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Abstract: The Dzhida ore field includes Pervomaika (Mo), Inkur (W) and Kholtoson (W) deposits.
This article presents stable and radiogenic isotopic data (O, C, D, S, Sr and Nd) in an attempt to better
understand the petrogenetic processes and the problem concerning the sources of ore-forming fluids.
Granites from the Pervomaika deposit, which includes Mo-ores, as well as the syenite dikes that
precede W-mineralization, have low δ18O values (about 5‰ and 4‰ respectively), and low initial
ratios 87Sr/86Sr (0.704–0.705). The εNd (T) values (+0.9–−1.1) in granites and syenites are close to
the evolution trend of the mantle-derived source. It was determined that a mantle-derived source
was involved in ore-forming processes. It was also confirmed that δ34S values in sulfide minerals
(molybdenite, pyrite, sphalerite, galena, and chalcopyrite) were close to the meteoric standard (from
−2‰ to +2‰). The δ13C and δ18O values in carbonate minerals (rhodochrosite and ankerite) of the
Kholtoson deposit are located within the primary igneous carbonatite (PIC)-square, as a possible
juvenile source of CO2. This was also confirmed by the δ18O and δD values in muscovite from greisens
(4.2‰–6.5‰ δ18O, –78.8‰ . . . –84.0‰ δD). The δ18O values calculated in a fluid equilibrated with
hydrothermal minerals indicated a meteoric origin.

Keywords: Mo–W deposits; oxygen isotopes; fluid source; Western Transbaikalia

1. Introduction

The Dzhida ore field is a large Mo–W deposit in Russia (1.4 Mt of WO3 and 1.7 Mt of MoO3).
It has been studied by many researchers. However, the problem of the sources of ore-forming fluids
has not been investigated. Limited complex isotope studies of Mo–W deposits have been carried out in
deposits in China [1–6], Kazakhstan [7], and Russia [8–10]. Our study presents stable and radiogenic
isotopic data (O, C, D, S, Sr and Nd) in an attempt to better understand the petrogenetic processes and
the problem concerning the sources of ore-forming fluids.

It is well known that rare metal mineralization is usually associated with granitic rocks.
Researchers consider that mineralization could be formed by several mechanisms. In one case, it
occurs due to the intensive differentiation of a standard granite melt [11–13], while in another case it is
expected to occur due to the transport of elements to the apical part of a magmatic chamber [14], or as
a result of special melting conditions and the involvement of special sources of fluids [15,16]. Some
researchers have proposed that metasomatic processes caused a redistribution of rare metals [17,18].
All of these models are based on the similarity between the chondrite-normalized Rare Earth Elements
(REE) patterns of host rocks and ore-mineralization zones or on the comparison between the mineral
and/or chemical composition of the host rocks and the ores. Some researchers have studied fluid
inclusions and used initial 87Sr/86Sr ratios to show the relationship between the ores and the host
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rocks. However, all of these models suggest a crustal-derived source of the fluids because the ore
mineralization zones are located within/or near granite massifs.

According to isotopic investigations, ore mineralization is not always formed due to the fractional
crystallization of igneous rocks. It is considered that metamorphic, juvenile, and meteoric fluids were
involved in the formation of some deposits related to igneous rocks. The fluids were able to escape
during the boiling of the melt. Some deposits related to skarns formed with the participation of fluids
with low δD (meteoric water) values [19]. The role of such waters increased up to the final phase of the
ore formation. The recycling of meteoric water caused by granite plutons is expected in the formation
of apocarbonate nephrites [20], the REE-mineralization of the Songwe Hill carbonatites [21], and the
Be-mineralization of the Spor Mountain deposit [22,23].

As large Mo–W deposits are located close to granitic rocks, the hypothesis of a crustal-derived
source in deposits is prevalent. An important feature of the Transbaikalia region, where the Dzhida
ore field is located, is the presence of the Late Mesozoic rifting zone related to basalts. Several granitic
and alkaline massifs, the Central Asian fluorite belt, the Western Transbaikalian Carbonatite Province,
and a large amount of Mo–, and Mo–W-deposits related to granites, were formed during this period.

Sheglov [24] suggested that fluids from a deep source participated in the formation of the deposits.
This assumption is proved by the δ34S values [25,26] and the Sr-Nd isotopic values [8] in the Dzhida
deposit. Some deposits have high δ34S values, and a low amount of fluorite and sulfides is, therefore,
formed by the crustal-derived source. They are of small industrial significance. The other deposits have
δ34S values close to the mantle-derived source and are industrially significant (i.e., Dzhida, Orekitkan,
and Buluktai). There is a high concentration of fluorite and sulfides [26].

