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Abstract: The chromium elution behavior of stainless steel (SS) slag depends highly on the chromium
distribution, and the molten modification process proved to effectively improve the chromium
enrichment in stable phases. However, the phase transformation and variation of chromium stability
during the subsequent cooling process is still poorly understood. In this work, the phase composition
and chromium distribution of SS slag from different quenching temperatures were experimentally
studied, and the stability of chromium-bearing phases was evaluated using standard leaching
tests. The results indicated that dicalcium silicate and spinel phases had formed in the molten
slag at 1600 ◦C, while the dicalcium silicate disappeared and the phases of merwinite and melilite
precipitated when the temperature decreased from 1600 to 1300 ◦C (at a rate of 5 ◦C/min). During this
cooling process, the chromium migrated from other phases into the spinel, significantly suppressing
the chromium elution. The leaching results also demonstrated that the potential chromium-bearing
phases of glass, dicalcium silicate and merwinite are unstable and are presumably the main source of
chromium release. The treated SS slag meets the requirements for the utilization of chromium-bearing
slag in the cement and brick industries.

Keywords: metallurgical slag; stainless steel slag; chromium pollution; cooling process; phase
transformation

1. Introduction

Stainless steel (SS) slag is generated during the SS production process and discharged to disposal
pits that occupy large areas. Calcium oxide is a major component in SS slag, which originates from the
addition of lime as flux during the processing of the steel. This is followed by SiO2. Silicon is added
during the metal processing to prevent chromium oxidation; it is also formed during the deoxidation
of the steel. The third dominant composition in the slag is MgO, which originates from the addition of
dolomite as flux and from the refractory lining of the furnace. Some chromium in molten steel can
be oxidized during the smelting process forming chromium oxides, and the content of Cr2O3 in SS
slag is commonly in the range of 2% to 10% [1,2]. Unlike other metallurgical slags, the potential risk of
chromium release from SS slag causes serious environmental concerns which makes it difficult to use
as a resource.

Chromium elution behavior is closely related to its distribution in SS slag [3,4]. Many
studies [5–8] reported that the phases of SS slag mainly include dicalcium silicate (Ca2SiO4), merwinite
(Ca3MgSi2O8), melilite (Ca2MgSi2O7 and Ca2Al2SiO7), periclase (MgO) and spinel (Mg(Al,Cr)2O4).
Chromium can be eluted and oxidized to the toxic hexavalent state (Cr6+) in the natural environment
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when it exists in unstable phases [9–11]. Samada et al. [12] investigated the leaching behavior of
chromium from SS slag into seawater, proposing that the chromium-bearing Ca2SiO4 phase is the
main source of chromium release in marine systems. Spinel was considered to be a target phase for
chromium sequestration due to its excellent stability in both acid and alkaline environments [12–17].
The studies by Kilau [18] and Garcia-Ramos [19] showed that the leachability of chromium can be
suppressed by promoting the formation of the spinel phase in a CaO-SiO2-Cr2O3-(MgO) slag system.
Carbonation treatment for metallurgical slag is regarded as a promising approach for toxic metal
sequestration, while the leachability of chromium was reported to not be significantly affected by
carbonation [20]. Moreover, it was proven that molten modification using spinel forming agents,
such as Al2O3, can accelerate spinel crystallization at up to around 1600 ◦C [21], while the phase
transformation and variation of chromium stability during the subsequent cooling process are still
not clear.

Rapid cooling from high temperature by water granulation can form an amorphous structure
of slag [22], which could encapsulate metals and thereby lower the solubility of heavy metals [17].
This was attributed to the formation of a stable silica network structure that can repel water and
suppress chromium ion elution [23]. However, Engstrom et al. [24] reported that chromium became
more reactive in the presence of some chromium-bearing metastable phases during a rapid cooling
process, so that the chromium pollution risk remains. The difference in the quenching temperature
that researchers employed may be a primary reason for the disagreement.

To clarify this problem and provide some helpful experiences on SS slag remediation, the phase
composition of the SS slag and the chromium distribution from different quenching temperatures 1600,
1500, 1400 and 1300 ◦C were experimentally investigated in this study. Moreover, a standard leaching
test was carried out and the stability of various chromium-bearing phases was evaluated.

