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Abstract: Measurements of total organic carbon, Rock-Eval pyrolysis, X-ray diffraction, scanning
electron microscope, maceral examination, gas chromatography, and gas chromatography-mass
spectrometry were conducted on the organic-rich shale of Lower Paleozoic Niutitang Formation and
Longmaxi Formation in Dabashan foreland belt to discuss the organic matter characteristic, organic
matter origin, redox condition, and salinity. The results indicate that the Niutiang Formation and
Longmaxi Formation organic-rich shale are good and very good source rocks with Type I kerogen.
Both of the shales have reached mature stage for generating gas. Biomarker analyses indicate that
the organic matter origin of Niutitang Formation and Longmaxi Formation organic-rich shale are
all derived from the lower bacteria and algae, and the organic matter are all suffered different
biodegradation degrees. During Niutitang Formation and Longmaxi Formation period, the redox
conditions are both anoxic with no stratification and the sedimentary water is normal marine water.

Keywords: petrography; organic geochemistry; organic-rich shale; Niutitang Formation; Longmaxi
Formation; Dabashan foreland belt

1. Introduction

China has vast shale gas exploration prospects. Up to 2012, the Chinese shale gas geological
reserves have reached 134 × 1012 m3 with 25 × 1012 m3 recoverable resources [1]. However, due
to the differences in exploration degree, the main proven area of shale gas exploration focused on
south China, especially Sichuan Basin [2–5]. Massive studies indicate that the northern Sichuan Basin,
Dabashan belt, develops numerous organic-rich shale formations [6–10]. The significant formations are
mainly Niutitang Formation and Longmaxi Formation of Lower Paleozoic. The deposition thicknesses
of these two formations are relatively large [11–15], and are affected by later tectonic movement,
their burial depth is rather shallow, displaying good prospect of shale gas exploration [16,17]. Whereas,
the current research of both formations have primarily focused on tectonic evolution history, element
geochemistry, and organic matter enrichment [18–24]. Their petrography and organic geochemistry
characterizations were poorly researched. In this contribution, four profiles were measured, and each
of the two of them were Niutitang Formation and Longmaxi Formation. Based on total organic carbon
(TOC), Rock-Eval pyrolysis, X-ray diffraction, scanning electron microscope, maceral examination,
gas chromatography, and gas chromatography-mass spectrometry, their petrography and organic
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geochemistry characteristics will be discussed. The first aim of the study is to provide a comprehensive
description of the geochemical characteristics of organic-rich shale from the Lower Paleozoic Niutitang
Formation and Longmaxi Formation. The second aim is to characterize their organic matter origin,
redox, and salinity environment.

2. Geological Setting

Located between Yangtze block and Qinling orogenic belt, Dabashan belt is divided into three
secondary tectonic belts: Dabashan thrust nappe belt; Dabashan foreland belt; and Dabashan foreland
depression [25] (Figure 1). Since the Sinian Period, the Dabashan foreland belt mainly underwent
two periods (marine carbonate platform and foreland lacustrine basin) [26]. In Cambrian, Dabashan
foreland belt were epeiric sea environment and developed neritic facies [6,27–30]. Till the late Silurian,
affected by Caledonian movement, the Dabashan foreland belt uplifted comprehensively and stayed
in a long-term rising state [27–30]. This orogeny movement lasts for 120 million years and leads
to the absence of Upper Silurian-Carboniferous stratum [27–30]. Later, a massive transgression
event happened in Late Carboniferous—Early Permian [27–30]. In Middle-Late Triassic, Indosinian
movement caused the collision of the North China Plate and the South China Plate, resulting in the fold
uplift in Dabashan foreland belt [27–30]. After the Late Cretaceous, the plate underwent extensional
tectonics [31,32]. In the Lower Paleozoic, the Upper Yangtze Plate was a marine sedimentary facies and
the Dabashan foreland belt developed into a deep water shelf environment [33]. The main organic-rich
shale in the Lower Paleozoic develops in Niutitang Formation (
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Figure 1. Tectonic setting map of the Dabashan belt in the northwestern Upper Yangtze Plate (modified
from [31]).
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The Dabashan foreland belt develops the strata of Ediacaran to Jurassic. The Lower Paleozoic
develops Cambrian, Ordovician, and Silurian stratum. Niutitang Formation is at the basal of Cambrian,
and Longmaxi Formation is at the uppermost of Ordovician and the basal of Silurian. Both formations
have the integrated contact relationship with the upper and the lower strata. The thickness of Niutitang
Formation is almost 120 m with siliceous shale, carbonaceous shale, shale, and silty mudstone.
While, Longmaxi Formation mainly develops siliceous shale (graptolite fossil), carbonaceous shale,
and mudstone with almost 20 m thickness (Figure 2).