2. Geological Background

The Dzhida ore field is located in the Western Transbaikalia and includes the Pervomaika
Mo-deposit, the Inkur, and the Kholtoson Mo–W deposits. Earlier studies have focused on describing
the geology and mineral compositions of the ores and their relationship to country rocks and
PT-parameters [27–33].

The Dzhida ore field is located in Early Paleozoic crystalline schists, Caledonian quartz diorites,
and granodiorites (Figure 1). There is a stock of granite porphyry (the Pervomaika massif) and dikes
of aplites, plagiogranites, syenites, quartz syenites and diorites within the ore field. The country rocks
are serpentinized ultrabasites.

According to the Rb–Sr investigation [5] and geological observations, a sequence of events is
supposed: (1) the addition of the Pervomaika granites 124.3 ± 1.6 Ma; (2) greizenization 123.5 ± 0.7,
and; (3) hydrothermal W–Mo stage 123 ± 0.3. More precise methods have given different results:
121 Ma (U-Pb SRIMP II, zircon)—the addition of the Pervomaika granites [34], and 115.9 (Ar-Ar,
biotite)—the addition of the syenites preceding the W–Mo stage.

All deposits of the Dzhida ore field were formed in two stages: (1) molybdenum is the
early stage, and (2) tungsten is the late stage. There are some mineral associations in each stage.
The fluorite–muscovite greisens were formed after the addition of the Pervomaika granites to the
apical part of the massif during the postmagmatic stage. The Mo-mineralization is presented by
stockwork and is mostly located within the Pervomaika massif of the granites and partly in the
host crystalline schists. The molybdenite, quartz–molybdenite and quartz–K-feldspar–beryl veinlets
(the Pervomaika stockwork) cut the fluorite–muscovite greisens. The molybdenum stage is finished by
the addition of aplites. All veinlets of the molybdenum stage are cut by the dikes of syenites followed
by W-bearing veins and veinlets—the tungsten stage. The Inkur stockwork and the Kholtoson veins
were formed during this stage after the dikes of syenites. The tungsten stage is divided into three
substages. The earliest are quartz-K-feldspar-hubnerite veinlets containing muscovite, fluorite, and
beryl (the Inkur stockwork) followed by quartz-sulfide-hubnerite and quartz–carbonate–hubnerite
veins (the Kholtoson). The main ore-forming minerals of the W-stage are quartz and hubnerite.
Most of the sulfides are located in quartz–sulfide–hubnerite veins and are presented by pyrite,
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sphalerite, galenite, and sulfosalts of bismuth. Additionally, there are triplite, fluorite and muscovite.
The latest substage is presented by quartz–carbonate–hubnerite veins containing rodochrosite, ankerite
and calcite.
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Figure 1. Geological sketch map and cross section of the Dzhida ore field after Ignatovich, 2007 [32].
The inset map shows the location of the Dzhida ore field.

2.1. The Pervomaika Deposit

The Pervomaika Mo-deposit includes stockworks of differently oriented molybdenite and
quartz–molybdenite veins, which cut the granite massif and partly cut country rocks. The stockwork
area on the surface is 620 × 540 m and it is traced to a depth of 240–250 m. The massif is a fractured
intrusion, confined to the tectonic zone of the north-western strike, with a gentle declination under the
volcanic–sedimentary series. Its crystallization temperatures [35,36] are in the range of 750–800 ◦C.
The massif consists of granites and granite porphyry containing about 75 wt. % SiO2, 15.5 wt. % Al2O3,
9 wt. % Na2O + K2O, with a predominance of K2O over Na2O and low concentrations of TiO2, MgO,
and Fe2O3tot. The apical part of the massif includes porphyry phenocrysts of quartz.

The massif is cut by biotite–quartz, quartz–feldspathic veins, and pegmatites. The massif has
undergone K-feldspathization and greisenization. There are mica-bearing greisens containing high
concentrations of fluorite in the apical part of the massif. With depth, the intensity of the greisenization
decreases, and at a depth of about 200 m biotitic granites with a high concentration of albite appear.
In the contact zones with the crystalline schists, hornfelses are common.

