogical, chemical, textural, and geometallurgical data will facilitate the most accurate and
efficient AMD classifications as proposed by Parbhakar-Fox, therefore enabling mine operators to plan
for closure based on geological properties [96].

4.7. Waste Management and Recycling

An emerging area for geometallurgy is the modelling of some of our most obvious and dormant
resources—tailings storage facilities [97]. The success of using geometallurgy to model tailings facilities
has been well-noted. There is huge potential to apply geometallurgical methodologies to better
understand the location and character of a wealth of saleable metals and minerals.

Characterising tailings storage facilities will also introduce other operational stakeholders into the
project, such as geophysicists and geochemists. As tailings are a near-future resource for many mining
operations (e.g., Savage River mine, Tasmania; Rosebery mine, Tasmania; Century mine, Queensland),
the area should be investigated, funded, and researched now with operators encouraged to explore for
commodities other than that being mined (e.g., critical metals in base metal deposits) [94,98]. Mineral
processing technologies and deficiencies have changed so much since many of the tailings facilities
were constructed that there is significant potential for reserves, with biohydrometallurgical methods
particularly well suited to extracted refractory metals [99]. Tailings dams and tailings storage areas
could be considered the next deposit for some key metals, though their effective evaluation can be
challenging [51].

4.8. The Digital Mine

The digital mine is high on the agenda of many companies. From a geometallurgical ore control
perspective, the current drill or face sampling and assaying can feed into the digital realm, but
only once the final assay is completed in the laboratory. Assay data can be interfaced with digital
photographs, outputs from automated mapping, and surveys. Once into the digital platform, then
artificial intelligence may allow direct feed into development control and design, and grade models.
Data analytics will play a role in integrating and analysing grade and other data to produce more
effective and agile short-term mine plans, potentially real-time information, and lead to automated
reconciliation. Sensors in drill holes, at the mine face and in the plant will be critical for this
development [100].
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5. Managing Geometallurgical Programmes

5.1. Overview

A key aspect of any effective geometallurgical programme are multi-disciplinary teams, thus
bringing together exploration and mining geologists, mining and geotechnical engineers, metallurgists
and mineral process engineers, financial modellers, economists, and risk specialists [9]. By drawing
on different disciplines and on specialists from other areas (for example, data mining/analytics and
computing specialists, mathematical modellers and risk specialists) geometallurgy also sees industry
practitioners, consultants, service providers, and academics working closely together. The key to the
success of geometallurgical programmes is that of project management in its broadest sense. Large
strategic programmes form the basis of feasibility studies, for example, and therefore require both
effective people and data management.

5.2. Geometallurgical Education

Incorporating a highly applied discipline and subject such as geometallurgy into a university’s
curriculum is extremely challenging. There are trains of thought in so far as students should be
made aware of geometallurgy as soon as reasonably possible. On the other side, they need to
understand fundamentals and grasp concepts well in order to apply those key learnings to the
world of geometallurgy. New initiatives in mining and extractive metallurgy courses must be sought
and the inclusion of core and elective geometallurgy units is required. Integrating geometallurgy
theory and practice would probably best suit final year undergraduate and post graduate students;
at this point in education, their ability to approach problems through systemic thinking, logic, and to
handle large data sets would be at an appropriate level. Many university courses in geometallurgy,
or including a geometallurgical element, are still focussed on the more traditional “geology-mineralogy
plus metallurgy” approach and fail to convey the LOM optimisation and 3D nature of geometallurgy.

There are more industry roles asking for geometallurgical knowledge and practical experience
now more than ever. However, academics both trained and experienced in geometallurgical
practice are few, so academia should be looking for assistance from industry to put back into the
system through sessional training, workshops, and lecturing. A number of global universities offer
geometallurgical modules, particularly at Masters degree level, however few if any offer this training
in a true multi-disciplinary context. For example, offering a geometallurgical course to minerals
engineers without putting it into the 3D spatial and mine planning context fails to communicate the
real value of geometallurgy. Similarly, providing a geoscience-based approach with sole focus on
mineralogy and geochemistry also fails. All aspects are relevant but must be presented in the full
geometallurgical context.