3. Sampling and Methods

Ten siliceous shale samples were obtained from Niutitang Formation and Longmaxi Formation in
the Dabashan foreland belt. Each formation was measured with two sections. The sections’ positions,
rock assemblages, and sampling locations are shown in Figure 2. All samples were collected in Kraft
bags till they were used in experiments with minimal contamination and oxidation. Ten samples
were measured for total organic carbon (TOC), Rock-Eval pyrolysis, X-ray diffraction (XRD), scanning
electron microscope (SEM), and maceral examination. On four samples, gas chromatography (GC)
and gas chromatography-mass spectrometry (GC-MS) were performed.

For TOC, analysis samples were crushed to powder under 200 meshes and the inorganic carbon
was removed by diluted hydrochloric acid. After being combusted at 1200 ◦C in oxygen flow, organic
carbon could be transformed to CO2 using a Multi EA2000 (Analytik Jena AG, Thuringia, Germany).
The samples were analyzed in the LECO CS-400 analyzer (LECO Corporation, St. Joseph, MI, USA).

For Rock-Eval pyrolysis, the instrument was first warmed-up. Then pyrolysis analysis was
conducted on powder samples using Rock-Eval equipment (LECO Corporation, Chicago, IL, USA).
Samples of mass 30 mg were heated to 600 ◦C in a helium atmosphere and S1, S2, S3, S4, and Tmax

were measured.
For mineral content analysis, XRD was performed with a D8 ADVANCE powder diffractometer

with Cu Kα radiation from 5◦ to 60◦, a step increment of 0.02◦, and a counting time of two seconds
per step. The minerals were identified from the diffractograms by referencing to the ICDD Powder
Diffraction File. The analytical uncertainty is less than 1% precision.

SEM was conducted in Hitachi S-4800 (Hitachi High-Technologies Corporation, Tokyo, Japan).
The electronic image resolution is 3.5 nm (30 KV), and the sensitivity is 0.1 Z with the 0.5–30 kV
acceleration voltage. Amplification factor is in range of ×20–×500.

For maceral examination, oil immersion lenses were used with an optical microscope fitted
with a microphotometer, to measure vitrinite reflectance. The samples were crushed and sieved
through 20 mesh and dissolved using HCl and HF. The dry fractions were polished. The percentage
compositions of macerals were counted in the eyepiece cross hairs with an area of (0.1 mm × 0.2 mm).
Reflectance values were used to generate a histogram, and vitrinite reflectance could be confirmed by
standard data under 20 ◦C and 35% humidity.

GC and GC–MS analyses were conducted on a SHIMADZU GC-2010 (SHIMADZU, Kyoto,
Japan), equipped with a 30 m × 0.25 mm × 0.25 mm HP-5 fused silica capillary column,
and an Agilent 6890GC/5975i MS (Agilent Technologies Inc., Santa Clara, CA, USA) with a
60 m × 0.25 mm × 0.25 mm HP-5MS fused silica capillary column, respectively. He is the carrier
gas. The gas was boosted at a rate of 1.0 mL/min. The mass spectrometer was conducted in the
electron ionization mode, and the data of the saturated fraction, terpane, and sterane were acquired.
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Figure 2. The sampling locations of Niutitang Formation and Longmaxi Formation.

4. Results

4.1. Mineralogical Characteristics

The results of XRD analysis are listed in Table 1. Quartz dominates in samples of both in Niutitang
Formation and Longmaxi Formation, with an average concentration of 49.92 wt % (45.50–55.80 wt %)
and 50.74 wt % (41.00–59.50 wt %). Illite takes the second largest portion with the average of 30.78 wt %
(24.4–39.50 wt %) and 34.48 wt % (33.10–35.30 wt %). Besides, chlorite, plagioclase, K-feldspar, pyrite,
dolomite, and calcite are all in a small portion. In Niutitang Formation, pyrite mould hole can be seen
in the coexistence with organic matter (Figure 3A). Affected by oxidation, some pyrite obviously went
through limonitization (Figure 3B). Some corrosion holes in feldspar can also be observed and are
beneficial to hydrocarbon occurrence (Figure 3C). In Longmaxi Formation, pyrite framboids with the
particle diameter of less than 1 µm exist mostly with organic matter (Figure 3D). Illite is mostly in the
form of thin sheet (Figure 3E), and calcite has obvious fracture (Figure 3F).
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Table 1. The mineral content of the shale samples.

