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Abstract: We investigated the crystal and structural behavior of several Cr-bearing spinels from
the Archean chromitites of Amsaga (Mauritania). The chemical and structural data testified a
retrograde metamorphism from amphibolite to greenschist facies, witnessed by relative changes
in the amount of all the major oxides (Cr, Al, Mg, Fe2+, Fe3+), the relative proportion of
Fe3+/Fetot as well as the structural parameters, including the cell edge and the oxygen coordinate.
The general agreement between electron microprobe and Mössbauer data indicates that the analyzed
spinels are stoichiometric. The structural data revealed that the oxygen positional parameter of
amphibole-bearing samples is the highest observed among Cr-bearing spinels with similar Cr# and
Mg#. Consequently, it is suggested that a structural study of detrital Cr-spinels could be important in
discriminating an amphibole-chromitite source from an ophiolite source.

Keywords: Cr-bearing spinel; chemistry; X-ray single crystal diffraction; Mössbauer spectroscopy;
Archean; Mauritania

1. Introduction

Chromium-bearing spinels are commonly considered important petrogenetic indicators [1–5]—due
to general relationships between spinel chemistry, rock type, and post-crystallization processes—which
can be understood from different types of analysis of spinel-bearing assemblages [4,6,7].

The relationships between chemistry, structural parameters, and genetic behaviors have been
considered by several authors. In particular, the crystal chemistry of Cr-spinels from different lithologies,
including mantle xenoliths [8–13], ophiolites [14–18], Alpine peridotites [19,20], komatiites [21], layered
complexes [22–24], inclusions in diamonds and kimberlites [25] as well as in meteorites [26,27], have
previously been studied to better understand genesis and/or oxidation mechanisms.

The massive chromitites samples analyzed in this work come from the Archaean Guelb el Azib
layered complex (GAC; Amsaga Area, West African craton, Mauritania; Figure 1), a meta-igneous
body, comparable to Archeaen anorthosite complexes [28]. In order to better constrain the genesis
and the metamorphic path of these chromitites, the crystal chemical parameters of single crystals
of Cr-spinels have been studied. As some authors [14,15,17,18,29–34] observed non-stoichiometry
of spinels from serpentinized ophiolites and of spinels altered in sedimentary environments, the
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Fe3+/Fetot ratio has also been determined by Mössbauer spectroscopy. This is particularly important
because the estimation of f O2 via geothermobarometry is dependent on the quantification of the Fe3+

contents, which play a fundamental role in the calculation of both magnetite activity in Cr-spinel and
equilibrium temperatures. If deviations from stoichiometry occur and are not detected, the resulting
errors may be very large. By combining these data with those derived from structural refinement and
electron microprobe analysis (EMPA), it will be possible to establish if the studied crystals of chromite
are stoichiometric or not.

Minerals 2018, 8, 27  2 of 15 

 

Cr-spinels have been studied. As some authors [14,15,17,18,29–34] observed non-stoichiometry of 
spinels from serpentinized ophiolites and of spinels altered in sedimentary environments, the 
Fe3+/Fetot ratio has also been determined by Mössbauer spectroscopy. This is particularly important 
because the estimation of fO2 via geothermobarometry is dependent on the quantification of the Fe3+ 
contents, which play a fundamental role in the calculation of both magnetite activity in Cr-spinel and 
equilibrium temperatures. If deviations from stoichiometry occur and are not detected, the resulting 
errors may be very large. By combining these data with those derived from structural refinement and 
electron microprobe analysis (EMPA), it will be possible to establish if the studied crystals of chromite 
are stoichiometric or not. 

 
Figure 1. Geological maps of the West African Craton (a) and the Amsaga area (b). The map of 
Amsaga and the geochronological information are from Potrel (1996) [35]. GAC: Guelb el Aziz 
Complex. 

Hence, the aim of this work, is to verify (a) if it is possible to follow the metamorphic path from 
the amphibolite to the greenschist facies through structural analyses of Cr-spinels; (b) if it is possible 
to discriminate the spinels from amphibolites from those with analogous chemistry of ophiolitic and 
layered complex occurrences, based on structural data; and (c) if the metamorphic overprint 
produced any non-stoichiometry in the studied Cr-spinels. 

