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Abstract: The effect of organic matter on hydrocarbon potential, storage space, and gas content
of shale is well-known. Additionally, present-day content of sedimentary organic matter in shale
is controlled by depositional and preservation processes. Therefore, a study of the enrichment
mechanisms of sedimentary organic matter provides a scientific basis for the determination of
favorable areas of shale gas. In this study the Upper Ordovician Xinkailing Fm. and the first member
of the Lower Silurian Lishuwo Fm. were examined. Stratigraphic sequences were identified through
conventional logs and elemental capture spectrum data. Oxygen isotope analysis was applied to
recover paleotemperature of seawater in the study area. The excess silicon content was calculated
and the origin of the silica was determined by the Fe-Al-Mn ternary plot. The enrichment mechanism
of organic matter was analyzed by two aspects: redox conditions and paleoproductivity. As a
result, the stratigraphic interval was divided into two 3rd-order sequences. Through oxygen isotope,
the paleotemperature of seawater was 62.7–79.2 ◦C, providing evidence of the development of
hydrothermal activity. Analysis of excess siliceous minerals identified two siliceous mineral origins:
terrigenous and hydrothermal. It also revealed an upwards decreasing tendency in hydrothermal
activity intensity. Strong hydrothermal activity during the Late Ordovician, recognized as TST1,
formed a weak-oxidizing to poor-oxygen environment with high paleoproductivity, which promoted
organic matter enrichment. During the Late Ordovician to the Early Silurian, identified as RST1,
TST2, and RST2, weakening hydrothermal activity caused the decline of paleoproductivity and
increased oxidation of bottom waters, leading to a relative decrease of organic matter content in
the shale. Therefore, favorable areas of shale gas accumulation in the Upper Ordovician and Lower
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Silurian are determined stratigraphically as the TST1, with a high total organic carbonate content.
Geographically, the hydrothermally-active area near the plate connection of the Yangtze and the
Cathaysian is most favorable.

Keywords: enclosed environments; hydrothermal activity; excess siliceous minerals; paleoproductivity;
redox environments

1. Introduction

Since 2000, the shale gas industry has achieved great success in the United States, thanks to new
ideas and advanced technology [1–3]. Energy Information Administration (EIA) [4] data for 2016
show that the gross withdrawal of natural gas from shale gas wells in American was 16.58 × 109 cubic
feet, accounting for 50.81% in the total gross withdrawal of 32.64 × 109 cubic feet. There is a huge
resource of shale gas in China as well, and preliminary commercial development has begun in areas
including Jiaoshiba, Weiyuan, Changning, Dingshan etc., starting in 2010 [5–10]. Identification of the
most favorable stratigraphic intervals, both vertically and laterally, is urgent [11–13]. Organic matter,
the source of shale gas generation, develops organic pores during thermal maturation, providing
storage sites for generated gas. Interconnection of the pores provides permeability [14–18]. As such
organic matter abundance is one of the key indicators of shale gas evaluation. The present-day total
organic carbon (TOC) content in shale is largely influenced by thermal evolution and the original
abundance of sedimentary organic matter [19,20], which means it is mainly controlled by depositional
and preservation processes of organic matter under a certain thermal evaluation. Therefore, this paper
is focused on the geological factors controlling the original abundance of sedimentary organic matter
and the enrichment mechanism of sedimentary organic matter.

Stratigraphic sequence establishment is needed in the study of sedimentary environments.
Classic sequence stratigraphy is based on clastic rocks on passive continental margins [21–27], and has
reduced accuracy when it is applied to shale deposited in deep-water environments [28,29]. Thus,
the classic theory incompletely suits the exploration and development of shale gas. In recent decades,
large-scale exploration and development of shale gas is enhanced by new technology, providing new
methods and data for the research on sequence stratigraphy of shale gas and mechanisms of organic
matter deposition. For example, the maturity of elemental capture spectroscopy (ESC) allows the study
of various elements in shale, making it possible to assess redox conditions of shale deposition.