Minerals (wt %)
Niutitang Formation Longmaxi Formation

PMZ001 PMZ009 PMH003 PMH008 PMH024 Avg. PMD005 PMD010 PML003 PML007 PML010 Avg.

Quartz 45.50 53.80 55.80 47.70 46.80 49.92 41.00 46.30 59.50 58.90 48.00 50.74
Illite 24.40 32.40 21.90 39.50 35.70 30.78 35.30 34.90 34.40 33.10 34.70 34.48

Chlorite 0.00 0.30 0.00 0.00 0.00 0.06 6.80 5.10 0.00 0.00 3.70 3.12
Plagioclase 25.40 13.50 19.80 12.80 17.50 17.80 11.90 5.80 6.10 8.00 13.60 9.08
K-feldspar 4.70 0.00 2.50 0.00 0.00 1.44 0.00 0.00 0.00 0.00 0.00 0.00

Pyrite 0.00 0.00 0.00 0.00 0.00 0.00 5.00 2.50 0.00 0.00 0.00 1.50
Dolomite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.10 0.00 0.00 0.00 1.02

Calcite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.06
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Figure 3. SEM of minerals characteristics. (A) PMZ001; (B) PMH008; (C) PMH024; (D) PMD010;
(E) PML003; and (F) PML007. (A–C) Niutitang Formation; and (D–F) Longmaxi Formation.

4.2. Organic Petrography

The results of maceral examination are listed in Table 2. Sapropelinite takes the most portions
in both Niutitang Formation and Longmaxi Formation. Besides, a small number of vitrinite-like and
inertinite are also detected (Table 2). The amorphous can be perceived under microscope in both
formations, and the solid bitumen is normally associated with pyrite (Figure 4).

Table 2. The microscopic constituents of organic matter of the shale samples.

Formation Sample ID Sapropelinite
(%) Exinite (%) Vitrinite–Like

(%)
Inertinite

(%) TI

Niutitang
Formation

PMZ001 98.00 0 1.41 0.59 96.35
PMH003 96.25 0 2.81 0.94 93.20
PMH008 96.00 0 2.40 1.60 92.60

Longmaxi
Formation

PMD005 96.48 0 1.87 1.65 93.42
PMD010 97.18 0 0.80 2.01 94.57
PML003 92.95 0 2.54 4.51 86.53
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Figure 4. Photos of maceral examination. (A) PMZ001; (B) PMH008; (C) PMD005; and (D) PML003.
(A,B) Niutitang Formation; and (C,D) Longmaxi Formation.

4.3. TOC and Rock-Eval

The results of TOC and Rock-Eval are listed in Table 3. The TOC of siliceous shale samples of
Niutitang Formation and Longmaxi Formation ranges from 1.15 wt % to 3.66 wt %, and from 3.14 wt %
to 4.42 wt % (Table 3). Tmax of the samples of Niutitang Formation and Longmaxi Formation ranges in
486–511 ◦C and 517–580 ◦C, respectively. S2 of the samples of both formations is very low with the
range of 0.03–0.08 mg/g and 0.03–0.06 mg/g (Table 3). High Tmax with low S2 is probably caused
by relatively high maturity. Additionally, the potential yield (S1 + S2) of the samples also shows
very low value with the range of 0.10–11 and 0.10–0.13 mg/g (Table 3). S3 and S4 of the samples of
Niutitang Formation are in the range of 1.60–2.267 mg/g and 14.61–66.67 mg/g, while S3 and S4 of
Longmaxi Formation are in the range of 1.35–1.78 mg/g and 13.52–31.39 mg/g (Table 3). Furthermore,
HI of Niutitang Formation and Longmaxi Formation vary in the range of 0.9–5.29 mg/g TOC and
0.96–2.40 mg/g TOC (Table 3). OI of Niutitang Formation and Longmaxi Formation vary in the range
40.01–151.31 mg/g TOC and 42.95–132.81 mg/g TOC (Table 3).