2. Experiments

2.1. Experimental Sample and Preparation

Our previous research [20] has proved that molten modification using an Al2O3 can promote
the enrichment of chromium in a spinel phase in SS slag and reduce the leaching of chromium in an
aqueous solution. On the basis of these findings, an Al2O3 modified slag, based on the composition
of an AOD (argonoxygen decarburization) slag, was adopted as the raw material, with the chemical
composition and basicity (CaO/SiO2) as listed in Table 1.

Table 1. The chemical composition of experimental slag, wt %.

CaO SiO2 MgO FeO Al2O3 Cr2O3 CaF2 Basicity

40.8 27.2 9.0 3.0 12.0 5.0 3.0 1.5

2.2. Experiment Procedure

A mass of 15 g slag, with an Al2O3 content of 12%, was poured into a molybdenum crucible
positioned inside a graphite crucible. The graphite crucible was then placed in the constant-temperature
zone of a furnace. High-quality argon (>99.99%) was injected from the bottom of the furnace to protect
the samples from being oxidized. The slags were heated to 1600 ◦C and held for 30 min to achieve a
fully molten state. After that, the temperature was decreased with a fixed cooling rate of 5 ◦C/min,
and the molybdenum crucible was taken out from the furnace when the temperature reached the
predetermined values (1600, 1500, 1400 and 1300 ◦C) and quenched using water. The experimental
apparatus used in this study is illustrated in Figure 1.

After the slag samples were separated from the molybdenum crucibles, an X’Pert Pro diffractometer
(Kα-Cu) (Philips, Amsterdam, The Netherlands) was used for an X-ray diffraction (XRD) analysis to
determine the phase composition of the experiment samples. An Ultra Plus scanning electron microscopy



Minerals 2018, 8, 445 3 of 11

equipped with an energy dispersive spectrometer (SEM-EDS, detection limit of EDS is 0.1%) (HITACHI,
Tokyo, Japan) was conducted to investigate the microstructure and the elemental composition in each
phase of the samples. This EDS analysis was carried out for 15 different fields of SEM at an amplification
factor of 1000. The mass fraction of the precipitated phase was calculated using the mass conservation
principle and the linear least squares methods, which are given as follows:

AX = b, AT AX = ATb, X = (AT A)
−1

ATb (1)

A =


a1 b1 c1 . . . t1

a2 b2 c2 . . . t2

a3 b3 c3 . . . t3
...

an bn cn . . . tn

 X =


X1

X2

X3
...

Xn

 b =


m1

m2

m3
...

mn

 (2)

where Xn is the mass fraction of a specific phase in the sample (%), tn is the mass fraction of a specific
element in the phase (%), and mn is the mass fraction of a specific element in the experimental slag (%).
The calculated mass fraction of the phases was normalized using Equation (3) to ensure the cumulative
value equals 100%.

X∗
i =

Xi
n
∑

i=1
Xi

(3)

where X∗
i is the normalized mass fraction of a specific phase (%).

The distribution ratio of chromium in various phases can be obtained from the precipitated
fraction of each phase combined with the chromium content dissolved in the corresponding phases.
Thus, the enrichment degree of chromium (DCr,i) in a specific phase in a sample can be defined as

DCr,i =
(%Cr)iX

∗
i

n
∑

i=1
(%Cr)iX

∗
i

(4)

where (%Cr)i is the chromium content in a specific phase.
To evaluate the chromium stability in samples quenched from different temperatures, a leaching

test was conducted based on the “Standards of the Environmental Protection Industry of the People’s
Republic of China HJ/T 299-2007”, and the experimental apparatus employed can be seen in Figure 1b.
A mass of 5 g samples was crushed until its particle size was smaller than 74 µm. Then, the sample
powder was poured into 50 mL acid solution (mass ratio 2:1 of sulfuric acid and nitric acid) at
a pH value of 3.2. After 18 h, the leachate was separated by filtrating in a vacuum system. The
amount of chromium in the leachate was determined by ICP-OES (Induced Coupled Plasma-Optical
Emission Spectroscopy, detection limit 0.01 mg/L) (Thermo Fisher Scientific, Waltham, MA, USA).
Three repetitions were performed for each sample.

Furthermore, in order to study the stability of various chromium-bearing phases in SS slag, some
lumps samples were polished using a polisher and several types of abrasive paper to obtain a smooth
flat surface. The samples were held using a Teflon holder and immersed and constantly shaken in the
same solution (see Figure 1c). After 18 h, the lumps were removed from the vessel and subsequently
washed with deionized water, which was performed carefully to avoid any substantial change in the
surface eroded by the solution. A gold spraying process was applied to the flat surface of lumps after
a leaching test to obtain the conductivity for the subsequent SEM-EDS analysis.