Previous work has used oxidation–reduction indicators to determine sequences in deep-water
environments. Chen et al. [30] identified sequence boundaries by way of U/Th, well logs, and lithology,
and identified the Longmaxi Fm. as a 3rd-order sequence. Yuan et al. [31] and Wang et al. [32] used
difference of elements accumulation in deposition processes, applying the indicators Ca/(Ca + Fe)
and Ti/Al for the characterization of different sedimentary environments and changes in water depth.
Zhang et al. [33–35] proposed a sequence division method for shale by lithology, well logging, and
outcrop data, using U/Th as the principle index, Ca/(Ca + Fe) and Ti/Al as supporting indices.

The study of Fleming and Revelle [36] indicates paleoproductivity is the main control on the
organic matter enrichment. Pedersen and Calvert [37] demonstrated paleoproductivity to be the main
control on the generation of the organic-rich shale. This finding led to a model that considered reducing
bottom waters and paleoproductivity as the most important factors of organic matter enrichment [38].
In previous studies, the geochemical indices widely used for paleoproductivity are P, Ba [39–45], Ni,
and Cu [46–52]. Additionally, the geochemical parameters commonly applied to redox conditions are
mainly redox-sensitive metal elements and their ratios [46,51,53–56], such as U/Th, V/(V + Ni), V/Cr,
Ni/Co, and Mo [55,57–60]. Holdaway and Clayton [61] defined no-terrigenous siliceous minerals as
excess silicon, and proposed a quantitative calculation method. In addition, based on large amount
of statistics, Wedepohl [62], Adachi et al. [63], and Yamamoto [64] proposed an Al-Fe-Mn method to
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identify the genesis of excess silicon (hydrothermal or biologic origin) widely applied under pelagic
settings [33–35,60,65]. All these techniques help to reveal the influence of sedimentary environments
on organic matter enrichment.

In this paper, stratigraphic sequences are divided mainly by well logs and ECS data to form a
sequence stratigraphic framework for the study area. Additionally, oxygen isotope was analyzed to
recover paleotemperature of seawater and verify existence of hydrothermal activity. The existence
of the excess silicon is determined, with its content calculated and origin confirmed by an Al-Fe-Mn
ternary plot. The excess silicon content is applied to study the geological factors controlling the original
abundance of sedimentary organic matter. Then, the mechanism of the organic matter enrichment is
further analyzed and a model is proposed to explain the organic matter enrichment in shale of the Late
Ordovician to the Early Silurian in the Lower Yangtze Region, South China.

2. Geological Settings

2.1. Sedimentary and Stratigraphy

According to previous research [33,34,66–68], well X is located in the southern part of the Lower
Yangtze, which is described as a deep-water shelf controlled by a foreland basin in the Late Ordovician
and Early Silurian. The southern part of the Lower Yangtze generally transformed from shallow-water
shelf into onshore and ancient land northwestwards, while the Cathaysia plate in the south changed
dramatically from shallow-water shelf into and ancient land [34,35,67,68]. The location of Well X is
near the connection of the Cathaysia and the Yangtze plates (Figure 1).
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Silurian in the Lower Yangtze, South China. Samples were taken from Well X shown on the map.

The research interval is the Upper Ordovician Xinkailing Fm. and the first member of the Lower
Silurian Lishuwo Fm., which is a shale stratum widely spread across the Yangtze plate. The lithology
of the research interval is divided into two parts. The Xinkailing Fm. and the lower part of the first
member of the Lishuwo Fm. are dominated by a combination of black siliceous shale and gray black
calcareous shale. Shale, silty shale, and siltstone, grey green and yellow green in color, occur in the
upper part of the first member of the Lishuwo Fm.
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2.2. Tectonic Evolution

The Yangtze and Cathaysia plates in southern China formed in the Early Mesoproterozoic and
united to the South China plate in Middle and Late Neoproterozoic. Up to the early Paleozoic,
the Yangtze plate and Cathaysia plate separated again under tension and an intracontinental basin,
which is narrow and enclosed, formed in the study area [68–70]. The Lower Yangtze experienced a
large-scale marine transgression in the Early Cambrian, which contributed to the extensive distribution
of organic-rich shale in the Lower Cambrian. Its lithology is dominated by shale and silty shale.
This was followed by a regression, causing the water body to become shallower and the lithology
to gradually change to siltstone and sandstone [71]. The Yangtze and Cathaysia plates were under
compression, resulting in more frequent plate activities and an intracontinental orogeny until the
Ordovician [68–70]. The water body became even shallower, resulting in a transition in the lithology
from a clastic rock depositional system into a carbonate sedimentary system. During the Late
Ordovician and the Early Silurian, the Lower Yangtze region experienced another large scale of
transgression, and this was when the organic-rich shale in the Xinkailing Fm. and the first member of
the Lishuwo Fm. were deposited. Finally, the two plates were formally joined again to the Southern
China plate at the end of the Silurian [69–71].

