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Abstract: The new mineral nöggerathite-(Ce) was discovered in a sanidinite volcanic ejectum from the
Laach Lake (Laacher See) paleovolcano in the Eifel region, Rhineland-Palatinate, Germany. Associated
minerals are sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral.
Nöggerathite-(Ce) has a color that ranges from brown to deep brownish red, with adamantine luster;
thel streak is brownish red. It occurs in cavities of sanidinite and forms long prismatic crystals
measuring up to 0.02 × 0.03 × 1.0 mm, with twins and random intergrowths. Its density calculated
using the empirical formula is 5.332 g/cm3. The Vickers hardness number (VHN) is 615 kgf/mm2,
which corresponds to a Mohs’ hardness of 51⁄2. The mean refractive index calculated using the
Gladstone–Dale equation is 2.267. The Raman spectrum shows the absence of hydrogen-bearing groups.
The chemical composition (electron microprobe holotype/cotype in wt %) is as follows: CaO 5.45/5.29,
MnO 4.19/4.16, FeO 7.63/6.62, Al2O3 0.27/0.59, Y2O3 0.00/0.90, La2O3 3.17/3.64, Ce2O3 11.48/11.22,
Pr2O3 1.04/0.92, Nd2O3 2.18/2.46, ThO2 2.32/1.98, TiO2 17.78/18.69, ZrO2 27.01/27.69, Nb2O5

17.04/15.77, total 99.59/99.82, respectively. The empirical formulae based on 14 O atoms per formula
unit (apfu) are: (Ce0.59La0.165Nd0.11Pr0.05)Σ0.915Ca0.82Th0.07Mn0.50Fe0.90Al0.045Zr1.86Ti1.88Nb1.07O14

(holotype), and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14

(cotype). The simplified formula is (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Nöggerathite-(Ce) is
orthorhombic, of the space group Cmca. The unit cell parameters are: a = 7.2985(3), b = 14.1454(4),
c = 10.1607(4) Å, and V = 1048.99(7) Å3. The crystal structure was solved using single-crystal X-ray
diffraction data. Nöggerathite-(Ce) is an analogue of zirconolite-3O, ideally CaZrTi2O7, with Nb
dominant over Ti in one of two octahedral sites and REE dominant over Ca in the eight-fold coordinated
site. The strongest lines of the powder X-ray diffraction pattern (d, Å (I, %) (hkl)) are: 2.963 (91) (202),
2.903 (100) (042), 2.540 (39) (004), 1.823 (15) (400), 1.796 (51) (244), 1.543 (20) (442), and 1.519 (16) (282),
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respectively. The type material is deposited in the collections of the Fersman Mineralogical Museum of
the Russian Academy of Sciences, Moscow, Russia (registration number 5123/1).

Keywords: nöggerathite-(Ce); new mineral; zirconolite; laachite; sanidinite; crystal structure; alkaline
volcanic rock; Laacher See; Eifel

1. Introduction

Zirconolite-related Ca-REE-Zr-Ti-Nb oxides have been described in numerous publications as advanced
materials suitable for the immobilization of actinides, which are components of high-level radioactive
waste [1–5]. Natural zirconolites and related minerals (zirconolite-3O (Ca,REE)2Zr2(Ti,Nb)3FeO14,
zirconolite-3T (Ca,REE)2Zr2(Ti,Nb)3FeO14, zirconolite-2M (Ca,REE)2Zr2(Ti,Nb)3FeO14, laachite
Ca2Zr2Nb2TiFeO14, stefanweissite (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14 (IMA 2018-020) and the
here-described nöggerathite-(Ce)) are characterized by a wide compositional diversity and can be
considered as prototypes of such materials. These minerals usually contain uranium and thorium,
the total content of which can reach 15–20 wt % [6]. As a result of exposure to alpha radiation, most such
samples are X-ray amorphous, metamict. Some exceptions are crystalline samples of zirconolite-type
minerals from young volcanic rocks [7–10].

This paper describes nöggerathite-(Ce), a new zirconolite-related mineral species from the
Laach Lake area situated in the Eifel paleovolcanic region, Germany. This mineral is non-metamict
because of the very young geological age of the mother rock [11,12].