There are molybdenitic and quartz–molybdenitic veins within the granitic stock (Figure 2), and
rarely outside. These veins often contain fluorite, pyrite, K-feldspar, muscovite, and beryl. Stringer
mineralization with veinlets from 1 mm to 5 cm in thickness (in some cases 10–30 cm), accompanied
by zones of disseminated Mo-mineralization, is of great economic interest. The main body of the
Pervomaika stockwork is filled with ore containing 0.10–0.15% Mo. The Pervomaika stockwork is cut
by the dikes of alkaline and quartz syenites. The homogenization temperatures of the fluid inclusions
from quartz of the initial stage vary from 240 to 280 ◦C [30]. In the inclusions of the later stage, the
homogenization temperatures are in the range 250–200 ◦C, and a high concentration of CO2 is recorded
in the gas phase. The areas of greisenization and molybdenite-bearing veins are cut by the dikes of
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aplite, syenite and quartz syenite. Apart from this, there are hubnerite-bearing veins with carbonates
and sulphides in the area of the deposit. Sulfide (main mineral is molybdenite) and oxidized ores
(main mineral is ferrimolybdite) hosted in granite and slate are separated in the Pervomaika. Only
sulfide ore hosted in granite was mined earlier. About 17,000 t of molybdenum concentrate has been
output. Owing to a lack of concentration technology, the oxidized ore hosted in the granite and country
slate, as well as the sulfide-bearing slate ore, were stored in a special dump. The deposit was mined
in 1941–1973.
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Figure 2. Photos of typical ore-samples from the Dzhida ore-field. (a) Molybdenitic vein cutting
through the Pervomaika granite (sample P-15-2); (b) quartz-hubnerite vein cutting through the
quartz–molybdenite vein. All the veins cut through the crystalline schist (the Inkur deposit) (sample
105-78); (c) quartz–hubnerite vein cutting through the dike of alkaline syenite (the Inkur deposit)
(sample 110); (d) hubnerite grains within quartz (the Kholtoson) (sample Dzh-1). Mol—molybdenite,
Hbn—hubnerite, Otz—quartz, Kfs—K-feldspar.

2.2. The Inkur Deposit

The Inkur W-deposit is located in the exocontact zone of the Pervomaika massif as a wide half ring,
which surrounds the massif in the south–west, west, and north–west area (see Figure 1). The deposit is
localized mainly in quartz diorite and partly in crystalline schists. The deposit is a stockwork extending
for 2500 m, with a width of 800–850 m, and a depth of 470–500 m. The W-mineralization is represented
by numerous quartz and quartz–feldspar veinlets containing hubnerite, scheelite, fluorite, beryl, pyrite,
sphalerite, galena and sulfosalts of bismuth and silver. These veins were formed after the dikes of
syenites and the Pervomaika granites and cut them all (see Figure 2). The veins are also enriched by
fluorite. The hubnerite and beryl tend to be mainly located at the contacts of the veins, but sulphides
are located in the central zones. The homogenization temperatures of fluid inclusions from quartz
are in the range of 200–350 ◦C [30]. The W-mineralization is distributed non-uniformly. The enriched
areas are located on the southern and northern flanks, whereas the central part of the mineralization is
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relatively low-grade. The relationship of ore strips with different orientations results in an increase in
their thickness with the formation of blocks that are complex in shape, which are enriched in WO3 up
to 0.16–0.18%. The average concentration of WO3 throughout the stockwork is rather stable (0.147%).

2.3. The Kholtoson Deposit

The Kholtoson W-deposit is located west of the Inkur deposit at the distance of the Pervomaika
massif and features hydrothermal quartz–hubnerite veins with a variable amount of sulphides.
Approximately 32,800 t of tungsten concentrate was mined. There are widespread dikes of syenites,
quartz syenites, and alkaline syenites in the area of the deposit. The syenites have biotite as a
dark-colored mineral, and the alkaline syenites have arfvedsonite. The quartz–hubnerite veins were
formed after the addition of the syenite dikes, like the Inkur stockwork. All the quartz–hubnerite veins
form a strip elongated in the sublatitudinal direction, spatially coinciding with the field of the dikes.
There are about 150 quartz–hubnerite veins ranging from tens of centimeters to 2–4 m (up to 6–12 m
when blown out) in thickness and up to several hundred meters in length. The veins are traced to a
depth of 600–650 m, cut quartz diorites and crystalline schists, and are also found in granites in the
Pervomaika massif. The veins are rimed by muscovite. The veins were formed due to the filling of
the fractures and were accompanied by pyritization and greisenization. There are quartz–hubnerite
and quartz–sulphide–hubnerite veins (see Figure 2). In general, throughout the deposit, the WO3

