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Abstract: The ultramafic-hosted Kairei vent field is located at 25°19’ S, 70°02’ E, towards the Northern
end of segment 1 of the Central Indian Ridge (CIR-51) at a water depth of ~2450 m. This study aims
to investigate the distribution of trace elements among sulfide minerals of differing textures and
to examine the possible factors controlling the trace element distribution in those minerals using
LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences
in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided
into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II),
and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I
has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au
relative to py-I and py-III, but poor in Ni; py-IIl is enriched in Mo, Pb, and U but is poor in Se, Te,
Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are
most likely governed by the strong temperature gradient. There is generally a lower concentration
of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas
the extreme Co enrichment is likely from a magmatic heat source combined with an influence of
serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and
Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have
been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures.
The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field.
(3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag,
Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison
with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution
of Cd?* and Co?* for Zn?* in sphalerite. A high concentration of Pb accompanied by a high Ag
concentration in sphalerite indicates that Ag occurs as Pb—Ag sulfosalts. Gold is generally low in
sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The
strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at
medium temperatures and under moderately reduced conditions. (4) Bornite-digenite has very low
concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted
hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents.
Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted
deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter
often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor
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massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor
that controls the Se enrichment is temperature-controlled mobility in vent fluids.

Keywords: trace elements; hydrothermal sulfides; Laser Ablation ICP-MS; ultramafic-hosted; Central
Indian Ridge

1. Introduction

Seafloor massive sulfide (SMS) deposits occur at mid-ocean ridges and also in submarine
volcanic arcs and related back-arc basins associated with host rocks of highly variable composition [1].
The geochemical composition of SMS is also highly variable. For example, sulfide minerals from
basalt-hosted mid-ocean ridges appear to be depleted in Au, Ag, As, Sb, and Pb compared to sulfide
minerals from hydrothermal systems in back-arc basins (e.g., [1,2]). Additionally, sulfide minerals from
occurrences associated with ultramafic host rocks at mid-ocean ridges have significantly higher average
Au and Cu contents, when compared to the basalt-hosted deposits (e.g., [3-5]). Hence, the geodynamic
settings of seafloor hydrothermal systems with their variable host rock compositions represent a
first-order control on the geochemical composition of SMS deposits [6].

Sulfide precipitation from hydrothermal fluids that transport metals leached from the host rock,
is governed by physico-chemical parameters, such as temperature, salinity, pH, and fO,-fS,. Processes
such as cooling, boiling, mixing, and fluid-rock interactions are key for sulfide precipitation in
hydrothermal systems, as they can influence the main parameters above [7-9]. Previous studies
suggest that the recognition of distinct trace element signatures of individual sulfide grains from
seafloor hydrothermal systems can assist with tracking sequences of crystallization and stages of
mineralization, sources of metals, and evolution of ore-forming fluids over time in SMS deposits
(e.g., [10-12]). Recent work by Wohlgemuth-Ueberwasser et al. (2015) [13], Keith et al. (2016) [8],
Melekestseva et al. (2017) [14], and Wang et al. (2017) [15] investigated trace element distributions
using laser ablation ICP-MS analysis in sulfide minerals from SMS deposits in different geodynamic
settings including ultramafic-hosted and basalt-hosted fields as well as a number of fields that are
associated with submarine volcanic arcs and back-arc basins. Those studies demonstrated that all of
the parameters mentioned above influence geochemistry and mineralogy and may account for the
variable metal enrichment of SMS. There is comparably little data in hydrothermal fields from the
Indian Ocean. A recent publication [4] focused on the mineralogy and bulk geochemistry of massive
sulfides from the Kairei vent field on the Central Indian Ridge and suggested that the enrichment
of Cu, Zn, and trace elements, such as Au, Co, and Sn, is related to the involvement of ultramafic
rocks in the subseafloor, thereby strengthening earlier observations from fluid chemistry (hydrogen
and methane enrichment) and petrology (sampling of ultramafic rocks to the east of the active vent
field). High-resolution geochemical analyses on sulfide minerals have only been conducted for a few
ultramafic-hosted SMS deposits at mid-ocean ridges. For the Kairei vent field, LA-ICP-MS analyses
have been performed on pyrite [8], but there is still little known about the incorporation mechanism of
trace elements that are normally enriched in the ultramafic-hosted SMS deposits (e.g., Co, Ni, Sn) in
sphalerite and Cu—(Fe)-sulfides.

In the present work, we therefore analyze the major sulfide minerals from the Kairei vent field that
come from a wide range of sample types (chimney, massive sulfides, and breccias) for trace elements
using LA-ICP-MS spot analyses and line scans. This study aims to investigate the distribution of
trace elements among sulfide minerals of differing textures, such as pyrite, chalcopyrite, sphalerite,
bornite, and covellite, and examine the possible contributing factors (e.g., formation temperature,
seawater—fluid mixture, redox) controlling the trace element distribution in these minerals.
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2. Geological Background