3. Samples, Experiments, and Data Source

Forty-two crushed samples from the Xinkailing Fm. and the first member of Lishuwo Fm. in
Well X were tested for present-day TOC content using an OG-2000V analyzer (Guangzhou ZHIYUAN
Electronics Co., Ltd., Guangzhou, China) (Table 1). Ninety-one drill cutting samples from the same
interval were tested by an Axios-MAX (Malvern Panalytical, Malvern, UK), X-ray fluorescence
spectrometer, to obtain the abundance of Al, Fe, Mn, and Ba (Table 2).

Table 1. The sample numbers, formations and burial depths of the samples from Well X for total
organic carbon (TOC) tests. See Figure 1 for the well location.

No. Fm. Depth/m No. Fm. Depth/m No. Fm. Depth/m

1 Lishuwo 1279.8 15 Lishuwo 1322.1 29 Xinkailing 1340.7
2 Lishuwo 1282.5 16 Lishuwo 1323.9 30 Xinkailing 1341.2
3 Lishuwo 1290.2 17 Lishuwo 1326.9 31 Xinkailing 1343.3
4 Lishuwo 1294.8 18 Lishuwo 1328.7 32 Xinkailing 1343.7
5 Lishuwo 1296.9 19 Lishuwo 1329.0 33 Xinkailing 1345.2
6 Lishuwo 1298.9 20 Lishuwo 1330.3 34 Xinkailing 1345.9
7 Lishuwo 1302.7 21 Lishuwo 1331.2 35 Xinkailing 1347.3
8 Lishuwo 1304.3 22 Lishuwo 1332.0 36 Xinkailing 1347.5
9 Lishuwo 1309.7 23 Lishuwo 1334.7 37 Xinkailing 1349.0
10 Lishuwo 1312.7 24 Lishuwo 1335.9 38 Xinkailing 1349.8
11 Lishuwo 1314.9 25 Lishuwo 1337.1 39 Xinkailing 1350.5
12 Lishuwo 1317.1 26 Lishuwo 1338.0 40 Xinkailing 1351.4
13 Lishuwo 1319.0 27 Xinkailing 1339.4 41 Xinkailing 1353.8
14 Lishuwo 1320.4 28 Xinkailing 1339.7 42 Xinkailing 1357.3

To calculate and analyze the data comprehensively, the data of ESC from Schlumberger were
collected. Conventional well logs of gamma-ray (GR), acoustic velocity (AC), density (DEN),
neutron porosity (CNL), U and Th sampled every 0.125 m, provided element data for Si, Ca, Fe,
Al, and Ti.

Two core samples from the Xingkailing Fm. and one core sample from Lishuwo Fm. in Well
X were selected for oxygen isotope analysis by mass spectrometer MAT-251EM (Thermo Fisher
Scientific, Waltham, MA, USA) in Nanjing University. The information of samples is shown in Table 3.
The samples were crushed to 200 mesh, calcined, removed of organic matter, and then soaked in HCl
to remove siderite and other sulfides. The purified sample (SiO2) was reacted with BrF5 at a constant
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temperature of 550 ◦C to form SiF4 gas. The purified SiF4 gas was obtained by liquid nitrogen cold
trap and other purification processes. The mass spectrometer agrees with the international standard
SMOW, and its analytical accuracy is (+0.2h).

Table 2. The sample numbers, formations and burial depths of the samples from Well X for X-ray
fluorescence spectrometer. See Figure 1 for the well location.