Minerals 2018, 8, 445 4 of 11

Minerals 2018, 8, x FOR PEER REVIEW  4 of 11 

 

 

Figure 1. Illustration of the experimental apparatus used in this study. (a) Furnace. 1—cap; 2—furnace 

cover; 3—corundum tube; 4—insulation layer; 5—thermocouple A; 6—sample; 7—refractory; 8—gas 

inlet; 9—thermocouple B; 10—graphite crucible; 11—molybdenum crucible; 12—MoSi2 heating 

elements; 13—gas outlet. (b) For powder leaching. 1—condenser; 2—liquid inlet; 3—three-necked 

flask; 4—oil bath pan; 5—thermocouple; 6—retort stand; 7—pH meter; 8—magneton. (c) For lump 

leaching. 1—Teflon holder; 2—glass beaker; 3—sulfuric acid and nitric acid; 4—lump sample; 5—

automatic temperature-controlled electric heater. 
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Figure 1. Illustration of the experimental apparatus used in this study. (a) Furnace. 1—cap; 2—furnace
cover; 3—corundum tube; 4—insulation layer; 5—thermocouple A; 6—sample; 7—refractory; 8—gas
inlet; 9—thermocouple B; 10—graphite crucible; 11—molybdenum crucible; 12—MoSi2 heating
elements; 13—gas outlet. (b) For powder leaching. 1—condenser; 2—liquid inlet; 3—three-necked flask;
4—oil bath pan; 5—thermocouple; 6—retort stand; 7—pH meter; 8—magneton. (c) For lump leaching.
1—Teflon holder; 2—glass beaker; 3—sulfuric acid and nitric acid; 4—lump sample; 5—automatic
temperature-controlled electric heater.

3. Results and Discussion

3.1. Phase Transformations

The phase transformations in the studied slag during a cooling process were simulated using
FactSage 7.0 software (developed jointly between Thermfact/CRCT and GTT-Technologies, version
7.0, Montreal, Canada-Aachen, Germany) for Gibbs energy minimization. The selected databases
were FToxid, FToxid-slagA, FToxid-Mel, FToxid-spinA and FToxid-C2S, respectively. As shown in
Figure 2a, the theoretically predicted phases that may precipitate in the temperature range from 1800
to 1200 ◦C are spinel ((MgAl,Cr)2O4), dicalcium silicate (Ca2SiO4), merwinite (Ca3MgSi2O8), and
melilite (Ca2MgSi2O7 and Ca2Al2SiO7). The spinel phase can exist in molten slag above 1600 ◦C, and
with a temperature decrease a dicalcium silicate phase subsequently forms. When the temperature
is around 1400 ◦C, merwinite and melilite phases may precipitate, and a crystal transformation of
dicalcium silicate may occur. The mass fraction of some of the main components in the liquid phase
at equilibrium was calculated and the results are plotted in Figure 2b. It can be seen that the Cr2O3

content in the liquid phases changes with the temperature, and is less than 0.1% at around 1300 ◦C. All
this suggests that quenching temperature has a significant effect on the phase composition of SS slag
and chromium distribution.

Figure 3 gives the SEM images of the samples quenched from different temperatures of 1600, 1500,
1400 and 1300 ◦C, respectively. The results indicate that the phase composition obviously changes
with a variation in the quenching temperature. According to Figure 3 and the EDS results given in
Table 2, it was found that the spinel crystals had formed at 1600 ◦C, and a dicalcium silicate phase had
precipitated from the glass. When the quenching temperature was 1500 ◦C, the dicalcium silicate phase
became larger and the merwinite phase appeared. Some glass phase still existed in the sample. When
the quenching temperature was lowered to 1400 ◦C, only three phases of glass, spinel, and merwinite,
respectively, were visible in the SEM image. The dicalcium silicate phase is not detectable in either the
SEM-EDS or the XRD analysis. A melilite phase was found in the sample that was quenched from
1300 ◦C, and the principal phases found are glass, spinel, merwinite, and melilite, respectively.
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Figure 3. SEM images of samples quenched from different temperatures.

Table 2. EDS results of each phase in Figure 3, at %.