The root name of the new mineral is given in honor of Johann Jacob Nöggerath (1788–1877),
a prominent German mineralogist and geologist. From 1818 Nöggerath was a professor of mineralogy
and geology at the University of Bonn. Among his publications is a geological description of the
Laach Lake (Laacher See) paleovolcanic region. The Levinson’s modifier -(Ce) in the mineral name
reflects the predominance of Ce among rare earth elements, which together are dominant in one
structure position. The mineral and its name have been approved by the Commission on New
Minerals, Nomenclature and Classification of the International Mineralogical Associatiob (IMA number
2017-107). The type material is deposited in the collections of the Fersman Mineralogical Museum of
the Russian Academy of Sciences, Moscow, Russia (registration number 5123/1).

2. Materials and Methods

The new mineral was found in the In den Dellen (Zieglowski) pumice quarry, 1.5 km
to the notrheast of Mendig, in the Laach Lake (Laacher See) paleovolcano of the Eifel region,
Rhineland-Palatinate, Germany. Two specimens have been investigated and considered as the holotype
and the cotype, which are fragments of the same sanidinite volcanic ejectum. Associated minerals are
sanidine, dark mica, magnetite, baddeleyite, nosean, and a chevkinite-group mineral.

The origin of sanidinites of the Laacher See area has been discussed earlier [9,12–14]. These rocks
are derivatives of different foyaite magmas which are comagmatic with haüyne-bearing rocks (haüyne
foyaite, haüyne syenite, haüyne monzonite, etc.), or with noseane–cancrinite–nepheline syenites.
Sanidinites of the latter type are enriched in rare element (Nb, Zr, REE, U, Th) accessory minerals.
These rocks are cogenetic with the phonolitic host magma, and the crystallization took place in an
intrusive syenite–carbonatite complex at temperatures below 700 ◦C in the host rock surrounding
the top of the magma chamber 5000 to 20,000 years prior to the eruption of the magma chamber [12].
Most probably, nöggerathite-(Ce) and associated minerals forming crystals on the walls of cavities in
sanidinite crystallized from above-critical fluid.

Chemical analyses (five for the holotype and three for the cotype) were carried out using an
Oxford INCA Wave 700 electron microprobe (WDS mode, 20 kV, 600 pA, 300-nm beam diameter,
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Oxford Instruments plc, London, UK) housed at the Institute of Experimental Mineralogy RAS.
The counting time per peak was 100 s.

The Raman spectrum of a randomly oriented nöggerathite-(Ce) crystal was obtained on the cotype
sample using an EnSpectr R532 spectrometer based on an OLYMPUS CX 41 microscope coupled with a
diode laser (λ = 532 nm) at room temperature (Enhanced Spectrometry, San Jose, USA). The spectrum
was recorded in the range from 100 to 4000 cm−1 with a diffraction grating (1800 mm−1) and spectral
resolution of about 6 cm−1. The output power of the laser beam was about 9 mW. The diameter of the
focal spot on the sample was less than 10 µm. The backscattered Raman signal was collected with a
40× objective; thel signal acquisition time for a single scan of the spectral range was 2 s, and the signal
was averaged over 100 scans.

The Raman spectrum of an oriented laachite crystal used for comparison was obtained with a
HORIBA instrument based on the OLYMPUS BX 41/51 microscope (HORIBA Jobin Yvon, Bensheim
Germany) with a diode laser (λ = 532 nm) at room temperature. The power of the laser beam at the
sample was about 1.5 mW. The spectrum was recorded in a range from 100 to 3800 cm−1, with a
diffraction grating (1800 mm−1) and spectral resolution of about 1 cm−1. The diameter of the focal spot
on the sample was less than 7 µm. The backscattered Raman signal was collected with 50× objective;
signal acquisition time for a single scan of the spectral range was 10 s and the signal was averaged
over five scans.

Both Raman spectrometers were housed at Moscow State University.
Maximal and minimal reflectance values (Rmax/Rmin) were measured in air using a MSF-21

micro-spectrophotometer (LOMO company, St. Petersburg, Russia) with a monochromator slit width
of 0.4 mm and beam diameter of 0.1 mm. SiC (reflection standard 474251, number 545, Jena, Germany)
was used as a standard. The spectrophotometer was housed at St. Petersburg State University.