The Kairei vent field is located at 25°19’ S, 70°02’ E, towards the Northern end of segment 1 of
the Central Indian Ridge (CIR-51), at a water depth of ~2450 m (Figure 1; [16]). Kairei occurs ~1800 m
above the rift valley floor on its Eastern wall and is situated over 7 km away from the axial volcanic
ridge. The rift valley wall has a stair-step morphology in this region and the active vent field occurs
on the Western flank of Hakuho Knoll within a larger area of massive sulfides (Figure 1b; [17,18]).
The discharging fluids at the vent field reach temperatures of 365 °C and are characterized by high
concentrations of Hy and CHy [17,19], which is comparable to ultramafic-hosted hydrothermal fields
along the Mid-Atlantic Ridge (e.g., [20-24]). The outcrops in the vicinity of the vent field are entirely
made up of pillow basalt and sheet flows, and no exposures of ultramafic rocks were observed [17-19].
However, two oceanic core complexes (Uraniwa Hills and Yokoniwa Rise; Figure 1b) consisting of
peridotitic and gabbroic rocks have been identified within ~15 km of Kairei [25,26]. Another large core
complex has been documented on the Western slopes of the CIR in this area [27]. It was suggested
that the combination of the troctolite alteration at the recharge zone near the oceanic core complex and
subsequent basalt alteration at the discharge zone under Kairei is causing the distinct chemistry of the
vent fluids [18,25]. Recent investigations have shown the presence of other ultramafic-hosted massive
sulfide deposits (e.g., the Yokoniwa vent field) in the area [26].
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Figure 1. (a) Geological map of the Central Indian Ridge (CIR) and (b) location of the Kairei vent field.
Other known hydrothermal fields are indicated by red stars. Note, segment numbering is from Okino
et al. (2015) [28]. SWIR = Southwest Indian Ridge; SEIR = Southeast Indian Ridge. Bathymetry data
source: Global Multi-Resolution Topography (GMRT) synthesis [29].
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The main mineralogical characteristics (Figure 2) of Zn-rich chimney and massive sulfide samples
from the Kairei vent field were described in Wang et al. (2012, 2014) [4,30]. Three mineralization stages
were identified at this site: (1) a high temperature stage consisting largely of chalcopyrite, isocubanite,
and pyrite; (2) a medium to low temperature stage characterized by the mineral assemblages of
sphalerite and pyrite; and (3) a late stage of waning hydrothermal activity and weathering characterized
by secondary Cu—(Fe)-sulfides (bornite, digenite, covellite, and idaite), Fe—oxyhydroxides, opal-A,
and Cu—chloride (paratacamite and atacamite) were related to the increasing influence of oxygenated
seawater. The observed Cu—(Fe)-sulfide sequence of isocubanite — chalcopyrite — bornite (including
bornite-digenite intergrowths) — minerals of the Cu-S system (covellite-idaite solid solutions) exists
along a path of increasing oxidation and sulfidation state and is common at Kairei. Dating (33**Th/23*U)
of massive sulfides collected from Kairei shows ages ranging from 8.4 to 96.3 ka [30], indicating a
prolonged hydrothermal history at this site.

3. Samples and Methods

The samples from Kairei are Zn-rich chimneys, Cu-rich massive sulfides, and sulfide-bearing
breccias that were recovered using a TV-grab during R/V Dayangyihao DY17A and DY191II cruises
in 2005 and 2007 (Table 1). In advance of the laser-ablation analyses, eight thin, polished sections
were examined microscopically in order to identify the different mineral phases (Figure 2) and to
avoid measuring grains with visible mineral inclusions. A total of 99 representative analyses were
performed by electron microprobe for major element composition [4], and on these samples, 64 points
were analyzed by laser ablation ICP-MS.

The laser ablation ICP-MS study was performed with a 193 nm ArF excimer laser ablation
system (GeoLasPro, Coherent) coupled to a double-focusing, high-resolution magnetic sector mass
spectrometer (Nu Instruments, AttoM) in low resolution mode (300 Res, 10% valley definition) at
the GEOMAR Helmholtz Center for Ocean Research Kiel, Germany. Sample ablation was performed
under He carrier gas with Ar transport gas added after the ablation cell. Spot analysis on sulfide
minerals was done by 30 s of ablation at a laser repetition rate of 5 Hz, a beam diameter of 44 um,
and a fluence of 2 ] cm~2. Forty seconds of gas background was collected prior to each ablation. A
NIST SRM610 glass standard (30 s, 10 Hz, 32 pm, 5 J-em~2; [31]) was used for calibration. Additionally,
a synthetic sulfide reference standard material (trans_1; 30 s, 5 Hz, 44 um, 2 J-em™Z; [32]) was used
to calibrate sulfur (39.1 £ 0.1 wt % S; Wohlgemuth-Ueberwasser pers. comm.). MPI-DING glasses
(ATHO-G, GOR132-G, KL2-G; 30 s, 10 Hz, 44 um, 5 J-cm~2; [33]) and trans_1 were used as reference
materials (results are presented in Table S1). Gas flows, torch position, and ion-optics-focusing were
optimized to provide a maximum in ion transmission and low polyatomic cluster production rate
(ThO/Th < 0.03%; CuAr/Cu < 0.0025%) by hot plasma (normalized argon index (NAI) ~ 30; [34]) and
a fast sample wash-out. The following isotopes were monitored by the analytical routine: 2*Mg, 2Si,
51V, 55M1’1, 57Fe, 59C0, 60Ni, 63Cu, 66an 71Ga, 73Ge, 75AS, 7786, 95M0, 107Ag, 111Cd, 115In, 118511, 121Sb,
128Te, 135Ba, 197 Au, 29T, 298Pb, 209Bi, and 2*U. Data evaluation of element concentrations was carried
out using the linear slope regression method [35].