Temperature, ◦C Phase Ca Mg Si Al Cr Fe O

1600

Glass-1 17.35 4.22 5.30 12.28 0.42 - 57.53
Spinel-2 1.05 12.74 0.27 10.71 15.72 - 57.36

Dicalcium silicate-3 21.89 4.02 13.49 1.72 0.38 - 57.30

1500

Glass-1 18.71 3.84 13.88 8.74 0.38 0.65 53.97
Spinel-2 0.60 14.02 - 10.00 21.62 1.63 52.13

Merwinite-3 22.73 6.86 15.14 0.97 0.21 0.46 53.83
Dicalcium silicate-4 24.04 2.69 14.08 - - 0.52 58.67

1400
Glass-1 17.66 1.93 11.08 6.13 0.28 1.58 54.77
Spinel-2 0.33 11.54 - 9.00 19.45 1.57 58.11

Merwinite-3 21.23 6.58 14.49 - - - 57.88

1300

Glass-1 18.32 2.26 11.54 4.24 - 1.31 58.62
Spinel-2 0.39 11.65 - 9.22 17.79 1.28 59.66

Merwinite-3 21.62 5.73 14.35 - - - 58.30
Melilite-4 16.52 2.52 11.06 9.13 - - 60.77
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An XRD analysis was performed on the samples quenched from various temperatures. The
results are shown in Figure 4 and are consistent with what can be concluded from the corresponding
SEM-EDS analysis. The variation of phase composition with the quenching temperature proved that
certain phase transformations occur during the cooling process. On the basis of these findings, it was
suggested that the chromium distribution may be controlled by controlling cooling conditions, and,
the stability of chromium may be further improved after a meltcomposition modification.
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3.2. Chromium Distribution

It was found, as listed in Table 2, that the chromium present in the 1600 ◦C-quenched sample
mainly existed in the spinel, glass, and dicalcium silicate phases. When the quenching temperature was
1500 ◦C, the chromium content in dicalcium silicate was below the detection limit of EDS, while the
precipitated merwinite contained some chromium. As the quenching temperature was further lowered
to 1400 ◦C, the chromium content in the glass phase was smaller, while the remaining chromium
mainly enriched in the spinel phase. At 1300 ◦C, no chromium was detected in other phases apart
from the spinel.

The average values of the degree of enrichment of chromium in the various phases from different
quenching temperatures and their corresponding standard deviation (σ) were calculated and are given
in Table 3. The distribution ratio of chromium is shown in Figure 5. It can be seen that 81.2% of the
chromium existed in the spinel phase for 1600 ◦C quenching, and approximately 12.2% and 6.6% of
the chromium were in the glass and dicalcium silicate phases, respectively. With the decrease in the
quenching temperature, some chromium was found in the spinel rather than in the other phases, i.e.,
there was a higher degree of enrichment chromium in the spinel phase. As the quenching temperature
decreased to 1300 ◦C, almost all the chromium existed in the spinel phase. The explanations for the
different final forms in which the chromium exists after quenching could be as follows: The growth of
a spinel crystal during the cooling process requires Cr2O3 feeding, which causes a driving force for
chromium transported from other phases to the spinel. Moreover, the solid solubility of Cr2O3 in the
precipitated silicate phases decreases with temperature, eliminating the Cr2O3 from the merwinite and
melilites [25–27].
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Table 3. Calculated degree of enrichment of chromium in the various phases from different quenching
temperatures and their corresponding standard deviation.

Item Average Value, % Standard Deviation (σ)

DCr,spinel,1600 ◦C 81.2 2.36
DCr,glass,1600 ◦C 12.2 1.09

DCr,dicalcium silicate,1600 ◦C 6.6 2.17
DCr,spinel,1500 ◦C 88.5 2.21

DCr,merwinite,1500 ◦C 6.9 1.33
DCr,glass,1500 ◦C 4.6 2.05
DCr,spinel,1400 ◦C 92.6 1.45
DCr,glass,1400 ◦C 7.4 2.87
DCr,spinel,1300 ◦C >99.9 0.21
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Based on the above discussion, the growth behavior of spinel in the cooling process was
investigated. The mean diameter of the spinel was determined by analyzing the spinel at 15 different
fields with the image analysis software Image-Pro Plus 6, with results as shown in Figure 6. It
was found that the mean diameter was around 6.0 µm for quenching 1600 ◦C and increased when
the quenching temperature was decreased to 1300 ◦C. A rapid increase in spinel size is seen when
comparing quenching from 1400 with quenching from 1300 ◦C, giving a significant increase from 8.5
to 17.3 µm in mean diameter. This increase in spinel size when quenching at lower temperatures is
clearly an important factor for chromium migration.
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3.3. Chromium Stability Evaluation