4.4. N-Alkanes Characteristic and Isoprenoid

Saturated hydrocarbon chromatogram of Niutitang Formation and Longmaxi Formation both
show almost bimodal type with relatively wide range of main peak (Figure 5). The peak assignments
are listed in Appendix A. The main peak of shale samples of Niutitang Formation are C24 and C18.
The carbon preference index (CPI) is 1.23 and 1.45 with the odd-even predominance of 1.06 and 1.03
(Table 4). The C21+/C22+ is 0.21 and 1.05 and (nC21 + nC22)/(nC28 + nC29) is 1.69 and 2.36 (Table 4).
Pr/nC17 and Ph/nC18 of the samples are 0.59 and 0.57, and 0.74 and 0.75. The Pr/Ph is 0.58 and
0.76, respectively (Table 4). The main peak of shale samples of Longmaxi Formation are C17 and C18

(Table 4). The carbon preference index (CPI) is 1.24 and 1.26 with the odd-even predominance of 1.04
and 0.93 (Table 4). The C21+/C22+ is 0.73 and 1.00 and (nC21 + nC22)/(nC28 + nC29) is 2.57 and 1.58.
Pr/nC17 and Ph/nC18 of the samples are 0.66 and 0.58, and 0.82 and 0.85 (Table 4). The Pr/Ph is 0.7 and
0.8 (Table 4). As can be seen, the samples of Niutitang Formation and Longmaxi Formation all show no
odd-carbon number predominance (Figure 5). N-alkanes without odd-carbon number predominance
normally reflect two organic matter origin types [34,35]. One stems from bacteria and other microbial
wax, and the other comes from high plant wax remolded by bacteria [34,35]. In Cambrian and Silurian,
the higher plants did not appear. Thus, high carbon number does not indicate the source of parent
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material of terrestrial higher plants. Considering the biodegradation of N-alkanes (especially under
C21), the samples of Niutitang Formation and Longmaxi Formation all underwent different degrees
of biodegradation.

Table 3. Results of TOC and pyrolysis data of samples from Niutitang Formation and
Longmaxi Formation.

Formations Samples
ID

TOC
(wt %) Tmax (◦C) S2 (mg/g) S1 + S2

(mg/g) S3 (mg/g) S4 (mg/g) HI (mg/g
TOC)

OI (mg/g
TOC)

Niutitang
Formation

PMZ001 1.62 493 0.08 0.11 1.96 15.06 5.29 129.5
PMZ009 1.78 511 0.05 0.10 2.25 14.82 3.36 151.31
PMH003 3.66 511 0.03 0.10 2.21 28.4 2.11 77.64
PMH008 1.74 510 0.08 0.11 1.6 14.61 3.41 109.08
PMH024 1.15 486 0.03 0.10 2.67 66.67 0.9 40.01

Longmaxi
Formation

PMD005 3.14 517 0.06 0.10 1.38 28.79 1.04 47.88
PMD010 3.21 578 0.05 0.11 1.35 31.39 1.27 42.95
PML003 4.42 541 0.06 0.10 1.8 13.52 2.21 132.81
PML007 3.97 577 0.03 0.13 1.66 33.2 2.4 49.89
PML010 3.45 580 0.04 0.10 1.78 31.33 0.96 56.75

TOC: Total organic carbon. Tmax: maximum peak temperature of Rock-Eval pyrolysis S2. S1: Volatile hydrocarbon
content. S2: Remaining HC generative potential. S1 + S2: Potential of generating hydrocarbon. S3: CO2 content. S4:
10 × residual organic carbon. HI: Hydrogen Index = S2 × 100/TOC. OI: Oxygen Index = S3 × 100/TOC.

Figure 5. M/z85 mass fragment grams of saturated hydrocarbon fractions.
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Table 4. Parameters of n-alkanes and is oprenoid.

Formations Samples
ID CPI OEP C21+/C22+

(nC21 + nC22)/
(nC28 + nC29) Pr/nC17 Ph/nC18 Pr/Ph Peak

Number

Niutitang
Formation

PMZ001 1.23 1.06 0.21 1.69 0.59 0.74 0.58 C24
PMH003 1.45 1.03 1.05 2.36 0.57 0.75 0.76 C18

Longmaxi
Formation

PML003 1.24 1.04 0.73 2.57 0.66 0.82 0.7 C18
PMD010 1.26 0.93 1.00 1.58 0.58 0.85 0.8 C17

Note: OEP: odd-even predominance = (C23 + 6 × C25 + C27)/(4 × C24 + 4 × C26); 8: CPI: carbon preference index =
[(C25 + C27 + C29 + C31 + C33)/(C24 + C26 + C28 + C30 + C32) + (C25 + C27 + C29 + C31 + C33)/(C26 + C28 + C30 + C32
+ C34)]/2.