Table 1. Coordinates of sampling stations and mineral abundances of the sulfides from the Kairei
vent field.

Sampling Longitude Latitude Depth

Station E) S) (m) Type of Samples Mineral Assemblage
17A-TVG7-1  70°02.408'  25°19.252 2430 Cu-rich massive sulfides  cpy+bn+dg+py+(sph+iso+cv+id)
17A-TVG7-3  70°02.408  25°19.252' 2430 Breccias q+opal-A+tl+sph+py

17A-TVGY 70°02.420"  25°19.221' 2437 Zn-rich chimney sph+py+mar+cpy
19I-TVG6 ~ 70°02.440"  25°19.230 2443 Cu-rich massive sulfides cpy+dg+bn+cv+py+iso+id
19I-TVG7  70°02.410"  25°19.220 2440 Cu-rich massive sulfides cpy+dg+bn+cv+py+id

Note: cpy—chalcopyrite, bn—bornite, dg—digenite, py—pyrite, sph—sphalerite, cv—covellite, id—idaite,
iso—isocubanite, mar—marcasite, q—quartz, tl—tal.
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Figure 2. Optical and SEM photomicrographs of typical mineral assemblages. (A) colloform sphalerite
and galena grains in the Zn-rich chimney sulfides (sample 17A-TVGY); (B) massive chalcopyrite
intensely intergrown with isocubanite and surrounded by bornite and covellite-digenite intergrowths
(sample 17A-TVG7-1D); (C) colloform pyrite in outlier of the Zn-rich chimney sulfides (sample
17A-TVGY); (D) bornite—digenite and covellite-digenite intergrowth surrounding chalcopyrite (sample
191II-TVG6); (E) massive sphalerite and co-genetic chalcopyrite and euhedral pyrite (sample 17A-TVGY);
(F) native gold particles associated with chalcopyrite (sample 17A-TVG7-1D). Abbreviations: bn-dg =
bornite—digenite intergrowths, cpy = chalcopyrite, cv—dg = covellite-digenite intergrowths, py = pyrite,
sph = sphalerite.

4. Results

Full details of the LA-ICP-MS dataset are given in Table S2, including the concentration, analytical
precision, and minimum detection limits for each element. The average concentrations of trace
elements were calculated for the different sulfide minerals and morphologies (Table 2). Representative
time-resolved LA-ICP-MS depth profiles are shown in Figure 3 for pyrite, chalcopyrite, sphalerite,
bornite—-digenite, and covellite-digenite. Figure 4 shows the trace element distribution in different
sulfide mineral phases. In addition, line scan analysis of the pyrite in the Zn-rich chimney sample
(17A-TVGY) was carried out, and the resulting mass spectrum is shown in Figure 5.
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Figure 3. Representative time-resolved LA-ICP-MS depth profiles of selected elements in sulfide
minerals from the Kairei vent field. (A) subhedral pyrite in Zn-rich chimney sulfides with inclusions of
native gold; (B) chalcopyrite in the Cu-rich massive sulfide samples shows a homogeneous distribution
of Ni, As, and Tl; (C) chalcopyrite showing a homogeneous distribution of Co, As, Mo, and Pb;
(D) sphalerite with co-varying amounts of Fe and Co, Ag, Ga, Sn, and Mn; (E) early bornite with
homogeneous Bi, Co, Mo, Ag, and Te distribution indicated by the flat signal intensities; (F) early

bornite with elevated Zn, Bi, and Se.



Minerals 2018, 8, 526

3000

600

16

7 of 21

Se o Sn In
o]
1500/ 300 © 8 &
8
2 g
0 8] A 0 A A 0 o al
120 220 400
Te o Bi Mo
o (]
601 el °© 2001
9 . o 3
Q =
(o]
0 Q R 0 A 2 A A A 0 E A
2000 240 500
Co Ga Ge
8 § o
1000 120 = 250/ 9
0
. g 8
o) 8
0 2 . a 0 2] a—n 0 o
T 6 28.4 1200 8000
5 ) Au Ag Pb
K ; o
.§ 3 ° 600 8 4000} o
N BN - ; :
g 0 0 0 Q o 0 o
S 140 2400 50 -
Sb As Ni
o
70 § 1200; 25(
8
8
O
2000 100 1200
8 Cd Tl Mn
(@]
1000 § 50 § 600 o©
(o] fe) g
1 20
Ba A\ U
(o] o]
(o) (o]
2 o 107 ° 2
o 9 Q o 6 o 9
) ¢] ¢ o 8 3
o — - 0% 0 " 0 A —oO oo
©
¢ /LR e ILHEP MR

AN

Figure 4. Distribution of trace elements in sulfide minerals from the Kairei vent field. Abbreviations:

bn-dg = bornite-digenite intergrowths, cpy = chalcopyrite, cv—dg = covellite-digenite intergrowths,

Py = pyrite, sph = sphalerite.
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Figure 5. Signal sequence of a line scan analysis of colloform pyrite IIl and subhedral pyrite II in sample
17A-TVGY. The mass spectrum of colloform pyrite III is marked by high trace element concentrations
(Mn, Pb, Cu, Zn, Co, and Mo) that generally decrease towards the more homogeneous subhedral

pyrite II.