Powder X-ray diffraction data were collected using a Rigaku RAXIS Rapid II diffractometer
(Rigaku Corporation, Tokyo, Japan) with a curved image plate detector and rotating anode in
Debye–Scherrer geometry, with an accelerating voltage of 40 kV, current of 15 mA, and exposure
time 15 min. The distance between sample and detector was 127.4 mm. Data processing was carried
out using osc2xrd software [15]. The diffractometer was housed at St. Petersburg State University.

The single-crystal X-ray diffraction experiment was carried out using a Bruker Kappa APEX DUO
CCD diffractometer (Bruker AXS GmbH, Karlsruhe, Germany). The diffractometer was housed at
Moscow State University. Experimental details are given in Table 1.

Table 1. Crystal data, data collection information and structure refinement details for the holotype
specimen of nöggerathite-(Ce).

Characteristics Data and Methods

Crystal sizes, mm 0.01 × 0.01 × 0.10
Temperature, K 293(2)

Radiation and wavelength, Å MoKα; 0.71073
F000 1530

θ range for data collection, ◦ 2.88–26.98
h, k, l ranges –9→ 7, –18→ 18, –12→ 12

Reflections collected 4962
Independent reflections 617 (Rint = 0.0215)

Independent reflections with I > 2σ(I) 574
Data reduction Bruker SAINT

Structure solution Direct methods
Refinement method Full-matrix least-squares on F2

Weighting coefficients a, b 0.0251, 7.1886
Number of refined parameters 71
Final R indices (with I > 2σ(I)) R1 = 0.0198, wR2 = 0.0518

R indices (with all data) R1 = 0.0224, wR2 = 0.0550
GoF 1.161

Largest diffraction peak and hole, e/Å3 1.53 and –0.70
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3. Results

3.1. General Appearance and Mechanical Properties

Nöggerathite-(Ce) forms prismatic crystals measuring up to 0.1 × 0.1 × 1.0 mm, elongated
along (001), and simple twins, isolated or combined in random aggregates (Figure 1a,b) in cavities
in sanidinite. The main observed crystal forms are pinacoids {100} and {010}, as well as prisms {110}
and {120}. The other forms are {111} and minor {001}. In most cases, the twinning plane is (130);
thel angle between the c axes of the twin components is 65◦. The exception is a growth (possibly a
twin) with the angle between the c axes of the twin components of 90◦ (Figure 1c). Some crystals of
nöggerathite-(Ce) are embedded in sanidine.

The new mineral is translucent to transparent, with a color ranging from brown to very dark
reddish brown, almost black, with adamantine luster. The streak is brownish red.

Nöggerathite-(Ce) is brittle with uneven fractures; no cleavage was observed. Hardness,
as determined by the micro-indentation method (Vickers hardness number (VHN) load of 20 g),
is equal to 615 kgf/mm2 which corresponds to a Mohs’ hardness of 5 1

2 . The density calculated using
the empirical formula is 5.332 g/cm3.

Figure 1. (a) Aggregates of brown nöggerathite-(Ce) crystals on sanidine. Photographer: Stefan Wolfsried.
Field width: 4 mm; (b) Nöggerathite-(Ce) crystal on sanidine. Photographer: Marko Burkhardt.
Field width: 0.5 mm; (c) Twin of nöggerathite-(Ce) on sanidine. Photographer: Marko Burkhardt.
Field width: 1 mm.
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3.2. Raman Spectroscopy

The Raman spectrum of nöggerathite-(Ce) (Figure 2) shows the absence of absorption bands of
H2O molecules, OH groups, and CO3

2– anions. The bands in the range of 400–800 cm−1 correspond
to (Ti,Nb,Zr)–O-stretching vibrations, and the bands in the range of 100–400 cm−1 are due to
(REE,Ca)–O-stretching and O–(Ti,Nb,Zr)–O bending vibrations. Broad features above 900 cm−1

in the Raman spectrum of nöggerathite-(Ce) correspond to luminescence due to high amounts of REE.
In Raman spectra of laachite (Figure 3), which is a mineral related to nöggerathite-(Ce)

but is characterized by much lower REE:Ca and Ti:Nb ratios, the bands of (REE,Ca)–O- and
(Ti,Nb,Zr)–O-stretching vibrations are shifted towards higher and lower values, respectively.
This regularity is in accordance with mean masses of corresponding groups of atoms.

Figure 2. Raman spectrum of nöggerathite-(Ce) (a.u. = arbitrary units).