4.5. Terpenes

The shale samples of Niutitang Formation and Longmaxi Formation are detected with high
abundant of tricyclic terpane (Figure 6). Normally, tricyclic terpane stem from algae and bacteria,
and its thermal stability is stronger than pentacyclic triterpane, especially for C19–C45 of tricyclic
terpane [36–38]. As discussed before, the samples of Niutitang Formation and Longmaxi Formation
suffered biodegradation. That is the reason why the samples contain high tricyclic terpane content.

Figure 6. M/z191 mass fragment grams of saturated hydrocarbon fractions.

The Ts/(Ts + Tm) of the samples of Niutitang Formation is 0.49,with 0.95 and 0.98 of Ts/Tm,
respectively (Table 5). The C3122S/(22S + 22R) and C21/C23 tricyclic terpane are 0.59 and 0.57,
and 0.71 and 0.79. The C26/C25 tricyclic terpane is 0.99 and 0.95 (Table 5). The Ts/(Ts + Tm) of
the samples of Longmaxi Formation is 0.57 and 0.58, with 0.95 and 0.97 of Ts/Tm, respectively
(Table 5). The C3122S/(22S + 22R) and C21/C23 tricyclic terpane are 0.59 and 0.57, and 0.96 and 0.87.
The C26/C25tricyclic terpane is 0.92 and 0.98 (Table 5).

In saturated hydrocarbon fractions of the samples, hopane compounds are also detected with
the most high abundance of C30 hopane.The βα-moretane/αβ-hopance of the samples of Niutitang
Formation is 0.14 and 0.17, While the βα-moretane/αβ-hopance of Longmaxi Formation is 0.17
and 0.14 (Table 5). Moreover, low concentrations of gammacerane has been detected with the
gammacerane/αβC30 hopane of 0.17 and 0.14 in Niutitang Formation and Longmaxi Formation,
respectively (Table 5). Additional relevant parameters are shown in Table 5.
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Table 5. Parameters of terpanes and steranes.

Formations Samples
ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17

C27 C28 C29

Niutitang
Formation

PMZ001 0.49 0.95 0.59 0.59 0.51 0.44 0.14 0.17 0.24 7.33 0.17 0.77 0.71 0.99 1.45 0.40 35.33 30.82 33.86
PMH003 0.49 0.98 0.57 0.58 0.44 0.43 0.17 0.17 0.27 5.87 0.17 0.71 0.79 0.95 0.95 1.00 31.52 31.73 36.74

Longmaxi
Formation

PML003 0.49 0.95 0.57 0.60 0.44 0.46 0.17 0.14 0.28 5.78 0.14 0.61 0.96 0.92 1.06 0.47 31.47 31.76 36.77
PMD010 0.49 0.97 0.58 0.59 0.40 0.49 0.14 0.14 0.28 7.11 0.14 0.61 0.87 0.98 0.90 0.37 28.98 32.87 38.14

Note: 1: Ts/(Ts + Tm); 2: Ts/Tm; 3: C3122S/(22S + 22R); 4: C32αβ22S/(22S + 22R); 5: C29ααα20S/(20S + 20R); 6: C29αββ/(ααα + αββ); 7: βα-moretane/αβ-hopance;
8: Gammacerane/αβ-hopance; 9: 4-Methyl sterane/Regular sterane; 10: C30αβ-hopance/C29Sterane; 11: Gammacerane/C30-hopance; 12: Gammacerane/0.5C31αβ(22R + 22S);
13: C21/C23tricyclic terpane; 14: C26/C25tricyclic terpane; 15: (Pregnane + homopregnane)/C27 regular sterane; 16: Regular sterane/Hopance; 17: Regular steranes.
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4.6. Steroid

According to the M/z217 mass fragmentograms of saturated hydrocarbon fractions, steroid is
dominated by C27–C29 regular sterane (Figure 7). The content of pregnane and homopregnane are
relatively high with some rearranged sterane abundance. The ααα20R regular sterane is dominated
by C27, C28, and C29, showing the “V” distribution shape and high C27 abundance (Figure 7).

Figure 7. M/z217 mass fragment grams of saturated hydrocarbon fractions.