content is 0.77%. The mineral composition is similar to that of the Inkur stockwork, characterized
by a large amount of sulphide minerals such as pyrite and less sphalerite, galena, chalcopyrite and
sulfosalts of bismuth. Moreover, apatite, triplite, and some carbonates (rhodochrosite, ankerite, calcite,
siderite and dolomite) are present as accessories. The rhodochrosite was formed after the hubnerite
and before the sulfides. The calcite formed at the latest stage of hydrothermal alteration. The hubnerite
is partly altered by scheelite. One of the earliest minerals is triplite, which is altered by rhodochrosite.
The important feature of the Kholtoson deposit is that it is enriched by Mn. There are many Mn-bearing
minerals such as hubnerite, rhodochrosite, triplite, dolomite, siderite-(Mn), apatite (containing up to 2
wt. % MnO), and ankerite (6–15 wt. % MnO). The homogenization temperatures of the fluid inclusions
from quartz and sphalerite range from 150–350 ◦C and are close to those of the Inkur stockwork [29–32].
However, the temperatures of the initial stage (the formation of W-mineralization) are in the range of
280–350 ◦C.

3. Analytical Methods

The oxygen and carbon isotopic compositions were analyzed at the Geological Institute of the
Siberian Branch of the Russian Academy of Sciences and at the Center for Isotopic Research of the Far
East Science Center of the Russian Academy of Sciences. The oxygen in the silicates was analyzed
using laser fluorination, while the carbon and oxygen in the carbonates were analyzed using the
technique of decomposition by orthophosphoric acid with a “Gasbench” option at 60–70 ◦C for 2–4 h.
All the measurements were carried out on a Finnigan MAT 253 mass spectrometer (ThermoFinnigan,
Bremen, Germany) using a double inlet system for oxygen in silicates and a “continuous helium flow”
for carbonates. The measurements were calibrated using international standards NBS-28 (quartz),
NBS-30 (biotite) [37] for silicates and NBS-18 and NBS-19 [38] for carbonates. The VPDB (Vienna-Pee
Dee Belemnite) standard is used. The error of the values obtained did not exceed 0.2–0.3‰.

The oxygen isotopic composition in the fluids was estimated by means of a program for isotope
equilibrium calculation [39], using coefficients of equilibrium fractionation for each mineral [40–43]
and the temperatures obtained during the thermobarogeochemical studies.

The hydrogen isotopic composition in the hydroxyl-bearing minerals was determined at the
Center for Isotope Research of the Far East Science Center of the Russian Academy of Sciences using
the method described in Reference [44]. The samples were preliminarily heated up to 200 ◦C to
remove sorbed water. Constitutional water was released at 1250 ◦C. Hydrogen was extracted from
water on chromium at 950 ◦C. Its isotopic composition was analyzed using a Finnigan MAT 253 mass
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spectrometer with respect to the laboratory standard calibrated against VSMOW (Vienna Standard
Mean Ocean Water), SLAP (Standard light Antarctic Precipitation), and GISP (Greenland Ice Sheet
Precipitation) international standards. The reproducibility of the δD (1σ) measurements was 1.5‰.

The sulfur isotopic composition in the sulfides was measured at the Center for Isotope Research
of the Far East Center of the Russian Academy of Sciences. Samples for mass spectrometric isotope
analysis of sulfur were prepared using the technique by Reference [45]. Sulfide sulfur was oxidized
to SO2 using copper oxide. Oxidation was carried out under vacuum at 900 ◦C. The SO2 obtained
was purified from other reaction products using a thermally regulated cryogenic trap. The purified
SO2 was frozen in an individual ampoule. The sulfur isotope ratios were measured using a Finnigan
MAT 253 mass spectrometer with a double inlet system. The measurement error of δ34S (1σ) was 0.1‰.
The CDT standard (Vienna-Canyon Diablo Troilite) is used.

The isotopic composition of Nd and Sr was measured using a Triton multichannel mass
spectrometer in a static regime at the Institute of Precambrian Geology and Geochronology RAS,
St. Petersburg, Russia. The method of preparation for the Nd and Sr isotope investigations was
described by Reference [46]. The reproducibility of the determinations of the Rb, Sr, Sm, and Nd
isotopic compositions was estimated to be ±0.5% from the replicate analyses of the BCR (Basalt,
Columbia River) standard. The total blanks were 0.05 ng for Rb, 0.2 ng for Sr, 0.3 ng for Sm, and 0.8 ng
for Nd. The results of the analysis of a standard BCR-1 sample (6 measurements) were as follows:
Sr = 336.7 µg/g, Rb = 47.46 µg/g, Sm = 6.47 µg/g, Nd = 28.13 µg/g, 87Rb/86Sr = 0.4062, 87Sr/86Sr =
0.705036 ± 22, 147Sm/144Nd = 0.1380, 143Nd/144Nd = 0.512642 ± 14. The reproducibility of the isotope
analyses was evaluated using the measurements of the La Jolla and SRM-987 standards. Concurrently
with the Sr measurements, the 87Sr/86Sr ratio in the SRM-987 standard was found to be 0.710241 ± 15
(2σ, 10 measurements), whereas the value of 143Nd/144Nd in the La Jolla standard was 0.511847 ± 8
(2σ, 12 measurements). The Sr isotope composition was normalized to 88Sr/86Sr = 8.37521, whereas the
Nd composition was normalized to 146Nd/144Nd = 0.7219. The Nd isotope composition was corrected
to 143Nd/144Nd = 0.511860 in the La Jolla standard.