No. Fm. Depth/m No. Fm. Depth/m No. Fm. Depth/m

1 Lishuwo 1284.91 32 Lishuwo 1301.60 63 Lishuwo 1338.56
2 Lishuwo 1285.11 33 Lishuwo 1302.10 64 Xinkailing 1343.27
3 Lishuwo 1285.21 34 Lishuwo 1302.55 65 Xinkailing 1343.78
4 Lishuwo 1285.89 35 Lishuwo 1304.27 66 Xinkailing 1344.32
5 Lishuwo 1285.91 36 Lishuwo 1304.93 67 Xinkailing 1344.90
6 Lishuwo 1286.14 37 Lishuwo 1306.41 68 Xinkailing 1345.52
7 Lishuwo 1286.44 38 Lishuwo 1310.39 69 Xinkailing 1346.08
8 Lishuwo 1286.70 39 Lishuwo 1310.48 70 Xinkailing 1346.60
9 Lishuwo 1286.80 40 Lishuwo 1320.41 71 Xinkailing 1347.05
10 Lishuwo 1286.84 41 Lishuwo 1320.73 72 Xinkailing 1348.31
11 Lishuwo 1290.04 42 Lishuwo 1320.79 73 Xinkailing 1349.54
12 Lishuwo 1290.16 43 Lishuwo 1320.91 74 Xinkailing 1349.90
13 Lishuwo 1290.32 44 Lishuwo 1320.98 75 Xinkailing 1350.28
14 Lishuwo 1290.38 45 Lishuwo 1321.09 76 Xinkailing 1351.02
15 Lishuwo 1290.54 46 Lishuwo 1321.61 77 Xinkailing 1351.27
16 Lishuwo 1290.89 47 Lishuwo 1321.94 78 Xinkailing 1352.08
17 Lishuwo 1290.96 48 Lishuwo 1322.44 79 Xinkailing 1353.27
18 Lishuwo 1291.09 49 Lishuwo 1324.63 80 Xinkailing 1353.33
19 Lishuwo 1291.26 50 Lishuwo 1325.43 81 Xinkailing 1354.30
20 Lishuwo 1291.34 51 Lishuwo 1329.46 82 Xinkailing 1354.67
21 Lishuwo 1291.54 52 Lishuwo 1330.03 83 Xinkailing 1354.70
22 Lishuwo 1291.74 53 Lishuwo 1332.82 84 Xinkailing 1355.73
23 Lishuwo 1292.00 54 Lishuwo 1333.73 85 Xinkailing 1356.30
24 Lishuwo 1292.79 55 Lishuwo 1333.80 86 Xinkailing 1357.75
25 Lishuwo 1292.80 56 Lishuwo 1334.42 87 Xinkailing 1358.10
26 Lishuwo 1293.14 57 Lishuwo 1335.11 88 Xinkailing 1358.40
27 Lishuwo 1295.15 58 Lishuwo 1335.86 89 Xinkailing 1359.04
28 Lishuwo 1295.55 59 Lishuwo 1336.42 90 Xinkailing 1359.53
29 Lishuwo 1298.18 60 Lishuwo 1336.95 91 Xinkailing 1359.93
30 Lishuwo 1298.85 61 Lishuwo 1337.44
31 Lishuwo 1301.03 62 Lishuwo 1338.15

No.: sample number; Fm.: formation.

Table 3. The sample numbers, formations and burial depths of the samples from Well X for oxygen
isotope experiments. See Figure 1 for the well location.

No. Fm. Depth/m

1 Xinkailing 1358
2 Xingkailin 1344
3 Lishuwo 1327

4. Results and Discussion

4.1. Stratigraphic Sequence

Sequence stratigraphy theory [24] has been widely applied to guiding conventional oil and gas
exploration. However, due to the weak response of the deep-water environment to changes of sea level,
it is difficult to identify the boundary between the low-stand and high-stand system tracts. While the
T-R cycle, which emphasizes the depth changes of water body, dividing a sequence into a transgressive
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system tract (TST) and a regressive system (RST), is more suitable for the sedimentary characteristics
of deep-water environments where shale deposited [72].