The (Pregnane + homopregnane)/C27 regular sterane of Niutitang Formation is 1.45 and 0.95,
with 0.40 and 1.00 of regular sterane/hopance (Table 5). The (Pregnane + homopregnane)/C27 regular
sterane of Longmaxi Formation is 1.06 and 0.90, with 0.47 and 0.37 of regular sterane/hopance (Table 5).
The abundance of pregnane and homopregnane can reflect the degree of biodegradation, and the high
content of them also indicates that the samples underwent strong biodegradation.

5. Discussion

5.1. Organic Matter Characteristic

5.1.1. Organic Matter Abundance

Directly associated with paleoproductivity and producing hydrocarbons content, organic matter
abundance is one of the most important indexes of source rock evaluation [39]. The TOC analyses
results indicate that the TOC of the shale samples of Niutitang Formation and Longmaxi Formation
ranges in 1.15–3.66 wt % and 3.14–4.42 wt % (Table 3). Previous studies classified 0.4–0.6, 0.6–1.0,
1.0–2.0, and >2.0 as poor, fair, good and very good when applying this standard in Paleozoic source
rocks [40,41]. Therefore, the shale from Niutitang Formation is regarded as the good type and Longmaxi
Formation is the very good type. Furthermore, the diagrams of TOC-S1 + S2 and TOC-S2 can also
illustrate organic matter abundance. In Figure 8A,B, the samples of Niutitang Formation mainly plot
in good area while those of Longmaxi Formation are largely in very good areas, which shows the same
recognition with TOC classification. It is noteworthy that, in Figure 8B, all the samples plot in gas
prone area, probably suggesting that the source rocks of both formations have reached maturity.
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Figure 8. Cross diagrams of TOC versus S1 + S2 (A), and S2 (B). (A,B) Base map is from Gao et al. [42].

5.1.2. Organic Matter Type

For Paleozoic source rocks, conventional methods such as Rock-Eval, don not work anymore [43].
Relatively accurate and efficient methods are maceral examination and organic carbon isotope [43].
In this study, maceral examination was adopted to ascertain organic matter type. From the results
of maceral examination, the sapropelinite of the samples all show high abundance, while vitrinite
and inertinite show less. No exinite is examined in all samples (Table 2). The Type Index (TI) can be
calculated by using the equation: TI = [A × 100 + B × 50 + C × (−75) + D × (−100)]/100. The A, B, C,
and D represent sapropelitic, exinite, vitrinite, and inertinite, respectively [39]. The TI ranges of >80,
80–40, 40–0 and <0 indicate Type I, Type II1, Type II2, and Type III [44]. After calculating the maceral
concentration, the TI of the samples of both Niutitang Formation and Longmaxi Formation are over 80
(Table 2), implying that the organic matter types of the shale of both formations are Type I.

5.1.3. Organic Matter Maturity

The maturity of organic matter can reflect the degree of organic matter evolution. Its common
indicators are Tmax, Ro, biomarkers, etc. [45–47]. Usually, Tmax with the range of <437, 437–450, >450
is classified as immaturity, low-maturity, and maturity [45–47]. As discussed in Section 4.3, the Tmax

of Niutitang Formation and Longmaxi Formation vary in the range of 486–511 ◦C and 517–580 ◦C
(Table 3). All the Tmax analyses show that the siliceous shale of Niutitang Formation and Longmaxi
Formation has reached maturity. TS/(Tm + Ts) ratio increases with the rising maturity and stays
around 0.5 in the late hydrocarbon generation peroid [42,48]. The ratios of both Niutitang Formation
and Longmaxi Formation samples are all 0.49 (Table 5), futher implying that the shales of Niutitang
Formation and Longmaxi Formation have entered maturity.

Besides, the diagrams of OEP-CPI and C29steraneββ/(ββ + αα) − αααC29sterane20S/(20S +
20R) also show that the samples of both Niutitang Formation and Longmaxi Formation have entered
maturity and stay in the gas prone stage right now (Figure 9).
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Figure 9. Cross diagrams of OEP versus CPI (A), and the C29steraneββ/(ββ + αα) versus
αααC29sterane 20S/(20S + 20R) (B). (A,B) Base map is from Li et al. [31].