The microtextural features, relations, and homogeneity of the minerals were studied using a
LEO-1430 electron microscope equipped with EDS (Energy Dispersive Spectroscopy) Inca Energy
using the facilities of the “Analytical Center of Mineralogical, Geochemical and Isotope Studies” at the
Geological Institute, SB RAS Ulan-Ude, Russia.

4. Results

4.1. O, C, H Isotope Data

4.1.1. The Pervomaika Deposit

The granites, greisens (muscovite), and hydrothermal veins (quartz, muscovite, beryl and
K-feldspar) were studied (Table 1). The quartz and K-feldspar from the Pervomaika granites had lower
δ18O values than that of the Western Transbaikalia [47–49]. The quartz from the molybdenite-bearing
veins and the mica from the greisens had similar δ18O values, but the beryl and the K-feldspar from
the veins had higher δ18O values. The calculated δ18O values of fluid, which are in equilibrium with
the muscovite from the greisens, showed that a mantle-derived source participated in the formation
process. This was also confirmed by the δD (−78.8‰) values in the muscovite.
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Table 1. The δ18O values in minerals from the Pervomaika deposit.

ID No. Sample
No.

Description Mineral
δ18O‰ δ18O‰

Proportion
of Meteoric
Water (%)

VSMOW Fluid

Granite (750 ◦C)

1 P-15-1a Euhedral grains Quartz 5.9 4.6 13.7
2 P-15-1b Interstitial grains K-feldspar 5.3 5.3 11.2

3 P-15-2a Euhedral grains Quartz 5.5 4.2 15.1
4 P-15-2b K-feldspar 4.7 4.7 13.3

Pre-ore stage (Greisen, 350 ◦C)

5 P-15-9 Aggregates of dense bladed crystals Muscovite 7.3 6.7 6.3

Hydrothermal stage (350 ◦C)

6 P-15-7 Lamellar aggregate from
quartz–molybdenite veins

Muscovite 3.9 3.3 18.3
7 P-17-1 Muscovite 4.8 4.2 15.1

8 P-15-7b

Euhedral grains from
quartz–K-feldspar–beryl veinlets

K-feldspar 3.8 0.7 27.4
9 P-15-6 K-feldspar 5.4 2.3 21.8
10 P-15-7a Beryl 4.5 5.0 12.3
11 P-17-2 Beryl 5.3 5.8 9.5
12 P-15-1 Quartz 6.5 0.9 26.7
13 P-15-2/1 Quartz 5.3 −0.3 30.9

14 P-15-3
Quartz–molybdenite veinlets

Quartz 5.7 0.1 29.5
15 P-15-4 Quartz 5.7 0.1 29.5
16 P-15-5 Quartz 6.6 1.0 26.3

The δ18O values of a fluid equilibrated with minerals was calculated using quartz, K-feldspar, beryl [40] and
muscovite [43]. Here and in Table 2, the meteoric water % is calculated taking into account that the δ18O average
value of meteoric water is −20‰, and that 8.5‰ is magmatic water.

4.1.2. The Kholtoson Deposit

The δ18O values in whole-rock alkaline syenites were low (Table 2). The quartz from hydrothermal
hubnerite-bearing veins had the highest δ18O values among the ore-forming minerals, followed by
K-feldspar. The hubnerite, triplite, scheelite and apatite had the lowest δ18O values. The difference
between the δ18O values of coexisting quartz and hubnerite varied in the interval of 8.0–9.6‰.
The temperatures calculated for this pair of minerals (277–333 ◦C, Table 3) were close to the
temperatures obtained in thermometric studies. In the quartz–feldspar pair, the difference in the
δ18O values varied within the range of 1.2–2.3‰, and the temperatures calculated for them (Table 3)
were somewhat higher (297–391 ◦C) than for the association with hubnerite.

The temperatures were calculated using 1000 lna(A−B) = A × 106/T2 for pair quartz–hubnerite
(Q-Hb) [24], and for pair quartz–K-feldspar (Q-Kfs) [29].