Figure 3. Raman spectrum of laachite Ca2Zr2Nb2TiFeO14 obtained with the polarization of the laser
beam parallel to the a axis of the crystal [9].
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3.3. Optical Properties

In reflected light, nöggerathite-(Ce) is optically anisotropic, with ∆R589 = 1.27%. The color is light
grey, with reddish brown internal reflections. The reflectance values in the visible range are given in
Table 2. Mean refractive index calculated from the Gladstone–Dale equation is 2.267.

Table 2. Reflectance values (Rmax/Rmin) for nöggerathite-(Ce). Reflectance values for four wavelengths
recommended by the Commission on Ore Microscopy of the International Mineralogical Association
are given in bold type.

Wavelength, nm R1 R2

400 17.3 16.8
420 16.8 16.4
440 16.4 16.0
460 16.0 15.5
470 15.8 15.3
480 15.6 15.2
500 15.3 15.0
520 15.3 14.8
540 15.0 14.7
546 15.0 14.7
560 15.0 14.6
580 14.9 14.6
589 14.9 14.5
600 14.8 14.5
620 14.8 14.5
640 14.8 14.4
650 14.8 14.4
660 14.8 14.4
680 14.7 14.4
700 14.7 14.3

3.4. Chemical Composition

Chemical data for nöggerathite-(Ce) are given in Table 3. Contents of other elements with atomic
numbers >8 are below detection limits. Based on structural data (see below) and by analogy with
laachite [9], iron and manganese are considered as Fe2+ and Mn2+, respectively.

Table 3. Chemical data for nöggerathite-(Ce). Upper and lower values for each constituent correspond
to the holotype and the cotype, respectively.

Constituent wt % Range Standard
Deviation

Standard
Used

X-ray Line
Measured

CaO 5.45
5.29

5.27–5.55
5.12–5.39

0.10
0.34 Wollastonite K

MnO 4.19
4.16

4.07–4.32
4.06–4.34

0.09
0.13 MnTiO3 K

FeO 7.63
6.62

7.46–7.79
6.23–6.83

0.14
0.28 Fe K

Al2O3
0.27
0.59

0.18–0.38
0.48–0.78

0.07
0.14 Albite K

Y2O3
0.00
0.90

–
0.61–0.99

–
0.16 YPO4 L

La2O3
3.17
3.64

3.05–3.28
3.47–3.84

0.10
0.16 LaPO4 L

Ce2O3
11.48
11.22

11.27–11.73
10.95–11.69

0.19
0.33 CePO4 L

Pr2O3
1.04
0.92

0.89–1.24
0.90–0.97

0.12
0.03 PrPO4 L
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Table 3. Cont.

Constituent wt % Range Standard
Deviation

Standard
Used

X-ray Line
Measured

Nd2O3
2.18
2.46

2.10–2.34
2.28–2.81

0.08
0.25 NdPO4 L

ThO2
2.32
1.98

2.11–2.50
1.79–2.17

0.15
0.16 ThO2 M

TiO2
17.78
18.69

17.45–18.12
18.49–18.90

0.27
0.16 TiO2 M

ZrO2
27.01
27.69

26.82–27.26
27.51–27.86

0.19
0.11 ZrO2 L

Nb2O5
17.04
15.77

16.72–17.37
15.53–15.99

0.28
0.19 LiNbO3 L

Total 99.59
99.82 - - - -

The empirical formulae (based on 14 O apfu) are: (Ce0.59La0.165Nd0.11Pr0.05)Σ0.915Ca0.82Th0.07Mn0.50

Fe0.90Al0.045Zr1.86Ti1.88Nb1.07O14 (holotype) and (Ce0.57La0.19Nd0.12Pr0.05Y0.06)Σ0.99Ca0.79Th0.06Mn0.49

Fe0.77Al0.10Zr1.89Ti1.96Nb1.00O14 (cotype).
The simplified formula is (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14.

3.5. X-ray Diffraction Data and Crystal Structure

Powder X-ray diffraction data are presented in Table 4. Diffraction peaks are readily indexed in
the orthorhombic unit cell, space group Cmca. The unit cell parameters calculated from the powder
data are: a = 7.296(1), b = 14.147(2), c = 10.161(1) Å, and V = 1048.9(2) Å3.

Table 4. Powder X-ray diffraction data for the holotype specimen of nöggerathite-(Ce).