2. Materials and Methods 

The Amsaga area, located in the Southern part of the Reguibat Shield, belongs to the Archaean 
domain of the West African craton. This zone is composed of supracrustal units, mainly BIFs (Banded 
Iron Formations), impure marbles, amphibolites and metapelites, with granite-gneiss terrains, 
dominated by migmatitic orthogneiss of TTG (tonalite-trondhjemite-granodiorite) affinity. Potrel 
(1996) [35] dated the migmatized orthogneiss at 3.5 Ga, while charnockitic plutons intruded the 
supracrustal sequences between 2.9–3.0 Ga [36–38]. A main tectono-thermal event affected most of 
the units from Amsaga between 2.9 and 2.7 Ga [36,37], the younger age representing the emplacement 
of a non-metamorphosed mafic intrusion. 

Figure 1. Geological maps of the West African Craton (a) and the Amsaga area (b). The map of Amsaga
and the geochronological information are from Potrel (1996) [35]. GAC: Guelb el Aziz Complex.

Hence, the aim of this work, is to verify (a) if it is possible to follow the metamorphic path from
the amphibolite to the greenschist facies through structural analyses of Cr-spinels; (b) if it is possible
to discriminate the spinels from amphibolites from those with analogous chemistry of ophiolitic and
layered complex occurrences, based on structural data; and (c) if the metamorphic overprint produced
any non-stoichiometry in the studied Cr-spinels.

2. Materials and Methods

The Amsaga area, located in the Southern part of the Reguibat Shield, belongs to the Archaean
domain of the West African craton. This zone is composed of supracrustal units, mainly BIFs
(Banded Iron Formations), impure marbles, amphibolites and metapelites, with granite-gneiss
terrains, dominated by migmatitic orthogneiss of TTG (tonalite-trondhjemite-granodiorite) affinity.
Potrel (1996) [35] dated the migmatized orthogneiss at 3.5 Ga, while charnockitic plutons intruded the
supracrustal sequences between 2.9–3.0 Ga [36–38]. A main tectono-thermal event affected most of the
units from Amsaga between 2.9 and 2.7 Ga [36,37], the younger age representing the emplacement of a
non-metamorphosed mafic intrusion.

Chromitites are found in dissected complexes formed by the association of serpentinites
(former olivine-rich cumulates), mafic olivine-amphibole-spinel-plagioclase rocks (meta-troctolites),
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amphibolites and recrystallized anorthosites [39]. The whole complex is in tectonic contact with TTG
orthogneiss and supracrustal BIF, cipolin and amphibolites. It has been affected by high temperature
metamorphism and deformation, up to 900 ◦C, at 5 kbar, with retrogression, to various extents,
under amphibolite and greenschist-grade conditions. Most chromitites form meter-scale lenses
in the ultramafic, olivine-bearing units but some lenses have also be found in close association
with leuco-amphibolites and anorthosites. These characteristics allow us to link this complex to
well-known, worldwide Archaean anorthosite complexes [28], such as Fiskenaesset in Greenland [40]
and Sittampundi in India [41,42].

On the basis of their dominant silicate matrix minerals, the massive chromitites (from 50 to 90 vol %
chromite) investigated in this study can be subdivided into amphibole-chromitite (AMP-CHR, hereafter),
chlorite-chromitite (CHL-CHR) and talc-serpentine-chromitite (TS-CHR). The amphibole-chromitites
show rounded chromite grains (up to 0.5 cm width), surrounded by high-Al Mg-hornblende, with
no signs of retrogression under greenschist-grade conditions (Figure 2a). Chlorite- and talc-serpentine
chromitite show angular spinel grains (up to several centimeters width) and are affected to various extents
by greenschist hydrothermal metamorphism. The chromite grains can indeed show spongy textures with
numerous chlorite inclusions (Figure 2b) and a ferritchromit replacement.
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2.1. X-ray Single Crystal Diffraction

Nine single crystals of Cr-spinel were analyzed by X-ray diffraction. Data were recorded on
an automated KUMA-KM4 (K-geometry) diffractometer (KUMA, Wroclaw, Poland), using MoKα
radiation, monochromatized by a flat graphite crystal. Twenty-four equivalents of the 12 8 4, at
approximately 80◦ were accurately centered at both sides of 2θ, and the MoKα1 peak barycenter was
used for cell parameter determination. Data collection was made, according to [43], up to 55◦ of θ in
theω-2θ scan mode, at a scan width of 1.8◦ 2θ, and a counting time from 20 to 50 s, depending on the
peak standard uncertainty. Structural refinement, using the SHELX-97 program [44], was carried out
against Fo2

hkl in the Fd-3m space group (with origin at −3m), since no evidence of different symmetry
appeared. Scattering factors were taken from [45,46]. Neutral scattering curves—Mg vs. Fe in T
site and Cr vs. Al in M site—were assigned, with the constraints of full site occupancy and equal
displacement parameters. Oxygen ionization was varied from one grain to another, in order to reach
the best fit between structural refinement and chemical analyses and to obtain the best value for all
conventional agreement factors.