4.1. Pyrite

A total of nineteen spot analyses was completed on pyrites selected from different samples
of the Kairei vent field, including eight euhedral pyrites (py-I), five subhedral pyrites (py-II), and
six colloform pyrites (py-III). Pyrite is generally enriched in Mo, As, Tl, Mn, and U compared to
the other investigated sulfide minerals (Figure 4, Table 2). Pyrite with different textures showed
distinct variations in the trace element contents (Figures 5 and 6, Table 2). Compared to the other
textural types, euhedral py-I tended to have higher contents of Se (up to 168 ppm; average: 65.3
ppm), Ni (up to 363 ppm; average: 51.4 ppm), Bi (up to 123 ppm; average: 30.4 ppm), and Te (up to
46.0 ppm; average: 14.3 ppm), when compared to py-II and py-IIl. Colloform py-III had distinctly
higher concentrations of Mo (46-307 ppm; average:136 ppm), Pb (14-295 ppm; average: 105 ppm), and
U (up to 2.73 ppm; average: 0.90 ppm) but was poor in Se, Te, Bi, and Au. Subhedral py-II was poor
in most trace elements, but one single spot showed abnormally high Au concentrations (28.4 ppm;
Table S2). However, enrichments of As (up to 2041 ppm) and Co (up to 1453 ppm) were common in all
generations of pyrites. Py-I contained 395 ppm Co and 135 ppm As, on average; py-II had average
As and Co concentrations of 254 ppm and 230 ppm, respectively; while py-IIl was characterized by
concentrations of 614 ppm As and 466 ppm Co, on average.
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Figure 6. Average trace element concentrations in different pyrite types of the Kairei vent field.

A line scan analysis in chimney sample 17A-TVG9 conducted across a boundary between
colloform py-IIl and subhedral pyrite II (Figure 5) exemplified the differences. The ablation of
colloform py-III was marked by high trace element concentrations (Mn, Pb, Cu, Zn, Co, and Mo) that
generally decreased towards the more homogeneous subhedral py-II.

4.2. Chalcopyrite

Sixteen chalcopyrite grains were analyzed in samples from the Kairei vent field. The chalcopyrite
samples were characterized by high concentrations of Co (32-1781 ppm; average: 445 ppm), Se
(62-1283 ppm; average: 363 ppm), and Te (up to 110 ppm; average: 29.7 ppm). The mean concentrations
of Mo, Ag, Pb, Sb, As, Cd, and Mn were generally lower than in the other sulfide minerals; however,
single measurements with enrichments in Zn (1740 ppm), Ge (243 ppm), and Au (3.5 ppm) did occur
(Figure 4, Table S2).

4.3. Sphalerite

Sphalerite (n = 10) from Zn-rich chimneys was characterized by higher concentrations of
Pb (363-5616 ppm), Cd (609-1792 ppm), Co (196-993 ppm), As (60.7-502 ppm), Ag (43.7-882 ppm),
Sn (101-510 ppm), Ge (72.2-336 ppm), Ga (57.1-173 ppm), and Sb (29.7-94.2 ppm) relative to the other
minerals. Sphalerite had depleted in Se, Te, Bi, Mo, Au, Ni, T], Mn, Ba, V, and U when compared to the
other sulfide minerals (Figure 4, Table 2).

4.4. Bornite-Digenite Assemblage

Ten measurements were performed on bornite-digenite intergrowths in the Cu-rich sulfide
samples. The results given in Table 2 indicate that bornite—digenite intergrowths were depleted in
most trace elements when compared to the other sulfide minerals, except for Se (70.3-2272 ppm),
Co (0.02-1669 ppm), and Bi (<0.001 ppm~-191 ppm). Interestingly, the highest concentrations of Se (up to
2272 ppm) and Bi (up to 191 ppm) in all the sulfide minerals were observed in a bornite-digenite grain.

4.5. Digenite—Covellite Assemblage

Digenite—covellite intergrowths (n = 9) from the Cu-rich massive sulfide samples were
characterized by generally low trace element concentrations (Figure 4, Table 2). Exceptions were
Se (up to 702 ppm), Ag (up to 28.3 ppm), and 2.9 ppm Au on a single spot.
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5. Discussion and Conclusions

5.1. Controls on Trace Elements in Pyrite

Pyrite is the most common sulfide mineral in hydrothermal ores and large mineral chemical
data sets exist for SMS deposits over a wide range of geodynamic settings, including mid-ocean
ridges, submarine volcanic arcs, and related back-arc basins (e.g., [6,8,13,15,36-38]). Previous studies
have shown that most trace elements in pyrite likely reside in microinclusions of different grains,
except for Cu, Co, Ni, Se, and As, which commonly occur in solid solution and result from Fe or S
substitution [8,39].