Iobs, % dobs, Å Icalc, % dcalc, Å h k l Iobs, % dobs, Å Icalc, % dcalc, Å h k l

4 7.068 2 7.074 0 2 0 2 1.743 1 1.743 3 1 4
2 5.806 1 5.805 0 2 1 - - 1 1.742 0 8 1
3 5.463 1 5.466 1 1 1 1 1.735 1 1.734 3 5 2
5 5.085 1 5.081 0 0 2 1 1.721 1 1.722 2 2 5
1 4.131 1 4.126 0 2 2 1 1.710 1 1.709 2 6 3
2 4.001 2 3.999 1 1 2 4 1.690 3 1.688 1 7 3

10 3.689 8 3.690 1 3 1 1 1.667 1 1.668 4 2 2
2 3.536 1 3.537 0 4 0 2 1.646 1 1.647 0 2 6
3 3.343 2 3.340 0 4 1 - - 1 1.646 3 3 4
2 3.238 1 3.242 2 2 0 - - 1 1.639 1 1 6

91 2.963 100 2.963 2 0 2 1 1.600 1 1.601 4 4 1
100 2.903 93 2.903 0 4 2 2 1.571 1 1.572 2 8 1

2 2.731 1 2.733 2 2 2 - - 1 1.568 0 8 3
2 2.575 1 2.574 1 3 3 1 1.561 1 1.562 2 6 4

39 2.540 14 2.540 0 0 4 20 1.543 20 1.544 4 4 2
- - 27 2.539 2 4 0 10 1.532 2 1.536 3 7 1
1 2.393 1 2.391 0 2 4 - - 10 1.536 2 0 6
1 2.367 1 2.365 1 1 4 - - 11 1.527 0 4 6
5 2.343 5 2.342 2 2 3 16 1.519 17 1.519 2 8 2
- - 1 2.341 1 5 2 1 1.500 1 1.501 2 2 6
3 2.298 3 2.297 0 6 1 1 1.494 1 1.492 3 5 4
1 2.270 1 2.271 2 4 2 6 1.482 6 1.482 4 0 4
3 2.166 2 2.168 3 1 2 - - 1 1.481 3 3 5
1 2.139 1 2.138 1 3 4 6 1.451 6 1.451 0 8 4
1 2.113 1 2.114 3 3 1 1 1.441 1 1.440 2 8 3
2 2.082 1 2.081 1 5 3 1 1.427 1 1.428 4 6 1
1 2.062 1 2.063 0 4 4 - - 1 1.425 1 5 6
1 2.033 1 2.032 2 4 3 3 1.413 2 1.413 3 7 3
1 2.001 1 2.000 2 2 4 2 1.407 1 1.406 1 7 5
3 1.956 2 1.957 3 1 3 1 1.400 1 1.399 1 9 3
- - 1 1.953 0 2 5 1 1.381 1 1.381 5 3 1
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Table 4. Cont.

Iobs, % dobs, Å Icalc, % dcalc, Å h k l Iobs, % dobs, Å Icalc, % dcalc, Å h k l

3 1.940 1 1.944 2 6 1 1 1.365 1 1.367 4 4 4
- - 1 1.935 0 6 3 - - 1 1.363 1 3 7
6 1.914 3 1.913 1 7 1 1 1.334 1 1.334 5 1 3
1 1.847 1 1.845 2 6 2 - - 1 1.334 0 8 5
- - 1 1.830 1 5 4 - - 1 1.333 4 2 5

15 1.823 15 1.824 4 0 0 - - 1 1.333 3 3 6
- - 1 1.822 3 3 3 1 1.307 1 1.309 3 9 1

51 1.796 56 1.796 2 4 4 - - 1 1.305 0 10 3
10 1.769 12 1.768 0 8 0 1 1.288 1 1.289 5 3 3

Note: The dcalc values are calculated for unit cell parameters obtained from single-crystal data.

The crystal structure of the holotype sample (see Tables 5–7) was solved by direct methods based
on single-crystal X-ray diffraction data and refined to R = 0.0198 for 574 unique reflections with
I > 2σ(I). Nöggerathite-(Ce) is orthorhombic, with space group Cmca. The refined unit cell parameters
are: a = 7.2985(3), b = 14.1454(4), c = 10.1607(4) Å, V = 1048.99(7) Å3; and Z = 4.