It should be noted that the analyzed crystals are full of inclusions, and this fact could have caused
a depletion in some structural parameters. Crystallographic data are listed in Table 1.

Table 1. Results of structure refinement.

Sample MA422 MA238 MA44 MA400 MA17 MA226 MA440 MA425 MA273

Matrix Talc-Serp Chl Chl Chl Chl Chl Amph Amph Amph

a0 8.3571 (5) 8.2933 (3) 8.2854 (5) 8.3142 (4) 8.2770 (4) 8.2825 (2) 8.2561 (7) 8.2635 (6) 8.2601 (4)
u 0.2626 (2) 0.2634 (2) 0.2630 (1) 0.2628 (2) 0.2633 (1) 0.2628 (1) 0.2635 (1) 0.2638 (2) 0.2633 (1)

T–O 1.9920 (5) 1.9892 (3) 1.9800 (6) 1.9847 (4) 1.9828 (4) 1.9764 (2) 1.9809 (7) 1.9865 (7) 1.9788 (3)
M–O 1.990 (1) 1.968 (1) 1.970 (1) 1.9575 (9) 1.965 (1) 1.9705 (8) 1.9575 (9) 1.959 (2) 1.961 (1)

m.a.n. T 24.3 (8) 24.5 (4) 21.6 (4) 20.9 (4) 21.4 (3) 19.9 (2) 22.4 (5) 23.8 (6) 20.5 (4)
m.a.n. M 22.7 (9) 19.8 (2) 20.5 (5) 21.5 (3) 19.5 (3) 20.1 (2) 18.8 (4) 18.8 (3) 19.2 (4)

U (M) 0.0054 (2) 0.0057 (1) 0.0048 (2) 0.0050 (2) 0.0060 (1) 0.0064 (1) 0.0061 (2) 0.0048 (3) 0.0054 (2)
U (T) 0.0076 (3) 0.0078 (2) 0.0076 (2) 0.0078 (4) 0.0087 (2) 0.0085 (2) 0.0081 (2) 0.0089 (4) 0.0078 (2)
U (O) 0.0072 (5) 0.0083 (4) 0.0070 (4) 0.0071 (5) 0.0084 (4) 0.0087 (2) 0.0084 (4) 0.0085 (7) 0.0075 (4)
Nrefl 133 132 137 118 129 166 134 87 137
R1 3.26 2.75 2.90 3.25 2.91 3.38 2.89 3.40 3.29

wR2 6.45 5.41 5.07 5.51 5.10 6.05 5.61 5.13 5.41
GooF 1.235 1.254 1.326 1.279 1.300 1.403 1.209 1.241 1.248

Note: a0: cell parameter (Å); u: oxygen positional parameter; T–O and M–O: tetrahedral and octahedral bond
lengths (Å), respectively; m.a.n. T and M: mean atomic number; U(M), U(T), U(O): displacement parameters for M
site, T site and O; NRefl: number of unique reflections; R1 all (%), wR2 (%), GooF as defined in Sheldrick (2008) [44];
Space Group: Fd-3m. Origin fixed at −3m, Z = 8; reciprocal space range: −19 < h < 19; 0 < k < 19; 0 < l < 19. Serp:
serpentine; Chl: chlorite; Amph: amphibole.

2.2. Electron Microprobe Analyses

After X-ray data collection, the same crystals used for X-ray data collection were mounted on
glass slides, polished and carbon coated for electron microprobe analyses on a CAMECA-CAMEBAX
microprobe (CAMECA, Gennevilliers Cedex, France) at IGG-CNR (Istituto di Geoscienze e
Georisorse-Consiglio Nazionale delle Ricerche), Padua, operating at 15 kV and 15 nA. A 20 s counting
time was used for both the peak and total background. Synthetic MgCr2O4 and FeCr2O4 spinels were
used for Mg, Cr and Fe determination, Al2O3 for Al, MnTiO3 for Ti, and Mn, NiO for Ni and sphalerite
for Zn. The following diffracting crystals were used: TAP for Al and Mg, PET for Ti and Ti, and LIF
for Cr, Fe, Mn, Ni, V and Zn. Raw data were reduced by a PAP-type correction software provided by
CAMECA. Chemical data are listed in Table 2.
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Table 2. Mean chemical analyses (10–15 spot analyses for each crystal) and cation distribution in T and
M sites of the analysed Cr-spinels, on the basis of four oxygen atoms per formula unit.