University courses can be inflexible and hard to change. It is via direct industry feedback and
the Alumni groups that proposed changes can be voiced, influencing the development of new units
delivered. Included in this is educating site personnel who do not have the ability to leave site
for further education and development. In parallel with voicing feedback of the requirement for
geometallurgical programmes/units, universities need to understand the delivery expectations, i.e.,
online or blended learning. Experience would suggest that any online learning in the geometallurgical
discipline should be reserved for post graduate level alone

5.3. Geometallurgical Challenges

The major challenges and areas of development within geometallurgy are:

• Gaining corporate support—projects may require separate financing.
• Geometallurgical teaching—integration across disciplines, including emerging disciplines such as

data analytics, artificial intelligence, machine learning, and automation.



Minerals 2018, 8, 560 25 of 33

• Implementation of studies across a wide range of technical disciplines (e.g., silos) and ensuring
silos are broken down to effect data sharing and optimal communication.

• Application across feasibility studies and mine operations.
• Representative sampling programmes and effective ore/waste characterisation.
• Ensuring fit-for-purpose data through proper procedures and QA/QC programmes.
• Integration and interpretation of very large databases.
• Modelling/simulation of numerous different data types.
• Process and mine optimisation tools.
• Developing effective innovations across characterisation, data collection, and modelling, including

data analytics, artificial intelligence, and machine learning.
• Ensuring that geometallurgical programmes are fit for purpose and can be reported in accordance

with The JORC (2012) or other reporting codes.

5.4. The Future of Geometallurgy

The future sees more challenging and complex deposits being developed, where variability in
both orebody and external factors will be material to profitability and sustainability. The data-rich
nature of geometallurgy allows orebody variability to be incorporated into an optimised LOM plan.

“Future” geometallurgy sees a more advanced, “modern” geometallurgy driven by the digital
mine. Technology will play a key role in automated characterisation during the strategic phase, and
more real-time analysis during the tactical phase. More efficient data analytics will see improved
use of orebody knowledge and integration of block models, economic studies, and mine and plant
optimisation. Operations (tactical) will see emphasis on data analytics that will play a key role in
integrating and analysing grade and other data to produce more effective and agile short-term mine
plans, potentially real-time information, and lead to automated updating and reconciliation. Sensors
in drill holes, at the mine face, and in the plant are critical for this development.

The multi-disciplinary nature of geometallurgy will grow as it will need to include non-traditional
expertise in data analytics, machine learning, software engineering, and automation. A new breed of
mining professionals will emerge with different technical mining skills, but also with an understanding
of non-traditional expertise. Corporate accountability, particularly for public companies, will continue
to increase, thus geometallurgy should ultimately be embedded into international reporting codes
(e.g., The JORC Code 2012) [60].

Geometallurgy will find greater application in small underground mines (e.g., <150,000 t per
annum production), as such deposits are slowly finding favour again given that they generally have
smaller footprints, are relatively high grade, and relate to brownfield areas. For small mines, the
strategic versus tactical approach is still relevant, though may be via a geometallurgy “lite” application
to provide resolution of a few key parameters compared to a large deposit/mine [22].

Geoenvironmental application of geometallurgy is becoming a non-negotiable activity as part of
the LOM licence to operate. Undertaking effective geoenvironmental ore/waste characterisation at
the strategic phase is essential for both efficient mine operations and reducing environmental impacts
after mine closure.

6. Conclusions

(1) Geometallurgy is the integration and utilisation of geological, metallurgical, environmental, and
economic information to maximise the value of an orebody, to minimise technical and operational
risk, and build a resilient operation. Through a multi-disciplinary approach, it identifies attributes
that contribute to the realised value of a resource and enables ore variability to be factored into
the flowsheet, infrastructure design, and the production and quality forecasts over the LOM.
This includes traditional attributes, such as grade, as well as process factors such as hardness (e.g.,
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crushability and grindability), mineral species and abundance, mineral liberation, metallurgical
recovery, concentration of deleterious elements, and acid generating and neutralising potential.

(2) Geometallurgy has reached a maturity beyond a “geology-mineralogy plus metallurgy” activity,
though the input and integration of the two is critical. It is recognised as an approach that
can both maximise value and predict the risks associated with resource development and mine
operations. It is not a “quick fix”, but a long-term commitment to adding value. Geometallurgy
complements, but does not replace, existing approaches to design and optimisation of mining
and processing operations. Critically, geometallurgical issues vary from one deposit to another,
thus there is no fit-all template that can be used.