Colloform pyrite (py-III) in the Zn-rich chimneys was consistently enriched with Pb, Mo, As, and
U (Figure 6) relative to the other pyrite varieties. Euhedral pyrite (py-I), which is a main constituent of
both sulfide-bearing breccia and Zn-rich chimneys, had high concentrations of Se, Te, Ni, Bi, and Au
when compared to the colloform py-III but was depleted in Mo and U. Enrichments of As (mean 376
ppm) were common in all generations of pyrites at the Kairei vent field, and a positive correlation was
observed between As and Ag (R? = 0.74). This could indicate co-incorporation of the two elements
resulting from As3* and Ag* coupled substitution for 2Fe?* [40,41]. Variations in the concentrations of
Se (<0.04 to 168 ppm), Te (<0.05 to 46.0 ppm), and Bi (<0.02 to 123 ppm) in pyrite are likely governed by
the strong temperature gradient [41]. Nickel concentrations (<0.04 to 363 ppm) were generally lower
than those for Co in pyrite (Co/Ni = 3-172 ppm), indicating that the investigated samples precipitated
under high temperature conditions [e.g., [42,43]]. Similar enrichments of Co in pyrite have been
described from sulfides sampled at the Mid-Atlantic Ridge 5°S vent field with an average of 602 ppm
(Table 3; [8]). Previous studies have shown that the Co is concentrated in high temperature fluids and
is highly sensitive to changes in fluid temperature [44,45]. The high exit temperature for black smoker
fluids at the Kairei vent field (up to 365 °C; [19]) indicates little or no interaction with seawater during
upwelling. In addition, the results of Gallant and Von Damm (2006) [19] indicate that diking may be a
mechanism for the heat source of the Kairei vent field. Hence, the Co enrichment in pyrite at Kairei
might be related to a phase of recent magmatic activity [8]. However, besides pyrite, chalcopyrite and
sphalerite at Kairei also have higher Co contents compared to minerals from the mafic-hosted Wocan
vent field at the Carlsberg Ridge (Table 3; see discussion below). The Co-enrichment in all sulfide
minerals at Kairei may therefore also point to an ultramafic influence at this site. Higher contents of
Au (up to 28.4 ppm) are most likely related to inclusions of native gold which were observed in a
single grain (Figure 3A), which is similar to observations by Keith et al. (2016) [8]. Uranium, which
is normally derived from seawater, is also enriched in colloform pyrite compared to the other pyrite
textures. This U enrichment is commonly observed in SMS deposits (e.g., [10,15,42]).
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Table 2. Average trace element concentrations from LA-ICP-MS for the sulfides of the Kairei vent field.

11 of 21

Mineral ppm (1) Se Sn Te Bi Mo Co Ga Ge Au Ag Pb Sb As Ni Cd Tl Mn U
all avg.(19) 287 154 619 128 640 374 050 197 226 195 667 179 318 305 544 135 213 052
Py SD 536 315 123 327 784 416 117 281 642 285 937 271 525 825 873 172 235 071
I avg.(8) 653 137 143 304 214 395 047 192 093 110 584 072 135 514 408 552 641 0.11
Py SD 688 224 161 463 332 452 094 271 150 151 983 1.06 224 126 787 765 102 0.14
py-II avg.(5) 163 057 039 001 457 230 024 173 613 124 346 141 254 086 227 272 387 0.72
y SD 125 059 048 001 422 208 041 194 125 151 354 118 277 132 184 251 311 0.6l
py-IIT avg.(6) 247 257 020 002 136 466 076 224 079 368 105 353 614 272 988 127 266 090
SD 226 511 025 003 983 520 180 383 084 435 119 426 836 256 122 137 193 0.99
cpy avg.(16) 363 102 297 277 408 445 305 228 050 140 47 0.31 8.6 233 361 261 112 025
SD 369 7.3 325 644 8.0 621 807 632 106 227 9.4 062 178 409 274 584 119 050
sph avg.(10) 213 248 026 005 b.dl 423 112 179 012 264 1529 634 267 1237 006 802 Db.dl

P SD 304 126 027 0.04 229 363 863 014 259 1657 192 137 381 012 342
bn-dg avg.(10) 372 113 192 471 234 301 049 166 064 520 238 074 169 147 327 263 134 019
SD 671 955 919 748 268 619 036 268 054 233 321 101 233 282 377 546 101 028
cv-dg avg.(9) 211 194 253 024 bdl 033 029 009 049 1492 6.6 009 112 016 099 002 262 0.01
SD 260 361 351 048 037 029 021 081 1051 145 015 274 042 170 004 318 0.02
Note: Avg.= average content of trace element; SD = standard deviation of the average (15); n = number of analyses; b.d.1 = below the minimum detection limit.
Table 3. Average contents (ppm) of selected trace elements in the sulfide minerals in the seafloor hydrothermal systems.
Region Vent Field Hosted Rock Minerals n Co Ni As Se Sb Te Au Source *