Sample MA422 MA238 MA44 MA400 MA17 MA226 MA440 MA425 MA273

Matrix Talc-Serp Chl Chl Chl Chl Chl Amph Amph Amph

MgO 1.9 (2) 2.3 (1) 7.2 (1) 7.7 (2) 6.4 (1) 9.6 (5) 5.3 (2) 4.5 (1) 8.8 (1)
Al2O3 6.5 (6) 20.0 (2) 17.5 (2) 12.0 (2) 22.4 (2) 19.1 (1) 25.5 (4) 25.2 (2) 24.3 (2)
TiO2 0.33 (8) 0.0 0.28 (4) 0.33 (4) 0.32 (5) 0.30 (6) 0.24 (1) 0.26 (9) 0.33 (5)
V2O3 0.21 (3) 0.23 (3) 0.15 (3) 0.14 (4) 0.21 (3) 0.17 (3) 0.22 (2) 0.21 (6) 0.24 (3)
Cr2O3 46.0 (4) 37.8 (3) 42.0 (3) 49.7 (4) 37.9 (4) 44.9 (3) 37.2 (6) 37.4 (5) 39.4 (4)
MnO 1.2 (1) 0.82 (7) 0.36 (3) 0.35 (3) 0.43 (4) 0.40 (8) 0.36 (3) 0.34 (3) 0.32 (3)
FeOtot 41.8 (5) 37.6 (4) 31.1 (5) 27.5 (5) 31.6 (4) 24.8 (6) 31.2 (5) 31.9 (3) 26.9 (2)
NiO 0.08 (3) 0.10 (3) 0.07 (3) 0.08 (3) 0.09 (2) 0.12 (2) 0.07 (3) 0.11 (4) 0.15 (3)
ZnO 0.37 (4) 0.64 (5) 0.45 (4) 0.31 (4) 0.31 (5) 0.17 (8) 0.27 (5) 0.28 (8) 0.28 (8)
Sum 98.41 99.56 99.14 98.11 99.65 99.54 100.37 100.3 100.6
FeO 28.6 (5) 30.2 (4) 23.1 (5) 21.3 (5) 25.3 (4) 19.9 (6) 27.7 (5) 28.8 (3) 22.5 (2)

Fe2O3 14.7 8.2 8.9 7.0 7.0 5.4 3.9 3.5 4.9
Sum 99.88 100.4 100.03 98.80 100.35 100.08 100.70 100.76 101.00

T Site

Mg 0.056 (4) 0.104 (6) 0.285 (5) 0.360 (8) 0.260 (5) 0.434 (18) 0.215 (7) 0.185 (5) 0.351 (4)
Al 0.020 (6) 0.000 (0) 0.028 (1) 0.003 (1) 0.039 (1) 0.000 (0) 0.039 (3) 0.003 (1) 0.037 (1)

Fe2+ 0.841 (16) 0.800 (8) 0.626 (10) 0.577 (11) 0.676 (8) 0.482 (14) 0.696 (11) 0.735 (7) 0.582 (6)
Fe3+ 0.037 (5) 0.056 (4) 0.039 (4) 0.042 (5) 0.005 (1) 0.068 (12) 0.034 (7) 0.061 (7) 0.020 (3)
Mn 0.036 (2) 0.023 (2) 0.010 (1) 0.010 (1) 0.012 (1) 0.011 (2) 0.009 (1) 0.009 (1) 0.008 (1)
Zn 0.009 (1) 0.016 (1) 0.011 (1) 0.008 (1) 0.007 (1) 0.004 (2) 0.006 (1) 0.007 (2) 0.002 (1)

M Site

Al 0.281 (23) 0.788 (7) 0.653 (7) 0.474 (7) 0.807 (6) 0.716 (8) 0.920 (12) 0.947 (8) 0.856 (7)
Cr 1.298 (16) 1.000 (8) 1.090 (8) 1.327 (10) 0.963 (9) 1.128 (12) 0.936 (12) 0.946 (8) 0.972 (8)
Mg 0.048 (6) 0.011 (2) 0.064 (3) 0.029 (2) 0.045 (2) 0.025 (4) 0.034 (3) 0.032 (2) 0.056 (2)
Fe2+ 0.010 (2) 0.043 (2) 0.000 (0) 0.020 (2) 0.005 (1) 0.050 (4) 0.035 (3) 0.037 (2) 0.003 (1)
Fe3+ 0.345 (15) 0.150 (6) 0.177 (8) 0.134 (9) 0.165 (7) 0.065 (11) 0.056 (9) 0.024 (4) 0.096 (6)
Ni 0.002 (1) 0.003 (1) 0.003 (1) 0.003 (1) 0.002 (1) 0.003 (1) 0.002 (1) 0.003 (1) 0.004 (1)
Ti 0.008 (2) 0.007 (1) 0.008 (1) 0.008 (1) 0.008 (1) 0.006 (2) 0.006 (2) 0.008 (1)
V 0.006 (1) 0.006 (1) 0.004 (1) 0.004 (1) 0.005 (1) 0.004 (1) 0.005 (1) 0.006 (2) 0.007 (1)