Uranium is easily reduced to precipitate uranium black, a uranium-rich ore, or to be
adsorbed by other substances. Thorium is easily hydrolyzed in a weak alkaline solution
and become an oxide or hydroxide precipitate [73]. Together, their ratios can indicate redox
environments [58]. Generally speaking, its variation indicates the process of transgression and
regression [30,32,57,58,74,75]. It is well-known that Ca responds to sedimentary process [76,77]. Due to
the difference of migratory process of Ca and Fe, Yuan et al. [31] and Wang et al. [32] provides
evidence that there is a positive correlation between Ca/(Ca + Fe) and salinity of the water body [31].
The decrease in Ca/(Ca + Fe) reflects transgression [31,32,76]. Al and Ti are inactive in chemical
weathering [31,32,78]. In pure argillaceous shale deposition, Ti/Al can be used to determine distance
from provenance as an indicator of shoreline migration [32]. As such, Ti/Al values reflect transgression
and regression indirectly [32,76,78,79]. Therefore, the above parameters can be used as markers
for sequence stratigraphy in deep-water sediments lacking obvious lithology changes. In this paper,
the sequence stratigraphy is identified by U/Th primarily and by Ca/(Ca + Fe) and Ti/Al supportively.

As Figure 2 shows, U/Th tends to increase and then decrease in the Xinkailing Fm. and the first
member of the Lishuwo Fm., including two smaller cycles of rises and falls. There are corresponding
tendencies of decrease first and then increase in Ca/(Ca + Fe) and Ti/Al, with two smaller ascending
and descending cycles. According to the data from International Commission on Stratigraphy
(ICS) [80], the duration of the Xinkailing Fm. and the first member of the Lishuwo Fm. is about
4.4 Ma (445.2–440.8 Ma). A 2nd-order sequence is about 10–25 Ma, and a 3rd-order sequence is about
1–3 Ma [81]. Using the trends of curves from well logs and ECS data, the Xinkailing Fm. and the
first member of the Lishuwo Fm. is divided into two 3rd-order sequences, Seq.1 and Seq.2 (Figure 2).
Seq.1 is composed of a long transgressive system tract (TST1) and short regressive system tract (RST1),
while Seq.2 contains a short transgressive system tract (TST2) and a long regressive system tract (RST2).

Figure 2. The stratigraphic sequence division of Xinkailing Fm. and the first member of the Lishuwo
Fm. in Well X, the Lower Yangtze. See Figure 1 for the well location. GR = Gamma-ray log, AC =
acoustic velocity log, DEN = density log, CNL = neutron log, U = uranium, Th = thorium, Ca = calcium,
Fe = iron, Ti = titanium, Al = aluminum.
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4.2. Hydrothermal Activity

4.2.1. Oxygen Isotope Analysis

The oxygen isotope of siliceous rocks can be used to calculate the temperature of the ancient
sea [82]. The oxygen isotope method to obtain paleotemperature of seawater for siliceous rocks is
shown in the following two equations.

δ18O(shale) − δ18O(water) =
3.09 × 106

T2 − 3.29 (1)

t = 5.0 − 4.1 ×
(
δ18O(shale) − δ18O(water) − 40

)
(2)

δ18O(shale) is the oxygen isotope composition of the shale. δ18O(water) is the oxygen isotope
composition of the sedimentary medium (seawater). In Equation (1), T is thermodynamic temperature
of ancient seawater, t is centigrade degree of ancient seawater. In the two equations above, the oxygen
isotope composition of sedimentary medium is unknown, but previous studies have shown that the
oxygen isotope composition of seawater has little change from ancient times to the present. Therefore,
it is assumed that the oxygen isotope composition of ancient seawater is the same as that of present-day
seawater, as 0 [82,83].

According to the above hypothesis, paleotemperature of seawater in the Upper Ordovician-Lower
Silurian in the study area calculated by Equation (1) was 62.7–77.1 ◦C (Table 4), and that calculated
by Equation (2) is 70.2–79.2 ◦C. The content of Fe and S of the intervals is 4.9% and 0.7% respectively,
relatively low when compared to other rock types. Furthermore, iron and sulfate reduction were
not observed during the description of thin sections. Since the absence of minerals resulting from
diagenetic precipitation in the thin section observation and the low content of Fe and S shown in the
ECS data, this temperature was more likely to represent a depositional signal rather than a diagenetic
process, which basically verity the existence of hydrothermal activity during the period.

Table 4. Oxygen isotope of the Upper Ordovician-Lower Silurian shale and sedimentary environment
temperature calculated by empirical equations.