Kairei Ultramafic Py 19 374 30.5 318 28.7 1.79 6.19 2.26 1

Kairei Ultramafic cpy 16 445 23.3 8.6 363 0.31 29.7 0.50 1

Central Indian Kairei Ultramafic sph 10 423 267 21.3 63.4 0.26 0.12 1

Ridge Kairei Ultramafic bn-dg 10 301 14.7 16.9 372 1.06 19.2 0.64 1

Kairei Ultramafic cv-dg 9 0.33 0.16 112 211 0.09 2.52 0.49 1

Kairei Ultramafic Py 39 279 222 179 9.49 1.89 2.31 2

MESO Basaltic py 77 392 1.41 909 745 9.21 0.89 2

Wocan Basaltic Py 19 110 11.8 224 36.4 3.91 1.40 0.43 3

Wocan Basaltic dg 11 0.09 151 16.6 0.90 2.96 0.10 0.56 3

Carlsberg Ridge Wocan Basaltic bn 11 0.11 0.30 0.67 2.54 5.17 0.24 0.36 3

Wocan Basaltic sph 17 0.06 0.15 726 0.37 86.0 0.20 0.42 3

Wocan Basaltic cpy 22 0.11 0.41 235 52.4 23.0 0.88 0.49 3
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Region Vent Field Hosted Rock Minerals n Co Ni As Se Sb Te Au Source *
Logatchev Ultramafic Py 34 102 19.3 47.2 9.56 122 1.23 2
Logatchev Ultramafic cc 15 42.5 87.9 17.8 4.40 492 4
Logatchev Ultramafic cpy 29 92.4 119 22.0 39.2 3.12 4
Logatchev Ultramafic cc-cv 12 6.75 bdl 1.38 7.30 0.55 4
Logatchev Ultramafic py 23 326 15.5 11.2 0.58 4.18 4
Logatchev Ultramafic sph 10 214 1.68 233 0.73 3.73 4
Semeynov-1 Ultramafic py 21 2.07 0.81 510 9.20 0.51 33.1 5
Mid-Atlantic Semeynov-2 Ultramafic cpy 5 340 13.0 1144 288 25.0 42.0 0.15 6
Ridge Semeynov-2 Ultramafic sph-wurt 6 84.0 0.20 424 129 214 8.51 3.00 6
Semeynov-2 Ultramafic cv-A 8 21.0 3.00 421 1024 579 97.0 173 6
Semeynov-2 Ultramafic cv-B 3 9.00 1.00 82.0 222 81.0 48.0 72.0 6
Turtle Pits Basaltic cpy 15 37.9 204 0.46 4.73 0.06 4
Turtle Pits Basaltic Py 40 224 25.2 4.94 1.20 0.25 4
Turtle Pits Basaltic sph 20 147 28.2 479 0.62 0.36 4
TAG Basaltic Py 61 269 2.28 60.9 43.4 1.55 0.23 2
5°S Basaltic 19% 34 602 1.12 742 30.1 4.57 0.33 2
Valu Fa Ridge Hine Hina Basaltic-andesitic py 65 144 16.0 33.2 26.5 1.50 0.61 2
Okinawa Though Jade Basaltic—rhyolitic Py 39 2.22 2.84 688 449 18.0 0.73 2
Kermadec Arc Brothers Dacitic py 77 210 2.42 896 481 2.97 0.36 2
Tonea Arc Volcano 19 (cone) Basaltic-basaltic andesitic Py 114 16.1 1.13 9100 11.0 343 12.2 2
& Volcano 19 (caldera) Basaltic-basaltic andesitic Py 76 0.80 3.01 10240 623 1.55 2
PacManus-RR Basaltic—rhyolitic py 58 2635 7.39 188 1.10 7.71 4
PacManus-RR Basaltic—rhyolitic cpy 75 470 23.5 84.5 0.32 4.84 4
PacManus-RR Basaltic—rhyolitic sph 52 1664 3.57 1576 0.02 43.3 4
Manus Basin PacManus-SM Basaltic-rhyolitic cc 5 749 304 0.69 4.16 4
PacManus-SM Basaltic-rhyolitic cpy 25 15237  1.39 875 1.66 4.99 4
PacManus-SM Basaltic—rhyolitic Py 5 5390 5.97 29.4 8.16 4
PacManus-SM Basaltic-rhyolitic sph 6 17269  9.42 167 2.45 4
MORB 56 200 0.11 021 14x103 49x10% 12x103 7

* 1—this study; 2—Keith et al. (2016) [8]; 3—Wang et al. (2017) [15]; 4—Wohlgemuth-Ueberwasser et al. (2015) [13]; 5—Melekestseva et al. (2014) [46]; 6—Melekestseva et al. (2017) [47];
7—Arevalo and McDonough (2010) [48] and references therein.
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5.2. Controls on Trace Elements in Chalcopyrite

Chalcopyrite is commonly enriched in Co, Se, and Bi [7] and is the dominant sulfide phase
in ultramafic-hosted SMS deposits [3]. Recently, several papers reported LA-ICP-MS-based trace
element data of chalcopyrite from basaltic-, ultramafic-, and felsic-hosted SMS deposits worldwide
(e.g., [13-15]). Wohlgemuth-Ueberwasser et al. (2015) [13] documented that Au, Sb, As, Se, and Te
enrichments in chalcopyrite are mainly controlled by submicroscopic inclusions (e.g., As—Au-Sb-Pb
sulfosalts and /or tetrahedrite—tennantite), which are often elevated as a function of fluid temperature.