Cr# 0.81 0.56 0.62 0.74 0.53 0.61 0.49 0.50 0.52
Mg# 0.11 0.12 0.36 0.39 0.31 0.46 0.26 0.22 0.41
Fe3+# 0.09 0.10 0.11 0.09 0.09 0.07 0.05 0.04 0.06
F(x) 0.422 0.065 0.606 0.092 0.082 0.095 0.043 0.075 0.042

Note: Fe3+ from stoichiometry. F(x): minimisation factor, which takes into account the mean of square differences
between calculated and observed parameters, divided by their standard deviations. Serp: serpentine; Chl: chlorite;
Amph: amphibole; Cr#: Cr/(Cr + Al); Mg#: Mg/(Mg + Fe2+); Fe3+#: Fe3+/(Fe3+ + Cr + Al) Estimated standard
deviations are in brackets.

2.3. Cation Distribution

Several different procedures may be adopted to determine cation distribution [47,48], and
satisfying results can generally be obtained by combining data from single-crystal X-ray structural
refinements and electron microprobe analyses. This approach simultaneously takes into account
both the structural and chemical data and reproduces the observed parameters by optimizing cation
distributions. Differences between measured and calculated parameters are minimized by a function,
F(x), taking into consideration different observed quantities, such as a0, u, T- and M-m.a.n., atomic
proportions, and constraints imposed by the crystal chemistry (total charges and T and M site
populations). Several minimization cycles of F(x) were performed up to convergence. A summary of
the procedure can be found in [27]. The obtained cation distributions are listed in Table 2.

2.4. Mössbauer Spectroscopy

The oxidation state of Fe in the studied samples was determined by Mössbauer spectroscopy,
using a conventional spectrometer system (WissEl GmbH, Starnberg, Germany), operated in constant
acceleration mode, with a triangular reference signal and a 57Co, Rh matrix source with a nominal
activity of 50 mCi. Absorbers were prepared by grinding 8–20 mg of sample material with ca 80 mg
acrylic resin (Transoptic powder), followed by pressing to discs of 12-mm diameter, under moderate
heating. The Fe thickness of the absorbers were kept below that required for the thin-absorber
approximation (<5 mg Fe/cm2). Spectra were acquired over 1024 channels in the velocity range−4.5 to
+4.5 mm/s, and calibrated against an α-Fe foil (thickness = 25 µm) before folding and reduction to 256
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channels. Data collection time varied from two to five days. A least-squares fitting software (MDA) [49]
was used to analyze the spectra. Most spectra could be adequately fitted with one doublet assigned
to Fe3+ and three doublets assigned to Fe2+; however, one sample (MA422) displayed additional
absorption bands caused by a magnetic phase. A spectrum acquired in a wider velocity range (−11
to +11 mm/s) showed that this phase was magnetite (also observed in the serpentinite-bearing
matrix). Several studies have shown that the recoil-free fractions for Fe2+ and Fe3+ are unequal [50,51].
The absorption area ratios obtained for the Fe2+ and Fe3+ doublets were accordingly corrected for
unequal recoil-free fractions based on the data presented in [50] and the composition of the studied
samples, using a value of 0.687 for Fe2+ and 0.887 for Fe3+. Results are listed in Table 3.

Table 3. Mössbauer parameters obtained for spinel samples at room temperature.