No. δ18O/h
Paleotemperature of Seawater

(◦C) (by Equation (1))
Paleotemperature of Seawater

(◦C) (by Equation (2))

1 23.7 65.2 71.8
2 21.9 77.1 79.2
3 24.1 62.7 70.2

4.2.2. Excess Silicon Analysis

To accurately analyze the enrichment mechanism of sedimentary organic matter in the shale of the
Xinkailing Fm. and the first member of the Lishuwo Fm. in the Lower Yangtze, the concept of excess
silicon is used. Siliceous mineral genesis can be divided into terrigenous clastic sediments deposited in
normal conditions, and hydrothermal and biological origin, silica under special circumstances [84–87].
Excess silicon content (Siex), which can be calculated by the following equation:

Siex = Sis −
[(

Si
Al

)
bg
× Als

]
(3)

where, Sis is the silicon content of the samples; Als is the aluminum content of the samples;
(

Si
Al

)
bg

is

equal to 3.11, the average of the ratio of silicon and aluminum in shales [62].
The excess siliceous mineral content of Xinkailing Fm. and the first member of the Lishuwo Fm.

in Well X, calculated by Equation (3), reveals a range of 0–22.70%. Siex in TST1 is relatively high and
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greater than 5% in most of the interval. During RST1, Siex decreases. In TST2, Siex declines continually.
Until RST2, Siex is less than 5% in most of the interval and even the excess siliceous minerals do not
exist. Generally speaking, the excess siliceous mineral decreases upwards in the Xinkailing Fm. and
the first member of the Lishuwo Fm., whose high-value sector is in TST1.

The measured values of the content of Al, Fe, and Mn were collected in the intervals containing
excess siliceous minerals. The data points are plotted on a ternary in Figure 3, showing that all
the points lie in the hydrothermal origin area. Due to the applicable environments of Al-Fe-Mn
method, which is generally deep-water marine environments and influences of other possibilities
such as circulation, weathering, stratification, and diagenetic process, alternative explanations of
this result need to be discussed. According to regional geological settings, the study area is
located in a narrow and long intracontinental sea which is relatively enclosed and was far away
from the coastline. Its communication with the open ocean kept slowly but constantly [68–70].
While magmatism leading to hydrothermal activity occurred frequently during the sedimentary
period [69–71], which makes it a relatively higher possibility that the siliceous minerals of these
intervals were derived of hydrothermal activity.
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4.2.3. Intensity of Hydrothermal Activity

Through the studies above, it indicates that Siex in the Xinkailing Fm. and the first member of the
Lishuwo Fm. in study area were derived of hydrothermal activity. Therefore, in the Xinkailing Fm.
and the first member of the Lishuwo Fm. in the Lower Yangtze, Siex generally stands for hydrothermal
silicon, making it a relatively reliable indicator of regional hydrothermal activity intensity, which may
not be applicable in other areas where biogenic silicon dominants.

In this paper, the intervals with Siex of 0–5% are defined to be a weak sector of hydrothermal
activity, 5–10% as a relatively weak sector, 10–15% as a relatively strong sector, and 15–20% as a strong
sector. The results are presented in Figure 4. It shows that in the Xinkailing Fm. and the first member
of the Lishuwo Fm. in the Lower Yangtze, the hydrothermal activity intensity experienced was the
strongest in TST1, and then weakened upwards from RST1 and TST2 to RST2.
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Figure 4. The analysis of hydrothermal activity intensity of Xinkailing Fm. and the first member of
the Lishuwo Fm. in Well X, the Lower Yangtze. See Figure 1 for the well location. Al = aluminum,
Si = silicon.

4.3. Mechanism of Organic Matter Enrichment

According to previous work [88], the siliceous minerals from the organic-rich shale are biogenic in
the Upper Ordovician Wufeng Fm. and the bottom of the Lower Silurian Longmaxi Fm. in the Sichuan
basin. From this, it is clear that the siliceous minerals of the Upper Ordovician-Lower Silurian in the
Lower Yangtze region are not only biogenic (Wufeng-Longmaxi Shale) but of hydrothermal origin (the
Xinkailing-Lishuwo Shale). This makes the Upper Ordovician-Lower Silurian a good candidate to
explore the effect of hydrothermal activity on organic matter enrichment.