Our analyses showed that Se (61.5-1283 ppm) and Te (2.6-110 ppm) were enriched in chalcopyrite
from the Kairei vent field, with a strong positive correlation between these two elements (R? = 0.96).
Both elements are likely incorporated into the chalcopyrite lattice at high temperatures, with high
solubilities of Se and Te in reduced hydrothermal fluids of ~350 °C [10,49-51]. Similar enrichments
of Te in chalcopyrite were described by Logatchev and Semyenov-2, with Te concentrations reaching
39.6 and 42.0 ppm, respectively (Table 3; [13,14]). However, the Te content of chalcopyrite in most
other SMS deposits is typically low. LA-ICP-MS analyses of chalcopyrite from Wocan, Turtle Pits, and
PacManus yielded an average Te concentration of around 1 ppm (Table 3; [13,15]). Compared to the
basaltic-hosted Wocan field, chalcopyrite from Kairei was also shown to be highly enriched in Co, with
a wide range of concentrations from 32.1 to 1781 ppm (Table 3; [15]), which could be derived from
ultramafic rocks in the reaction zone. Maslennikov et al. (2009) [42] suggested that the Co enrichment
in chalcopyrite from fossil vent chimneys in a volcanogenic-hosted massive sulfide deposit in the
Southern Urals is related to Co-bearing mineral inclusions, such as cobaltite, arsenides, sulfoarsenides,
and telluride. However, no positive correlation was observed between the concentrations of Co and
Te/As in chalcopyrite from the Kairei vent field, and the pattern of the Co signal intensities correlated
with Fe (Figure 3B, C), indicating that Co most likely substitutes for Fe. Antimony (<2.3 ppm) and
As concentrations (<50.6 ppm) were relatively low in chalcopyrite from Kairei. These concentrations
are similar to those described from other SMS deposits from mid-ocean ridge systems worldwide
(Table 3). For example, a similar low concentration of Sb has been observed in chalcopyrite from Turtle
Pits, Logatchev, Wocan, and Semyenov-2 (average usually <30 ppm). In contrast, Sb-rich chalcopyrite
is common in back-arc basins and the enrichment there is thought to be mainly controlled by the
occurrence of Sb-bearing mineral inclusions related to an increased flux of elements such as Sb due to
the input of magmatic volatiles [13]. Most chalcopyrite from Kairei contains <0.2 ppm Au; however,
single measurements with enrichments in Au (3.5 ppm, 2.3 ppm; Table S2) do occur and might indicate
the occurrence of native gold inclusions (Figure 2F).

5.3. Controls on Trace Elements in Sphalerite

As one of the major sulfide minerals in the SMS deposits, sphalerite precipitates under a range of
pressure, temperature, and fO,-fS; conditions [52]. At Kairei, sphalerite from the Zn-rich chimneys
was shown to be highly enriched in Cd, Pb, Co, As, Sn, Ga, Ge, Ag, and Sb compared to the other
minerals. Cadmium, Co, Ga, and Sn showed clear positive correlations with an increasing temperature
(Figure 7) calculated following the Fe/Zngppalerite €quation of Keith et al. (2014) [53]. In contrast, Ag,
As, Ge, and Pb were characterized by negative correlations with temperature and precipitate as a
consequence of an increasing fO, of the hydrothermal fluids due to significant mixing with seawater
(Figure 7). Trace element concentrations in sphalerite showed strong positive correlations (Figure 8)
for Pb—-Ag (R? = 0.98), Pb-Au (R? = 0.83), Co-Cd (R? = 0.67), Cu-Sn (R? = 0.91), Ga-Sn (R? = 0.90),
As-Ge (R? = 0.95), and Sb—Cd (R? = 0.79). The high concentrations of Cd (609-1792 ppm) and Co
(196-993 ppm) were likely caused by the substitution of Zn?* by Cd?* and Co?* (e.g., [52,54]). A high
concentration of Pb (420-6396 ppm) accompanied by similarly high Ag concentrations (44-882 ppm)
in sphalerite most likely indicates that the Ag occurs as Pb—Ag sulfosalts rather than as native silver
associated with galena. The concentration of Au was generally low in sphalerite (<0.5 ppm); however,
Au is related to Pb (R? Ag-Au = 0.68), suggesting co-precipitation with Au as electrum inclusions in
galena. The positive correlation between Sn and Cu, as well as between Sn and Ga, may be attributed
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to the substitution of Zn?* by Ga* or Ga®* [12], or 3Zn?** by Sn** + Cu?* [52]. This substitution
would also explain the Sn enrichment in bulk samples from Zn-rich chimneys (101-510 ppm; [4]).
Sphalerite is also enriched in Ge and As with concentrations ranging from 72 ppm to 336 ppm and
from 61 ppm to 502 ppm, respectively, which are similar to sphalerite from the Wocan hydrothermal
field at the Carlsberg Ridge [15]. Although Ge** represents the more common oxidation state, Cook et
al. (2009) [52] proposed a direct Ge>* <> Zn?* substitution in sphalerite. The strong correlation of As
with Ge (R? = 0.95) in sphalerite from Kairei suggests that both elements are enriched in sphalerite
precipitating under medium temperature and moderately reduced conditions [52].
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Figure 7. Correlation between the concentrations of trace elements in sphalerite and precipitation
temperatures calculated from Keith et al. (2014) [53].
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Figure 8. Trace element correlations of sphalerite for Pb—Ag, Pb—Au, Sn—-Cu, Sn—-Ga, Co-Fe, Co-Cd,
As—Ge, and Sb-Cd from Zn-rich chimney samples.