Sample MA422 MA238 MA44 MA400 MA17 MA226 MA440 MA425 MA273

Assignment

Fe2+ (1)

% Area 14.9 23.2 22.9 11.1 27.8 22.7 32.9 31.0 29.5
Γ 0.37 0.42 0.42 0.32 0.40 0.40 0.41 0.41 0.42
δ 0.92 0.90 0.91 0.95 0.91 0.92 0.91 0.92 0.92

∆EQ 1.82 1.86 1.83 1.71 1.85 1.83 1.87 1.88 1.88

Fe2+ (2)

% Area 21.9 27.6 23.9 28.0 25.7 28.2 27.9 32.0 28.3
Γ 0.40 0.40 0.39 0.37 0.37 0.40 0.37 0.39 0.39
δ 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

∆EQ 1.30 1.32 1.34 1.29 1.32 1.32 1.32 1.32 1.33

Fe2+ (3)

% Area 36.1 24.0 21.1 32.1 20.8 23.5 23.1 22.2 20.8
Γ 0.45 0.40 0.38 0.38 0.36 0.38 0.37 0.38 0.37
δ 0.93 0.95 0.95 0.92 0.93 0.93 0.92 0.93 0.94

∆EQ 0.68 0.77 0.78 0.78 0.81 0.79 0.82 0.80 0.80

Fe3+

% Area 27.2 25.3 32.1 28.8 25.7 25.5 16.1 14.9 21.4
Γ 0.31 0.38 0.35 0.29 0.31 0.32 0.30 0.32 0.34
δ 0.37 0.36 0.35 0.35 0.36 0.35 0.36 0.35 0.35

∆EQ 0.52 0.58 0.57 0.53 0.59 0.55 0.60 0.60 0.58

χ2 2.71 3.30 1.65 1.65 3.01 2.12 2.81 2.23 3.10
Fe3+/Fetot 0.224 0.208 0.268 0.239 0.211 0.210 0.129 0.119 0.174

Note: % Area = integrated intensities given in % of total Cr-spinel absorption area; Γ = full width at half maximum
in mm/s; δ = centroid shift in mm/s; ∆EQ = quadrupole splitting in mm/s. For sample MA422, the absorption
area of a magnetic phase (32.1%) was excluded from the listed integrated intensities. The Fe3+/Fetot ratios were
calculated from the observed integrated intensity relations using recoil-free fractions of 0.687 for Fe2+ and 0.887 for
Fe3+. Errors in Fe3+/Fetot ratios are estimated to be ±0.02. The obtained Γ-values for the Fe-standard were within
0.15–0.16 mm/s.

3. Results

Regarding the structural data, the cell edge of the analyzed crystals ranges between 8.2561 (7)
and 8.3571 (5) Å, while the oxygen positional parameter is between 0.2626 (2) and 0.2638 (2) (Table 1).
It is possible to discriminate the samples into three groups, according to their host lithology and their
structural parameters. The sample occurring in TS is characterized by a larger cell edge (8.3571 Å) and
lower u value (0.2626), whereas those occurring in AMP show the smallest cell edges (8.2561–8.2635 Å)
and the highest u values (0.2633–0.2638), and those from CHL show values in between the other two
groups (8.2770–8.3142 Å; 0.2628–0.2634, respectively). In Figure 3, for comparison, samples from
layered complexes, such as Bushveld, Rum and Stillwater complexes [22–24], ophiolites [14,16–18],
komatiites [21] and synthetic MgCr2O4-FeCr2O4 series [52], are plotted. While there is a certain overlap
for the Cr-spinels in chlorite matrix, the other spinels fall outside the previously defined fields.

Also, the chemical compositions of the studied samples show distinct variations, according to
the host lithologies (TS-CHR, CHL-CHR and AMP-CHR). These three groups have different chemical
characteristics, especially regarding the Cr, Fe3+ and Al contents (Table 2); in detail, Cr2O3 spans from
46 wt % (TS-CHR) to 37–50 wt % (CHL-CHR) and 37–39 wt % (AMP-CHR), Fe2O3 from 14.7 wt %
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(TS-CHR) to 5.4–8.9 wt % (CHL-CHR) and 3.5–4.9 wt % (AMP-CHR). The Al2O3 content varies strongly
from 6.5 wt % (TS-CHR) to 12–22 wt % (CHL-CHR) and 24–25 wt % (AMP-CHR), whereas MgO is very
low in the TS-CHR spinel (about 2 wt %), within 2–10 wt % in the CHL-CHR samples, and spans from 5
to 9 wt % in the AMP-CHR samples. Other oxides are rather low, with TiO2 showing an average value
of about 0.3 wt %. In the frequently used Cr–Fe3+–Al ternary plot (Figure 4), the studied samples plot
in an area where samples from ophiolites, komatiites and continental layered intrusions partly overlap,
while in the Cr# vs. Fe# diagram (Figure 5), where Cr# is Cr/(Cr + Al) and Fe# is Fe2+/(Fe2+ + Mg),
they fall outside the fields covered by these lithologies.
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Representative Mössbauer spectra of the studied chromite samples are shown in Figure 6, and the
results from the spectral fitting, including hyperfine parameters, absorption areas and oxidation ratios,
after correction for different Fe2+ and Fe3+ recoil-free fractions, are listed in Table 3. The obtained
Fe3+/Fetot oxidation ratios show pronounced variation from a minimum value of 12% to a maximum
value of 27%, which is markedly coupled to sample host lithology. More precisely, the CHL-CHR
samples are relatively oxidized with ratios in the range 21–27%, while those in the AMP-CHR matrix
display more reduced ratios in the range of 12–17%. The single sample from the TS matrix shows
an oxidation ratio of 22%, which is within the range of the CHL-CHR samples. The oxidation
ratios obtained from Mössbauer spectroscopy are normally quite similar to those calculated based
on the chemical analyses and charge considerations (Figure 7), which confirms that the samples are
stoichiometric. An exception is sample MA422 for which the EMPA data show a considerably higher
Fe3+/Fetot ratio compared to the MS data.
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4. Discussion