(3) Key drivers for the geometallurgical approach relate to lower grades and geologically and/or
metallurgically more complex orebodies; high grade and metallurgical response variability;
increased capital costs and declining profit margins, thus higher financial risk; and the need for
well-managed project risk to attract funding.

(4) The process of ore variability testing for metallurgical response and the use of fast, inexpensive
metallurgical proxies have been developed in the past decade. Technology continues to advance,
and techniques such as hand-held analytical tools, automated core scanning, and down-the-hole
measurements allow for faster, less expensive testing.

(5) There is general acceptance within the mining industry that assumed modifying factors defined by
the 2012 JORC Code are not sufficient to mitigate the risk of funding projects. The geometallurgical
approach is to move away from factored Ore Reserves to data-rich block models providing
information for mining, metallurgical, and environmental considerations. Uncertainty models
can be derived from this data to support the classification of geometallurgical parameters such as
throughput and recovery into reserve categories. The application of geometallurgy generally has
the favourable consequence of increasing Mineral Resource to Ore Reserve conversion.

(6) The future sees more challenging and complex deposits being developed, where variability
in both orebody and external factors will be material. The data-rich nature of geometallurgy
allows orebody variability to be incorporated into an optimised mine plan. The geometallurgical
approach has tended to be used on large multi-million tonne type deposits, though is now
becoming applied more to smaller deposits and across different commodities.

(7) Geometallurgy encompasses activities that utilise improved understanding of the properties of
ore and waste, which impact positively or negatively on the value of the product, concentrate,
or metal. Properties not only include those that impact on processing efficiency, but also those
of materials which will impact upon other actions such as rock stability, blasting, and waste
disposal. Companies that embrace the geometallurgical approach will benefit from increased
shareholder value.

(8) Geometallurgy leads to improved team work and communication during project studies and
mining. It straddles diverse technical and managerial areas, optimising exploitation by taking an
holistic view. Additionally, geometallurgy aims to identify and mitigate technical risk during
project development and production. These objectives require strong cross-technical domain
communication driven by professionals with the correct technical and leadership skills.

(9) The application of geometallurgy across the MVC aims to improve project resilience and success
through a number of ways:

• Identify orebody variability and develop strategies to mitigate the risks (e.g., collect
additional data; revise the mine plan; adapt or change the process strategy, or engineer
flexibility into the system).

• Identify system constraints and how these impact on performance across the MVC and allow
project re-engineering to reduce or eliminate such constraints.

• Assess financial options to support the operation from construction through to
sustainable production.
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Abbreviations

The following abbreviations are used in this manuscript:

A*b Impact indices derived from SMC test
Ai Abrasion index
AMA Automated mineralogical analysis
AMD Acid mine drainage
BWi Bond work index
CAPEX Capital expenditure
EQUOtip EQUOtip hardness tester
FS Feasibility study
GEOTEK Core imaging system
GNE Geological (or in-situ) nugget effect
GRG Gravity recoverable gold
HRXCT High resolution X-ray computed tomography
JKCI JK comminution index
JKFI JK floatability index
JKRBT JK rock breakage test
JORC Joint Ore Reserves Committee, The JORC Code 2012 [60]
(LA)-ICPAES/MS (Laser ablation)-Inductively coupled atomic emission/mass spectrometry
LIBS Laser induced backscatter spectroscopy
LOM Life-of-mine
MLA Mineral liberation analysis
MVC Mine value chain
MWD Measure while drilling
NAF Net acid forming
NPV Net Present Value
PAF Potentially acid forming
PFS Pre-feasibility study
PXRF Portable X-ray florescence
RQD Rock quality designation
SEM Scanning electron microscopy
SG Specific gravity
SMC SAG mill comminution test
SMU Selective mining unit
SNE Sampling nugget effect
SPI SAG power index
TIMA Tescan integrated mineral analysis system
TOS Theory of Sampling (individual TOS errors defined in Table 3)
QA/QC Quality assurance/quality control
Q/PXRD Quantitative/portable X-ray diffraction
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