Solving the crystal structure of nöggerathite-(Ce) reveals the alternation of two types of bent
polyhedral layers, namely an octahedral layer (Figure 4A) and a layer of cations with seven-
and eight-fold coordination (Figure 4B). The octahedral layer is built by vertex-sharing M(3)O6

and M(4)O6 octahedra forming three- and six-membered rings, whereas M(5) and M(6) sites are
located in the centers of six-membered rings. The adjacent sites M(5) and M(6), with coordination
numbers 4 and 5, respectively, are statistically occupied and contain Fe2+ as the major cation (Figure 4C).
The M(1)-centered polyhedron is a distorted cube which shares edges with neighboring M(1)-centered
cubes to form rows along the a axis. Similar rows are formed by seven-fold M(2)-centered polyhedra
(mono-capped octahedra). Adjacent rows of eight- and seven-fold polyhedra are linked with each other
via common edges forming a dense layer. A general view of the crystal structure of nöggerathite-(Ce)
is shown in Figure 5.

The refined crystal/chemical formula of nöggerathite-(Ce) is as follows (Z = 4, REE are modeled by
Ce, coordination numbers of cations are indicated with Roman numerals): VIII(LREE0.88Ca0.80Mn0.24Th0.08)
VII(Zr1.88Mn0.12)VI(Nb1.22Ti0.78)VI(Ti1.48Nb0.48Al0.04)IV(Fe0.48Mn0.08)V(Fe0.40Mn0.04)2O14.

Table 5. Atom coordinates, equivalent thermal displacement parameters (Ueq, Å2), site populations
and site multiplicities (Q) in the structure of nöggerathite-(Ce).

Site x y z Ueq Site Population Q
VIIIM(1) 0.25 0.11753(3) –0.2500 0.00954(18) Ce0.44Ca0.40Mn0.12Th0.04 8
VIIM(2) 0.5 0.23411(4) 0.01426(5) 0.0120(2) Zr0.937(9)Mn0.063(9) 8
VIM(3) 0.0 0.0 0.0 0.0112(3) Nb0.608(8)Ti0.392(8) 4
VIM(4) 0.25 0.13297(5) 0.25 0.0129(2) Ti0.74Nb0.24Al0.02 8
IVM(5) 0.4211(8) 0.0 0.0 0.0301(9) Fe0.24Mn0.04 8
VM(6) 0.5 0.0140(5) 0.0342(9) 0.0393(19) Fe0.20Mn0.02 8
O(1) 0.1948(4) 0.03150(18) 0.1256(2) 0.0236(6) O 16
O(2) 0.2131(4) 0.23287(17) 0.1201(2) 0.0218(6) O 16
O(3) 0.5 0.1081(2) –0.1007(4) 0.0182(8) O 8
O(4) 0.0 0.1288(2) –0.0912(4) 0.0184(8) O 8
O(5) 0.5 0.1366(3) 0.1756(4) 0.0250(9) O 8

Table 6. Selected interatomic distances (Å) in the structure of nöggerathite-(Ce).

Cation Ligand Distance Cation Ligand Distance

M(1) O(3) 2.376(2) × 2 M(3) O(4) 2.044(3) × 2
M(1) O(4) 2.441(3) × 2 M(4) O(2) 1.952(2) × 2
M(1) O(1) 2.491(3) × 2 M(4) O(1) 1.955(3) × 2
M(1) O(2) 2.508(3) × 2 M(4) O(5) 1.9759(16) × 2
M(2) O(4) 2.091(3) M(5) O(3) 1.928(4) × 2
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Table 6. Cont.

Cation Ligand Distance Cation Ligand Distance

M(2) O(2) 2.122(3) × 2 M(5) O(1) 2.134(5) × 2
M(2) O(3) 2.132(4) M(6) O(3) 1.855(8)
M(2) O(5) 2.142(4) M(6) O(3) 1.910(9)
M(2) O(2) 2.354(3) × 2 M(6) O(5) 2.251(9)
M(3) O(1) 1.961(3) × 4 M(6) O(1) 2.426(5) × 2

Table 7. Cation distribution in structurally investigated samples of zirconolite-3O, laachite, and
nöggerathite-(Ce).