Besides controlling the accumulation of siliceous minerals in shale, there are two ways for
hydrothermal activity to influence the abundance of sedimentary organic matter, by the control of
redox environments and paleoproductivity.

4.3.1. Redox Environments

Sun [89] and Sun et al. [90] and Zhang et al. [91] demonstrated that reduced hydrothermal fluids
can create an anoxic environment in the bottom waters where hydrothermal fluid is introduced,
thus promoting the preservation of organic matter.



Minerals 2018, 8, 495 10 of 18

The index of U/Th is widely used to determine redox conditions and applied to the study
of sedimentary environments of shale gas [58]. In this paper, ECS data of U and Th was used,
with samples being collected every 0.125 m, making the trend changes of redox conditions obvious
when observed. Value greater than 1.25 usually reflects anoxic environments, 0.75–1.25 reflect
poor-oxygen environments and less than 0.75 reflect oxidizing environments [58].

As presented in Figure 5, the content of hydrothermal siliceous minerals is greater than 5% in
most intervals of TST1, which reveals a hydrothermal activity intensity reaching relatively strong.
Furthermore, the U/Th is 0.5–1 in TST1, indicating weak oxidizing to poor-oxygen environments.
Therefore, the hydrothermal activity weakened upwards gradually during RST1. During RST2,
siliceous minerals are mainly terrigenous, with hydrothermal siliceous minerals being less than 5%,
or nonexistent. In this time, U/Th is 0–0.25, corresponding to strong oxidizing environments.

Figure 5. The influence of hydrothermal activity on organic matter enrichment of Xinkailing Fm. and
the first member of the Lishuwo Fm. in Well X, the Lower Yangtze. See Figure 1 for the well location.

4.3.2. Paleoproductivity

Paleoproductivity could be closely connected to hydrothermal activity in the areas where
hydrothermal activity exists. Through the study of Halbach et al. [92] on hydrothermal activity in the
Fuji basin, it is seen that, compared to the normal surface layer of the water body, paleoproductivity is
1–3 orders of magnitudes higher in biomass in hydrothermally-active areas. The hydrothermal fluids
carry with a large mass of nutrients necessary for marine organisms, such as Si, N, P, Fe, and Zn. Thus,
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which promote the growth of organisms [93,94]. This results in a large number of organisms being
deposited on the basin bottom, resulting in organic matter enrichment in source rocks.

Barium is often used to reflect paleoproductivity. Trace elements in rocks consist of two parts,
terrestrial and authigenic. Only the authigenic components indicate the characteristics of paleo
sedimentary environments. Biological barium (excess barium, BaXS) is used as an indicator of
paleoproductivity, whose content is obtained from total barium content subtracting estimated content
of terrigenous barium [39]. The content of BaXS is accessible by the following equation:

BaXS = Bas − Als ×
(

Ba
Al

)
PAAS

(4)

where, Bas is the total barium content of samples; Als is the total aluminum content of samples;(
Ba
Al

)
PAAS

is a constant of 0.0077, the ratio of barium and aluminum of post-Archean Australian
shale [95].

BaXS content of the Xinkailing Fm. and the first member of the Lishuwo Fm. in Well X is calculated
by Equation (4), as shown in Figure 5. It revealed that during TST1, the content of hydrothermal
siliceous minerals is high, reflecting strong hydrothermal activity. BaXS is higher in TST 1, than in
RST1, TST2 and RST2, which experienced a relatively weaker hydrothermal activity, indicating that
there is a greater paleoproductivity in TST1.

Accordingly, it can be said, it is found out that the hydrothermal activity in the early Late
Ordovician created a high-productive water body and environments of weak-oxidizing to poor-oxygen,
which promoted the deposition of organic-rich shale in TST1 with TOC content of 2–4% (Figure 5).
A decrease of hydrothermal activity intensity in the Late Ordovician-Early Silurian, resulted in
weakening paleoproductivity and water oxidizability increased accordingly. As a result, in shale
deposited during RST1, TST2, and RST2, had decreased TOC content of 2%, or less, in most parts of
the interval (Figure 5).