5.4. Controls on Trace Elements in Bornite, Digenite, and Covellite

Bornite, digenite, and covellite are common Cu—(Fe)—sulfide minerals in SMS deposits which
often precipitate under more oxidizing conditions caused by the ingress of seawater during the waning
stages of hydrothermal activity (e.g., [3,4,51,55]). Due to the interaction of cooling hydrothermal
fluids with cold, oxygenated seawater, U, V, and sometimes Ag may reach high concentrations in low
temperature bornite and digenite formed during the latest hydrothermal phase or during secondary
oxidation of primary sulfides (e.g., [14,15,47]). In contrast, bornite precipitated at higher temperatures
has relatively high concentrations of Sn and In [15]. Additionally, Cook et al. (2011) [56] stated that
high temperature primary bornite is an excellent host for Bi and Se. In our dataset, the highest Bi (up
to 191 ppm) and Se (up to 2272 ppm) concentrations were found in bornite and may be explained by
the incorporation of Bi into the bornite crystal lattice [56]. Cobalt concentrations in bornite—digenite
were typically close to their respective minimum detection limits. However, in some spots, high Co
concentrations (>1000 ppm; Figure 4) were observed, and based on the flat signal intensities of Co,
we suppose this to represent local substitution of Co into the Fe site within bornite (Figure 3E).
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5.5. Comparison with Mafic- and Ultramafic-Hosted SMS Deposits

The concentrations of trace elements in the ores from the SMSs, especially those that are mobilized
at relatively low temperatures, are remarkably sensitive to the source rock concentrations in different
tectonic settings (e.g., [3,7,57]). For example, mafic- and ultramafic-hosted SMSs at mid-ocean ridges
are often enriched in Ni and Co [3,4,58], whereas felsic-hosted deposits in volcanic arc settings are
enriched in Pb, As, Ag, Sb, and Sn [7]. Previous studies concluded that the presence of elevated Ni and
Co concentrations in the sulfide minerals from ultramafic SMS deposits originates from the ultramafic
substrate (1960 ppm Ni and 106 ppm Co in depleted mantle versus 104 ppm Ni and 44 ppm Co in
MORB [59,60]). However, depositional conditions may also play significant roles in determining the
final metal concentrations in the sulfide minerals [58].

Pyrite from ultramafic-hosted Kairei, Logatchev, and Semyenov-1 showed higher concentrations
of Au (>1 ppm on average) than pyrite from the mafic-hosted Wocan, MESO, TAG, Turtle Pits, and
MAR 5°S (Au <1 ppm) along the mid-ocean ridge (Table 3; Figure 9). Keith et al. (2016) [8] proposed
that serpentinization in ultramafic-hosted vent systems plays an important role on Au enrichment in
pyrite with low As contents. However, compared with felsic-hosted SMS deposits, sulfide minerals
from the ultramafic-hosted deposits presented higher concentrations of Se and Te, but lower As, Sb, and
Au concentrations (Table 3), which is most likely attributed to more reducing conditions at mid-ocean
ridges and the contribution of magmatic volatiles in arc-related occurrences [13]. Significant variations
of Ni/As versus Au/As ratios in pyrite were observed between ultramafic- and mafic-hosted SMS
occurrences (Figure 9). This implies that there is an ultramafic influence on Au and Ni enrichment in
pyrite from Kairei. However, the ultramafic-hosted Semyenov-1 showed lower Ni concentrations that
were associated with higher Au and As concentrations (averages of 33.1 ppm Au and 510 ppm As;
Table 3; Figure 9), Melekestseva et al. (2014) [46] suggested that a mafic substrate might contribute
to those elements in the Semyenov-1. Clearly, investigations on the trace element behavior in other
ultramafic-hosted sites, such as Rainbow, Ashadze and others, are needed to verify this observation.
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Figure 9. Variations of Ni/As vs. Au/As in pyrite from ultramafic- and mafic-hosted hydrothermal
systems at mid-ocean ridges and felsic-hosted sites occurred in the back-arc basin/arc volcanoes. See
the data source in Table 3.

To be able to compare the differences in trace element concentrations of chalcopyrite between
ultramafic/mafic- and felsic-hosted deposits, we normalized the trace elements to global MORB [48]
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(Figure 10). Chalcopyrite from Kairei showed a higher concentration of Se relative to Wocan,
Semyenov-2, and Logatchev, but lower concentrations of As and Sb (Table 3; Figure 10). The general
enrichment of Se in chalcopyrite is a factor of fluid temperature, with high solubility of Se in fluids of
~350 °C [10,49,61]. A host rock influence (mafic versus ultramafic) can probably be neglected since
significant Se enrichment in chalcopyrite has been found in both, ultramafic- and mafic-hosted SMSs
(e.g., average: ~2000 ppm, Broken Spur [62]).
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Figure 10. Selected MORB-normalized trace element patterns for chalcopyrite from different seafloor
hydrothermal systems. MORB data source from Arevalo and McDonough (2010) [48].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2075-163X/8/11/526/s1,
Table S1: LA-ICP-MS reference materials, Table S2: Trace and main element concentrations (ppm) of the analyzed
sulfides at the Kairei vent field obtained from LA-ICP-MS and EPMA.
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