Site Zirconolite-3O Laachite Nöggerathite-(Ce)

VIIIM(1) Ca0.53Ce0.41Na0.04Th0.02
Ca0.28Mn0.26Ln0.26Th0.14Y0.06
Ca0.32Mn0.28Ln0.24Th0.14Y0.02

Ln0.44Ca0.40Mn0.12Th0.04

VIIM(2) Zr Zr0.78Mn0.22 Zr0.937Mn0.063
VIM(3) Ti0.52Nb0.47Ta0.01 Nb0.82Ti0.18 Nb0.608Ti0.392

VIM(4) Ti0.88Nb0.12
Ti0.72Nb0.28

Nb0.44Ti0.40Al0.16
Ti0.74Nb0.24Al0.02

IVM(5) Fe0.46 Fe0.34Mn0.10Y0.06 Fe0.24Mn0.04
VM(6) Fe0.03 Fe0.20Mn0.02

Reference [16] [9] This work

Figure 4. Octahedral (A) and large-cation (B) layers and arrangement of Fe-dominant sites M(5) and
M(6) inside the octahedral layer (C) in the structure of nöggerathite-(Ce).
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Figure 5. The crystal structure of nöggerathite-(Ce). The unit cell is outlined. For legend see Figure 4.

4. Discussion

Nöggerathite-(Ce) is isostructural with zirconolite-3O and is its REE-dominant analogue, with Nb
prevailing in one of two octahedral sites (see Tables 5–7). Zirconolite-3O was originally described as
“polymignite” [17,18] and was later redefined and renamed [16,19–21]. However, “polymignite”
is usually metamict and, as a rule, its powder X-ray diffraction pattern can be obtained only
after calcination.

Unlike most samples of zirconolites, nöggerathite-(Ce) is non-metamict because it was formed
recently: the last eruption of the Laach Lake volcano occurred no later than 13,000 years ago. According
to Schmitt [14], the age of zircon from sanidinitic ejecta of the Laach Lake volcano is between 17,000
and 30,000 years. Consequently, sanidinite could have formed 4000–17,000 years before the eruption.

A non-metamict REE-, Nb-, and Mn-rich variety (or, in accordance with the accepted mineralogical
nomenclature rules, an REE-analogue) of zirconolite-3O from the Laach Lake eruptive center was
described by Della Ventura et al. [7] without structural data. Its chemical composition is close to
that of nöggerathite-(Ce) and varies within the following ranges (calculated on the basis of 7 O apfu):
Ca0.312-0.337Y0.079-0.093La0.069-0.086Ce0.269-0.296Pr0.020-0.028Nd0.052-0.062Sm0.004-0.006Gd0.005-0.006Dy0.003-0.006

Er0.003-0.005Th0.014-0.073U0.008-0.022Mn0.345-0.397Mg0.003-0.005Al0.020-0.025Fe0.301-0.339Zr0.888-0.910Hf0.006-0.009

Ti0.840-0.888Nb0.575-0.613Ta0.007-0.009Si0.000-0.012O7.000.
The empirical formula corresponding to spot analysis number 1 from [7], calculated on 14 O apfu,

is (Ln0.98Ca0.63Mn0.17Y0.16Th0.04U0.02)Σ2.00[(Fe0.65Mn0.55Al0.05Mg0.01)(Zr1.79Hf0.01)(Ti1.71Nb1.19Ta0.02)
Si0.02]Σ6.00O14. The latter formula may correspond to nöggerathite-(Ce) or its Mn-dominant analogue
(with Mn > Fe in the M(5) and M(6) sites).

Another crystalline mineral related to zirconolite-3O and nöggerathite-(Ce) is laachite
(Ca2Zr2Nb2TiFeO14), which originates from sanidinite of the Laach Lake volcano and demonstrates a
perfect crystal structure. Laachite is a monoclinic (pseudo-orthorhombic) analogue of zirconolite-3O,
with Nb prevailing over Ti in two octahedral sites [9]. Chemical compositions of 24 samples of
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zirconolite-type minerals from the Laach Lake volcano have been determined by us. Most of
them correspond to stefanweissite (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14 (IMA 2018-020), which is
an analogue of zirconolite-3O with Nb as a species-defining component. Comparative data for
nöggerathite-(Ce), zirconolite-3O, and laachite are given in Table 8 and in Figures 6–8. The main
substitution scheme following from the compositional data for these minerals is: Ca2+ + Ti4+ + Zr4+ ↔
REE3+ + Nb5+ + Mn2+. However, as one can see from Figure 7, the substitution Zr4+ for Mn2+ in the
M(2) site is to be completed with other (subordinate) schemes involving zirconium, most probably
Zr4+ ↔ Ti4+ and/or REE3+ + Zr4+ ↔ Ca2+ + Nb5+.