5.2. Sedimentary Paleo-Environment

5.2.1. Organic Matter Origin

Biomarkers can provide organic matter information comprehensively, expecially organic matter
origin.(nC21 + nC22)/(nC28 + nC29) ratio is the most common proxy to identify hydrocarbon precursor
types of marine and lacustrine. The ratio ranging in 0.6–1.2 and 1.5–2.0 menifest lacustrine and
marine organic matter input, respectively [35]. As can be seen from the Table 4, the ratios of both
Niutitang Formation and Longmaxi Formation are all over 1.5, illustrating that organic matter stems
from marine envrionment.

The distribution pattern of tricyclic terpane C21, C23 and C24 can illustrate organic matter input,
to some extent [46,48]. Researchers found that the “V” shape of C21, C23, and C24 in tricyclic terpane is
usually associated with a salt-water environment and can reflect lower biological input of bacteria
and algae [36]. As can be seen in Figure 6, all the samples show the obvious “V” shape of C21, C23,
and C24, suggesting the organic matter origins of Niutitang Formation and Longmaxi Formation are
both bacteria and algae.

Normally, C27 and C28 regular sterane origin from lower aquatic algae, while, C29 regular sterane
could stem from both lower aquatic algae and higher terrestrial plants [49,50]. After the source rock
studies from Ediacaran and Cambrian, Zhang et al. [51] found about 20–26% C28 regular sterane and
reckoned that C28 regular sterane comes from diatoms. The C28 regular steranes of the shale samples
from Niutitang Formation and Longmaxi Formation are all over 30% (Table 3), further suggesting that
the organic materials are from lower aquatic organisms and algae.

Pregnane and homopregnane are all detected in the samples of both Niutitang Formation and
Longmaxi Formation. Relatively high pregnane series abundance reflect not only salinization degree
of sedimentary water and biodegradation intensity, but also their affiliation of algae source [52].
The (Pregnane + homopregnane)/C27 regular sterane of the samples of Niutitang Formation and
Longmaxi Formation vary in small range with relatively low values (Table 3), showing that on the one
hand, the salinity of the water is not high, on the other hand, the samples underwent biodegradation,
resulting in relatively low sterane concentration.

The diagrams of C21/C23 tricyclic terpane-C26/C25 tricyclic terpane and
Ts/Tm-Gammacerane/C30 hopane also indicates that the organic matter origin of the siliceous shale
of Niutitang Formation and Longmaxi Formation is aquatic organic matter in normal marine water
without stratification (Figure 10).
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Figure 10. Cross diagrams of C21/C23 tricyclic terpane versus C26/C25 tricyclic terpane (A), and the
Ts/Tm versus C30hopane (B). (A,B) Base map is from Gao et al. [42].

5.2.2. Redox Condition

The formation mechanism of pyrite under anoxic and oxidizing environment is different and the
diameter of pyrite particle can be used to distinguish the sedimentary redox condition [53]. In anoxic
condition, the diameter of pyrite particle is relatively small, varying in the range of 1–18 µm with
the average value of 5 µm. While in the oxidizing condition, the diameter mostly becomes bigger
than 20 µm [54]. In maceral examination, a great amount of pyrite develop with solid bitumen, and
pyrite framboids and pyrite mould hole can be clearly seen in both Niutitang Formation and Longmaxi
Formation. The diameters of them are mostly under 1 µm (Figure 3A,D), showing that the shale of
both Longmaxi Formation and Niutitang Formation deposited under anoxic condition.

Pristane (Pr) and phytane (Ph) all stem from phytol, and their abundance proportions change
with the variation of redox condition [39]. In anoxic and oxidizing condition, phytol would transform
to phytane and pristine, respectively. Usually, when Pr/Ph ratio is over one, it means the source
rocks deposits in oxidizing condition with relatively shallow water (e.g., marsh and wetland).
Especially, when the ratio is over three, it reflects the terrestrial organic matter input under weak
oxidation-oxidation conditions [55]. When Pr/Ph ratio is below one, it demonstrates that the source
rocks form in anoxic with relatively deep water (e.g., lacustrine fresh water lakes), and the ratio <0.6
indicates the super salt environment [56,57]. The ratios of the samples of Niutitang Formation and
Longmaxi Formation are all below 1.0 (Table 4), implying that they all deposited in anoxic environment.
The Pr/Ph of the sample PMZ001 is 0.58, suggesting strong salt anoxic environment.