4.1. Crystal Chemical Considerations

From a structural point of view, the Cr-bearing spinels from the Guelb El Azib complex are similar
to those from continental intrusions, like Bushveld and Stillwater [22,24] (Figure 3). However, at
least some of them show higher oxygen parameter values, typical of a more ordered distribution
with trivalent cations in the M site and divalent cations in the T site, which indicates slow cooling.
The observed oxygen parameters are rather different from samples from ophiolites [14,16–18].
According to the petrological observations and in comparison with experimental data by [39], the
formation of the complex can be explained by fractionation of a slightly hydrous high-alumina basaltic
melt at low pressure. The early fractionation of olivine and the absence of massive clinopyroxene
fractionation before plagioclase saturation led to crystallization of highly calcic plagioclase with
Fe- and Al-rich, but Cr-poor, chromite, from a hydrous tholeiitic parental magma, similar to worldwide
Archean tholeiites. In the Cr-Fe3+-Al plot (Figure 4), the AMP-CHR spinels fall in the field of ophiolites,
while the CHL-CHR samples fall in the area where overlapping occurs between the ophiolite, komatiite
and continental intrusion fields. In the Cr# vs. Fe# diagram (Figure 5), some of the here-studied spinels
fall in the Fiskenæsset field, others in the overlapping fields of oceanic arcs, komatiites and continental
intrusions. Rollinson et al. (2010) [40] supposed an igneous origin for the amphibole present in the
anorthositic chromitites of Fiskenæsset that seem to be analogous to the chromitites we examined
herein. The presence of associated talc-serpentine and chlorite-bearing chromitite rocks in Amsaga
make us confident in hypothesizing one or more metamorphic events affecting these rocks, so that the
presence of amphiboles could be related to the metamorphism [39]. According to these authors, it is
not possible to establish which were the primary igneous structures, textures, modal and mineralogical
compositions because of the metamorphism that pervaded the Guelb el Azib complex, which means
that the “primary” composition of the here-studied spinels is unclear. Amphibolite-hosted spinels
are generally characterized by high Al and Mg contents, according to [53], and their paragenesis
seems to be the result of pyroxene-consuming retrograde metamorphism that produces amphibole
as a secondary phase. The composition of these spinels is typical of high temperature (granulite to
amphibolites facies conditions) meta-troctolites [39]. Their composition suggests that high-grade
metamorphism has led to enrichment in the spinel end-member with leaching of Cr [39].

During the second phase of the metamorphism, they crossed the transition from lower
amphibolites facies to upper greenschist facies. Within the CHL-CHR group, there is a decrease
in Al and an increase in Mg, in spinels, possibly due to the breakdown of the aluminous Cr-bearing
spinel and other coexisting Mg-rich phases. In this step, there is a small increase in Mg in spinel,
with the remaining Mg, and almost all Al, entering chlorite. The third step is characterized by a shift
from high grade greenschist to low grade greenschist [39]. According to the literature concerning
the metamorphic alteration of Cr-spinels [53–59] during greenschist facies metamorphism, Mg- and
Si-rich fluids (derived from low temperature serpentinization of olivine and pyroxenes) react with
chromite to form chlorite; as a consequence, chromite was altered to form a FeO- and Cr2O3-rich, and
Al2O3-poor chromite. This process caused a shift in both cell edge and u to their actual positions in
Figure 2, close to the FeCr2O4 end-member [52]. At the same time, Mg, diffusing out from chromite
and olivine present in the former olivine-chromitite rocks, entered into talc and serpentine minerals.
Then, during lower temperature amphibolite facies metamorphism, there is the replacement of the
primary and previously altered chromite by Fe2O3-rich chromite (ferritchromite).