The δ18O values of the fluid that participated in the formation of the greisens were close to those
of a mantle-derived one. This was confirmed by the δD values of muscovite (−84.8‰ and −83.3‰).
The δ18O values of the ore-stage minerals were low.

The carbonates had δ18O and δ13C values (Table 4) close to primary igneous carbonatite
(PIC-square) (Figure 3). The rhodochrosite has lower δ13C values relative to the ankerite. The lowest
δ18O and δ13C values were found in the calcite formed during the final stage of the ore formation.
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Table 2. The δ18O values in minerals from the Kholtoson deposit.

ID No. Sample
No.

Description Mineral
δ18O‰ δ18O‰

Proportion
of Meteoric
Water (%)

VSMOW Fluid

Syenite

1 113-46 Whole-rock 2.9
2 KH-17 Whole-rock 4.4

Pre-ore stage (Greisen 350 ◦C)

3 Dzh-1C

Lamellar aggregate

Muscovite 4.9 4.6 13.7
4 KH-15-6 Muscovite 5.3 5.0 12.3
5 KH-15-1 Muscovite 5.0 4.7 13.3
6 KH-15-2 Muscovite 5.5 5.2 11.6
7 KH-15-5a Muscovite 5.3 5.0 12.28

Ore stage (300 ◦C)

8 Dzh-1k

Quartz–hubnerite veins

Quartz 7.3 0.3 28.8
9 Dzh-13/87 Quartz 8.8 1.8 23.5

10 KH-15-9a Quartz 7.2 0.2 29.1
11 KH-15-6a Quartz 9.7 2.7 20.4
12 KH-15-13 Quartz 8.5 1.5 24.6
13 KH-15-12/1 Quartz 7.4 0.4 28.4
14 KH-12/2 Quartz 7.8 0.8 27.0
15 KH-15-18 Quartz 9.1 2.1 22.5
16 KH-15-5 Quartz 8.7 1.7 23.9

17 KH-15-11

Quartz–carbonate–hubnerite veins

Quartz 7.3 0.3 28.8
18 KH-15-10a Quartz 7.0 0 29.8
19 KH-15-8 Quartz 7.7 0.7 27.4
20 GM-1210 Quartz 8.9 1.9 23.2

21 KH-15-9b

Euhedral grains from
quartz–hubnerite veins

K-feldspar 5.6 1.4 24.9
22 Dzh-13/87 K-feldspar 6.4 2.2 22.1
23 KH-15-8a K-feldspar 5.7 −0.4 31.2
24 KH-15-14a K-feldspar 5.8 1.6 24.2
25 KH-15-11a K-feldspar 4.8 0.6 27.7
26 KH-15-10 K-feldspar 5.9 1.7 23.9

27 KH-15-7b Euhedral grains from
quartz–carbonate–hubnerite veins K-feldspar 3.8 1.5 24.6

28 KH-15-14

Euhedral grains from
quartz–hubnerite veins

Hubnerite −1.1 0.7 27.4
29 Dzh-1v Hubnerite −0.7 1.1 26.0
30 KH-15-13 Hubnerite −1.1 0.7 27.4
31 KH-15-15 Hubnerite −2.7 −0.9 33.0
32 KH-15-10 Hubnerite −2.5 −0.7 32.3

33 GM-12-10

Euhedral grains from
quartz–carbonate–hubnerite veins

Hubnerite −0.9 0.9 26.7
34 P-15-9a Hubnerite −1.4 0.4 28.4
35 P-18-4 Hubnerite −1.4 0.4 28.4
36 Dzh 13/87 Triplite 1.5
37 Dzh-2 Triplite 1.1
38 GM-1210 Scheelite 1.9 −0.8 32.6
39 P-18-2 Apatite 2.6
40 P-18-4 Apatite 1.9

The δ18O values of a fluid equilibrated with minerals were calculated using hubnerite [41] and scheelite [42]. The
temperature was 200 ◦C.

Table 3. Temperatures calculated and δ18O values in coexisting mineral pairs from the Kholtoson
deposit.

Sample GM-1210 KH-15-10a KH-15-13 KH-15-9a KH-15-5 Sample KH-15-8 Dzh-13/87 KH-15-11

Quartz 8.9 7.0 8.5 7.2 8.7 Quartz 7.7 8.8 7.3
Hubnerite −0.9 −2.5 −1.1 −1.4 −1.1 K-feldspar 5.7 6.4 4.8

∆ 9.8 9.5 9.6 8.6 9.8 ∆ 2.0 2.4 2.5
T (Q-Hb) 277 290 286 333 281 T(Q-Kfs) 391 313 297
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Table 4. The δ18O and δ13C values in carbonate minerals from the Kholtoson deposit.