Table 8. Comparative data for nöggerathite-(Ce) and related minerals.

Mineral Nöggerathite-(Ce) Laachite Zirconolite-3O

Idealized
formula

(Ce,Ca)2Zr2(Nb,Ti)
(Ti,Nb)2Fe2+O14

Ca2Zr2Nb2TiFeO14 CaZrTi2O7

Crystal system
Space group

Orthorhombic
Cmca

Monoclinic
C2/c

Orthorhombic
Cmca

a, Å
b, Å
c, Å
β, ◦

Z

7.2985
14.1454
10.1607

90
4

7.3119
14.1790
10.1700
90.072

4

7.278–7.284
14.147–14.18
10.145–10.148

90
8

Strong lines of the
X-ray powder

diffraction pattern:
d, Å (I, %)

2.963 (91)
2.903 (100)
2.540 (39)
1.823 (15)
1.796 (51)
1.543 (20)
1.519 (16)

4.298 (22)
2.967 (100)
2.901 (59)
2.551 (32)
1.800 (34)
1.541 (24)
1.535 (23)
1.529 (23)

3.176 (30)
2.914 (100)
2.506 (40)
1.980 (90)
1.792 (90)
1.517 (10)

Refractive index 2.267 (mean, calc.) 2.26 (mean, calc.) 2.215 (meas., metamict);
2.26–2.31 (calc.)

Density, g cm–3 5.332 (calc.) 5.42 (calc.) 4.7 (meas.)
4.9 (calc.)

Sources This work [9] [7,8,16,19–22]

Note: For zirconolite-3O the standard space group Cmca is given instead of the space group Acam reported in
earlier publications.

Figure 6. Ratios of large cations with coordination number 8 in zirconolite-type minerals from the Laach
Lake volcano: the holotype (#) and cotype ( ) nöggerathite-(Ce), other nöggerathite-(Ce) samples (×),
the stefanweissite holotype (�), other stefanweissite samples (�), and the holotype laachite (∆).
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Figure 7. The relationships between the Zr and Mn contents (apfu) at the M(2) site of zirconolite-type
minerals from the Laach Lake volcano. The correlation coefficient is R = –0.757 for the whole set of
analyses, but almost no correlation is observed within Zr-rich (i.e., Mn-poor) and Zr-poor (i.e., Mn-rich)
groups of samples separated with ellipses. For legend see Figure 6.

Figure 8. Correlation between contents of Ti and Nb (apfu) in zirconolite-type minerals from the Laach
Lake volcano. Correlation coefficient R = –0.932. For legend see Figure 6.

REE-dominant zirconolite-type minerals (with REE > Ca in atomic units and Y prevailing among
rare-earth elements) have been described in gabbro pegmatite in St. Kilda, Scotland, United Kingdom,
in nepheline syenite from Tchivera, Angola, in metamorphic rocks of the Vestfold Hills, East Antarctica,
and in lunar rocks [6], but crystal structures of these minerals have not been studied because of their
metamict state.

An important specific feature of nöggerathite-(Ce) is its high content of niobium. A review of
localities of zirconolites worldwide and a compilation of chemical compositions of about 300 samples
were provided by Williams and Gieré [6]. All analyses show significant predominance of Ti over Nb.
For most samples the content of Nb2O5 is below 10 wt %. The Nb-richest zirconolite from Vuoriyarvi,
Northern Karelia, Russia, was described by Borodin et al. [23] as “niobozirconolite”. It contains 0.798 Nb
atoms and 1.081 Ti atoms as per a formula calculated on the basis of 7 O atoms. High content of Nb was
also detected in zirconolite samples from Kovdor, Kola, Russia (0.652 apfu Nb vs. 0.857 apfu Ti), Kaiserstuhl,
Germany (0.687 apfu Nb vs. 0.702 apfu Ti), and Sokli, Finland (0.608 apfu Nb vs. 0.773 apfu Ti) [6].
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