Pr/nC17 and Ph/nC18 can well reflect the degradation of organic matter. Generally, after being
affected by strong degradation, the abundance of pristane and phytane of the sample would show
higher than adjacent normal alkanes [39]. The Pr/nC17 and Ph/nC18 of the samples of Niutitang
Formation and Longmaxi Formation are all relatively low with a small range (Table 4), manifesting the
biodegradation is not strong.
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5.2.3. Salinity

Gammacerane is a kind of C30 triterpane, reduced from tetrahymanal [58]. Generally, gammacerane
is in trace abundance in crude oil and chloroform extract [59]. However, its high abundance
has closed relationship with a strong salinity environment. Therefore, gammacerane index
(Gammacerane/C30-hopance) can well interpret salinity. The gammacerane index of the Longmaxi
samples in northern Guizhou range from 0.97–1.35. Compared with the Cambrian source rocks
(gammacerane index > 0.8) from Tarim Basin, the Longmaxi samples in northern Guizhou showing high
salinity environment [51]. The gammacerane index of the shale samples in this study all show relatively
low value with a small range (all below 0.2) (Table 5), reflecting their salinities are normal marine
water, which is in accordance with the diagram of Ts/Tm-Gammacerane/C30 hopane (Figure 10B).
In addition, the gammacerane/0.5C31αβ(22R + 22S) ratio can also interpret salinity. The ratios of
<0.3, 0.3–0.5, and >0.5 can be regarded as fresh water, brackish water, and salt water, respectively [39].
The gammacerane/0.5C31αβ(22R + 22S) of the shale samples of Niutitang Formation and Longmaxi
Formation are all in the range of >0.5 (Table 5), further showing salt water environment.

6. Conclusions

The organic-rich shale of Niutitang Formation and Longmaxi Formation of Lower Paleozoic are
the major source rocks in Dabashan foreland belt. The assessment results of maceral examination,
TOC, and Rock-Eval show that the shale from Niutitang Formation and Longmaxi Formation are good
and very good with Type I kerogen. Both of the shales have reached mature stage for generating gas.
The organic matter input of organic-rich shale from Niutitang Formation and Longmaxi Formation
are all derived from the lower bacteria and algae. The redox condition of them is all anoxic with no
stratification and the sedimentary water is normal marine water.
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Appendix A

Table A1. Peak assignments for M/z191(I) and M/z217(II) mass fragmentograms of saturated
hydrocarbon fractions.

Peak No. Compound Name

(I)
Ts 18α(H),22,29,30-trisnorneophane

Tm 17α(H),22,29,30-trisnorphane
29 17α,21β(H)-nor-hopane

29M 17β(H),21α(H)-hopane(moretane)
30 17α,21β(H)-hopane

30M 17β,21α(H)-Moretane
31R 17α,21β(H)-homohopane(22R)
32S 17α,21β(H)-homohopane(22S)
32R 17α,21β(H)-homohopane(22R)
33S 17α,21β(H)-homohopane(22S)
33R 17α,21β(H)-homohopane(22R)
34S 17α,21β(H)-homohopane(22S)
34R 17α,21β(H)-homohopane(22R)
35S 17α,21β(H)-homohopane(22S)
35R 17α,21β(H)-homohopane(22R)
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Table A1. Cont.

Peak No. Compound Name

(II)
21a 5α(H),14β(H)-pregnane
22b 5α(H),14β(H)-homopregnane
27c 13β(H),17α(H)-diacholestanes 20S
27d 13β(H),17α(H)-diacholestanes 20R
27e 5α(H),14α(H),17α(H)-cholestanes 20S
27f 5α(H),14β(H),17β(H)-cholestanes 20R
27g 5α(H),14β(H),17β(H)-cholestanes 20S
27h 5α(H),14α(H),17α(H)-cholestanes 20R
29i 24-ethyl-13β(H),17α(H)-diacholestanes 20R
29j 24-ethyl-13β(H),17α(H)-diacholestanes 20S
28k 24-methyl-5α(H),14α(H),17α(H)-cholestanes 20S
28l 24-methyl-5α(H),14β(H),17β(H)-cholestanes 20R

28m 24-methyl-5α(H),14β(H),17β(H)-cholestanes 20S
28n 24-methyl-5α(H),14α(H),17α(H)-cholestanes 20R
29o 24-ethyl-5α(H),14α(H),17α(H)-cholestanes 20S
29p 24-ethyl-5α(H),14β(H),17β(H)-cholestanes 20R
29q 24-ethyl-5α(H),14β(H),17β(H)-cholestanes 20S
29r 24-ethyl-5α(H),14α(H),17α(H)-cholestanes 20R
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