4.3.3. Model of Regional Organic Matter Enrichment

In the study above, in this area, the effect of hydrothermal activity distinguished from other
controlling factors of organic matter enrichment and it is investigated one of the key drivers of the
regional enrichment of sedimentary organic matter. The strong hydrothermal activity of the Xinkailing
Fm. and the first member of the Lishuwo Fm. in the Lower Yangtze is related to the magmatism caused
by the active plate movements between the Yangtze and Cathaysia plates in the Late Ordovician and
the Early Silurian [96,97].

In TST1 of the Late Ordovician, there are frequent plate motions between the Yangtze and
Cathaysia plates, bringing a source of hydrothermal fluids to the junction of the plates. This caused
an increase in nutrient levels leading to higher paleoproductivity and reduction of bottom waters,
which enhanced the preservation of organic matter and deposition of the organic-rich shale during
TST1 (Figure 6a). During RST1–RST2 in the Late Ordovician and the Early Silurian, the decreased
plate movements reduced the intensity of hydrothermal activity, which decreased paleoproductivity
and changed the redox environments into strong oxidizing environments. In addition, the terrigenous
clay minerals and siliceous clasts are increased, forming a shale interval in RST1, TST2, and RST2,
which contains a small amount of hydrothermal siliceous minerals and relatively lower TOC
(Figure 6b).

We demonstrate that hydrothermal activity controls the redox environments of bottom waters
and the paleoproductivity of surface layer of water, consequently affecting the regional enrichment of
sedimentary organic matter and the present-day TOC content in shale. This indicates that in the Upper
Ordovician and Lower Silurian in Lower Yangtze, the favorable stratigraphic interval is the TST1 with
a relatively higher TOC. Areal-ly, the favorable area is the hydrothermally-active area, which is located
near the connection of the plates, the Yangtze and the Cathaysia.
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5. Conclusions

Due to the inapplicability of the classic sequence stratigraphy for the deep-water sediments and
the significance of studying sedimentary environments of organic-rich shale, this paper focuses on the
Upper Ordovician Xinkailing Fm. and the first member of the Lower Silurian Lishuwo Fm. Oxygen
isotope analysis was applied to recover the paleotempreture of seawater. Well logs and ECS data are
used to obtain the content of excess silicon and to determine the siliceous minerals’ origin using an
Al-Fe-Mn ternary diagram. Through these evidences basically proved the existence of hydrothermal
activity. Afterwards, the enrichment mechanism of organic matter is analyzed by two aspects: redox
environments and paleoproductivity. These analysis lead to the following conclusions.

1. Two 3rd-order sequences are identified in the Xinkailing Fm. and the first member of the
Lishuwo Fm., when the paleotemperature of seawater was 62.7–79.2 ◦C, verifying the existence
of hydrothermal activity. Within these units, siliceous minerals are terrigenous and hydrothermal,
and the intensity of hydrothermal activity decreases upwards, being strongest during TST1.

2. Hydrothermal activity promotes paleoproductivity and reduces bottom waters, which are
favorable for the preservation of organic matter. In the Late Ordovician, the active hydrothermal
activity promotoed high paleoproductivity and weak-oxidizing to poor-oxygen environments and
resulted in the deposition of organic-rich shale during TST1. Subsequently, hydrothermal activity
weakened during RST1, TST2, and RST2, paleoproductivity decreased and oxidation increased,
leading to a relatively lower TOC in the shale of these intervals.

3. In the Upper Ordovician and Lower Silurian in Lower Yangtze, the stratigraphically favorable
interval is TST1, which has a relatively higher TOC. Geographically, the favorable area is an
active area of hydrothermal activity located near the connection of the plates, the Yangtze and
the Cathaysia.
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However, as we know, except for hydrothermal activity, there are factors including ocean
circulation, chemical weathering, terrestrial runoff, and water body stratification that may have
influences on organic matter enrichment in different situations. Also, iron and sulfate reduction
resulting from diagenetic processes may cause an inaccurate result of Al-Fe-Mn analysis. Even though
it is based on experimental data and previous geological settings this study demonstrated hydrothermal
activity is one of the key controlling factors of regional organic matter enrichment, the possibilities of
other alternative drivers could not be completely excluded. To clarify the whole process and all the
details of organic matter enrichment in the study area, more related research still remains to be done.
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