To evaluate the chromium stability of samples quenched from different temperatures, a batch of
standard leaching tests was conducted. Figure 7 shows the leaching amount of chromium from the
samples quenched from 1600, 1500, 1400 and 1300 ◦C, respectively. Experimental results indicated that,
when the quenching temperature was 1600 ◦C, the chromium concentration in leachate was 1.24 mg/L,
which decreased with lower quenching temperatures. When the sample was quenched from 1300 ◦C,
chromium could no longer be detected in the leachate, which implies a concentration of less than
0.01 mg/L (detection limit of the employed ICP-OES). According to the “environmental protection
technical specifications pollution treatment of the chromium residue” by HJ/T 301-2007 of China, the
limit for chromium leaching is 0.30 mg/L (blue dash line in Figure 7) and 0.15 mg/L (red dash line in
Figure 7) for the utilization of chromium-bearing slag in the cement and brick industries, respectively.
Therefore, a well-designed cooling process may suppress chromium elution from SS slag and make
this by-product suitable for use as a resource.
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The leaching results were in agreement with Samada’s study [12], and the small amount of
chromium leached from the sample quenched from 1300 ◦C is attributed to the high degree of
enrichment of chromium in a stable spinel [18,19]. For the purpose of understanding the stability
of other chromium-bearing phases precipitated during cooling, a stability diagram of several pure
silicates was plotted [28]. Figure 8 gives the amount of calcium leached as a function of the pH value
at 25 ◦C, which could represent the stability of the corresponding silicate. The results indicated that
the large amount of calcium may be eluted from the silicates in an acid solution, meaning that the
dicalcium silicate, merwinite, and melilite are unstable phases. Chromium contained in these phases
would be released along with the decomposition of these phases. Thus, chromium-bearing dicalcium
silicate, merwinite, and melilite may be the main sources of chromium elution.

To verify the proposed speculation, lump samples quenched from 1600 ◦C and 1300 ◦C,
respectively, were selected and corroded for 18 h using a standard acid solution (mass ratio 2:1
of sulfuric acid and nitric acid, pH = 3.2). The morphology of the phases was investigated using
SEM-EDS, and the SEM images are given in Figure 9. It can be clearly seen that significant cracks
formed in the glass and dicalcium silicate phases when quenched from 1600 ◦C, implying that the two
phases were eroded in the acid solution employed. Moreover, the erosion in the dicalcium silicate
phase was found to be more severe.
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For the samples quenched from 1300 ◦C and leached for 18 h, the surface of the merwinite phase
was seriously eroded, while the melilite and spinel phases kept their original morphology. Based on
the above observation, it was concluded that the dicalcium silicate, merwinite, and glass phases were
unstable, while the spinel is apparently the target phase for chromium fixation. Therefore, a cooling
process preferably ensures a full chromium migration into stable spinel phases.

4. Conclusions

The phase composition and chromium distribution of SS slag quenched from different
temperatures were studied, and a batch of standard leaching tests was carried out to evaluate the
stability of various chromium-bearing phases. Experimental results showed that the dicalcium silicate
and spinel phases could form in the molten slag at 1600 ◦C. Comparing quenching from 1600◦C and
1300 ◦C when cooling at a rate of 5 ◦C/min, the dicalcium silicate disappeared in the 1300◦C sample,
which also showed the presence of precipitated phases of merwinite and melilite. Moreover, the degree
of enrichment of chromium in the spinel phase in these samples was 81.2% and >99.9%, respectively,
while the chromium elution from SS slag was smaller for lower quenching temperatures. When the
quenching temperature was 1300 ◦C, almost all the chromium existed in the spinel phases and the
amount of chromium leached in a standard acid solution (mass ratio 2:1 of sulfuric acid and nitric acid,
pH = 3.2) was less than 0.01 mg/L. It was also demonstrated that the elution behavior of chromium
from SS slag depends highly on its distribution across the phases. The glass, dicalcium silicate, and
merwinite are unstable phases, which may be the main source of chromium release in the acid system,
while the spinel is suggested to be a preferable target phase for chromium fixation. Therefore, with
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the consideration of a non-polluting use of SS slag, the cooling process should be carried out under
well-controlled conditions. This work thus provides useful information on SS slag remediation.
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