Sample No. Mineral δ18O, ‰ VSMOW δ13C, ‰ VPDB

Dzh-1 Rhodochrosite 9.3 −7.0
23/4 Rhodochrosite 6.8 −5.7
P-1 Rhodochrosite 7.8 −7.5
P-2 Ankerite 9.2 −4.4

P-16 Ankerite 9.8 −4.2
KH-15-18 Ankerite 8.14 −3.8

1300 Calcite 5.8 −8.9

All samples were collected from the quartz–carbonate–hubnerite veins.
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4.2. S Isotope Data

The sulfur isotopic compositions of the sulfide minerals are given in Table 5. The sulphides of
all three deposits were characterized by δ34S values similar to the meteoritic standard. Some samples
had negative δ34S values. The molybdenites from the Pervomaika deposit had higher δ34S values than
pyrites. The galena from the Kholtoson deposit had low δ34S values.

Table 5. The δ34S in the sulfide minerals in all deposits from the Dzhida ore field deposit.

Sample No. Description Mineral δ34S‰ VCTD

The Pervomaika deposit

201/1
Blade crystals from quartz–molybdenite veinlets

Molybdenite 2.1
201/2 Molybdenite 0.3
201/3 Molybdenite 1.5

C-160 Blade crystals from molybdenite veinlets Molybdenite −0.2
P-17 Molybdenite −0.2

P-C-223

Euhedral crystals from quartz–molybdenite veinlets

Pyrite −1.3
P-C-223-1 Pyrite −1.8
P-C-228 Pyrite −0.9
P-C-123 Pyrite 0.9

P-C-123-1a Sphalerite −1.9
P-C-123-2 Sphalerite 1.1
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Table 5. Cont.

Sample No. Description Mineral δ34S‰ VCTD

The Inkur deposit

105-78
Euhedral crystals from quartz–K-feldspar–hubnerite

veinlets

Pyrite −0.7
105-78-1 Sphalerite −2.2
105-78-2 Chalcopyrite 1.2

The Kholtoson deposit

1615-4

Euhedral crystals from quartz–sulfide–hubnerite
veins

Pyrite 0.3
1370-6 Pyrite 2.4
182-383 Pyrite 2.3

C-33-182 Pyrite 1.3
247-1 Sphalerite 2.2
1370 Chalcopyrite −0.4

1370-1

Euhedral grains from quartz–carbonate–hubnerite
veins

Galena −5.3
C-105-15 Galena 1.5

1700 Galena −0.9
247 Galena −1.8

247-1a Galena −1.8
1789 Galena −6.0

4.3. Sr, Nd Isotope Data

The Sr-Nd-Sm isotope data were determined in the Pervomaika granite and dikes of syenites.
They had low initial ratios of Sri = 0.704–0.705 and εNd (T) values close to the evolution trend of
the mantle-derived source. The minerals from the Kholtoson veins (fluorite and carbonates) had
Sri values ranging from 0.7047 to 0.7055 [8]. The minerals from the hydrothermal stage as well as
the igneous rocks had positive εNd (T) values (fluorite ranging from +0.1 to +3.3, and hubnerite,
K-feldspar, and calcite of +1.6, +0.4, and +3.9 respectively) and were close to the evolution trend of the
mantle-derived source.

5. Discussion

Granites in the Pervomaika massif are characterized by low values of δ18O (see Table 1).
There are numerous data on the isotope composition of this element in granites in the Western
Transbaikalia [47–49] and other regions [51], showing substantially high values of oxygen, with rare
exceptions in some places.

Igneous rocks related to W-Mo ores in China and East Transbaikalia have higher δ18O, (87Sr/86Sr)i

values and negative εNd (T) values [2,3] in comparison with the Dzhida ore field. The Akshatau
deposit (Central Kazakhstan) is more similar to the deposits of the Dzhida ore field. Granites from the
Akshatau, related to Mo-ores show restricted Sr-Nd isotopic compositions with (87Sr/86Sr)i values of
0.70308–0.70501 and εNd (T) values of −0.5 to +2.8. These isotopic compositions were generated by
10–30% assimilation of ancient continental material by juvenile lower crust-derived magma [7].

The δ18O values in the whole-rock samples and quartz of the Dzhida deposits were mainly in
the range of 10‰ to 14‰ [47]. On the territory of Western Transbaikalia, recent research [48] has
pointed out the tendency for oxygen to have low values (up to 6.5‰–8‰) in massifs of a younger
age. Low oxygen values are typical of granites accompanied by Mo-mineralization in the Kharitonovo
deposit [47], as well as in the contents of quartz (6.7‰) and K-feldspar (3.8‰) at the Zharchiha deposit
respectively. Hoefs (2009) [52] suggested that such granites could be formed from a protolith with
low δ18O values. Those protoliths could be basites or rocks recycled by meteoric water. In the case
of granites from the Pervomaika massif, the first version cannot be supported due to the absence
of xenoliths, altered basites, and any significant contamination by such elements as Cr, Ni, and Co.
The model of granite formation by rocks originally enriched with low values of δ18O is also uncertain.
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The proportion of meteoric water involved in hydrothermal processes ranges from 7% to 33%. However,
the lowest values are in greisens (6–13%). Minerals from the ore stage have been formed from a solution
containing 20–30% of meteoric water (see Tables 1 and 2). Data on the isotopic composition of Sr and
Nd, and the presence of mantle origin components in ores (e.g., S, F and CO2), contradict this version.
As an alternative, there is a most suitable model of granite formation in the process of rock melting
under the influence of high-temperature mantle fluid flow (fluid syntexis) considered in [53]. At the
same time, the presence of F in the fluid composition resulted in a decrease in the liquidus temperature.
Another option could be postmagmatic hydrothermal rock alteration. In cases of postmagmatic rock
alteration, we recorded sharp isotope heterogeneity within magmatic bodies.

The dikes of alkaline syenites from the Kholtoson deposit have low δ18O values. Together with
granites of the Pervomaika stock, this proves the specific origin of those igneous rocks.

The isotopic composition of Pb in galena is homogenous [8,26] and has µ = 9.3. Low primary
isotope strontium ratios and positive εNd (T) values [8] in rocks and minerals from the deposits studied
suggested their direct arrival from the mantle reservoir, together with contents of F, S, and CO2.

Their preservation, reflected by the weak contamination by crustal components, is presumably
due to the limited interaction of fluids and host rocks. Transportation of elements occurred in the form
of fluids when there were no significant metasomatic processes.

The isotope composition of sulfide sulfur in all three deposits of the ore field ranges within the
interval typical of the meteoric standard and testifies to the participation of components of mantle
origin. Such δ13C values are also found in other large Mo–W deposits in Transbaikalia (Buluktai,
Orekitkan, Bom-Gorkhon), which are marked by high concentrations of sulfide minerals and fluorite [25].
The isotopic compositions of sulfur in the deposits of tungsten of Central Kazakhstan (Kounrad, Karaoba,
Koktenkul) [7,54] and the Kalguta molybdenum-tungsten deposit of Altai [55] are similar.

The δ18O and δ13C values in carbonate minerals from the Dzhida ore field are identical to unaltered
carbonatites and fall into the PIC-square (see Figure 3). These values fail to support this version of the
fluid involvement as a result of contamination by sedimentary carbonate rocks, and also point to the
mantle origin of carbon dioxide.

Comparing the associations of the hydrothermal stages of the Pervomaika and the Kholtoson
deposits, we recorded a large heterogeneity of oxygen isotope composition during the tungsten
stage. The trends of isotopic oxygen composition of quartz and feldspar (Figure 4) show successive
enrichment by high isotope values from granites to minerals in the W-stage. The δ18O values close to
igneous rocks are peculiar mainly to micas from greisens (Figure 5). The low δ18O values in hubnerite,
triplite, scheelite and apatite relative to the isotopic composition of quartz and K-feldspar are also due
to fractionation processes.
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The temperature values calculated using the isotopic composition of hubnerite and quartz contents
together (277–333 ◦C, see Table 3) coincided with the values obtained in experimental studies [45,46].
We obtained slightly higher temperature values (297–391 ◦C) for the pair with K-feldspar contents (see
Table 3).

The data calculated on the oxygen composition and the degree of water depletion in micas using
deuterium testify to the dominance of deep fluid during the greisen formation stage. The oxygen
composition of the fluids having an equal weight to the minerals during the hydrothermal stages of
both the molybdenum and the tungsten phases indicates the involvement of meteoric water in the ore
formation process.

6. Conclusions

From the Sr, Nd, O, C, and D isotopic data obtained, the following conclusions can be drawn:

• Granites in the Pervomaika massif were formed as a result of the melting of the crustal substrate
following exposure to high-temperature mantle fluid. The low δ18O values and initial ratios of
87Sr/86Sr and the positive values of εNd (T) provide evidence of this formation.

• Components of deep (mantle) source such as F, S, and CO2 were involved in the formation of the
Dzhida ore field.

• The ore-forming fluids included waters from the meteoric source at the later stages of
deposit formation.
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