4.2. Thermometric Considerations and Oxidation Evaluation

According to phase diagram calculations and amphibole-plagioclase thermometry, the Guelb el
Azib complex underwent granulite facies metamorphism, followed by retrogression in the amphibolite
facies (650–800 ◦C), where green hornblende, resembling those from amphibole-chromitite, formed [39].
Similar temperatures were determined with the thermometer by [60] on the amphibole-chromitites.
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Our samples show a continuous evolution from an Al-chromite type to an almost pure chromite
type, with crystallographic features suggesting an initial weak recrystallization, with subsequent
low-temperature oxidation. Gervilla et al. (2012) [61] showed that between 550 and 700 ◦C
(depending on pressure), the infiltration of water into chromitites might promote the reaction of
primary chromite with matricial olivine to produce chlorite in equilibrium with “secondary” chromite
residually enriched in Cr and Fe2+ (ferrous chromite). According to these authors, this reaction
produces ~43% loss of the mass of chromite that is not compensated by modification of the initial
size of the chromite grain, but by the development of a spongy or porous texture in the ferrous
chromite. They also observed that some pores remain empty. Those pores are unlikely to remain open
unless this occurs at the surface—so the open pores may originally have been fluid-filled. However,
most of them are now filled by chlorite, produced as a consequence of the abovementioned reaction.
Lenaz et al. (2014) [17] showed that in Oman ophiolite, the temperature of oxidation ranges between
675 and 861 ◦C (olivine-chromite thermometry) [62]. According to several authors [53,54,58,63],
the temperature at which ferritchromite forms is between 500 and 600 ◦C. Given this, it is possible to
assume that non-stoichiometric spinels with abundant cation vacancies in the structure are the result
of an oxidation event that took place at a temperature between the one of ferritchromite formation
and the one calculated for the not oxidized spinels, i.e., more or less in the range 600 and 700 ◦C.
The high Cr# promotes the formation of structural vacancies during oxidation, possibly because in
such samples, where the chromite component is abundant, it is easier to oxidize Fe2+ and create
vacancies following the reaction 3Fe2+ + O2 → 2Fe3+ + �, where � is a structural vacancy [29]. Even if
metamorphic processes are evident, the f O2 in Amsaga was not sufficient to create non-stoichiometric
spinels, possibly due to the low chromite component (i.e., low Fe2+ and Cr content) of the present
spinels. However, a continuous increase in the Fe3+/Fetot ratio, from the AMP-CHR to the TS-CHR
spinels, can be discerned.

Recently, Lenaz et al. [64] showed that powder Mössbauer spectroscopy determination of
Fe3+/Fetot ratios in some cases can differ considerably from that calculated via EMPA, due to the
fact that grains with different oxidation degrees may be present in the powders, demonstrating the
advantage of point-source Mössbauer measurements. Nevertheless, in the present case, the comparison
between Fe3+/Fetot, measured with EMPA and Mössbauer, generally shows only a small difference
(Table 3; Figure 7), apart from the TS-CHR (MA422) sample. Consequently, all the other samples can
be considered homogeneous and stoichiometric. The reason for the larger difference observed for the
MA422 sample is likely related to differences in Fe3+/Fetot between individual crystals showing a
large spread of spinel compositions, due to hydrothermal alteration and the presence of magnetite, as
evidenced by MS analysis and petrographic observations [39], and the fact that the Mössbauer data is
based on analysis of a number of crystals, as opposed to the single-crystal XRD data.

Cr-bearing spinels have been considered important petrogenetic indicators by many
authors [65–71], due to their chemical variability in parental melt composition and/or crystallization
conditions in igneous rocks, and as paleogeographic indicators in geodynamic reconstructions, because
of their resistance to mechanical stress, weathering and diagenesis in sedimentary environments.
Commonly-used diagrams for these purposes are the Cr# vs. Mg# and the TiO2 vs. Al2O3 [3,5] as
well as the Cr-Fe3+-Al ternary plot. However, as can be seen in Figures 4 and 5, these diagrams show
considerable overlap between several occurrences. Interestingly, the oxygen positional parameter
of the spinels seems to be a distinctive feature. In fact, our preliminary data evidence how spinels
from amphibolites show higher values than those from ophiolite hosted Cr-spinels, being unique in
such cases. To our knowledge, only two structural studies have been performed on detrital spinels to
identify their possible sources [72,73]. The preliminary data obtained in this study seem promising
because they could be a valuable help in discriminating the source when the exact provenance of
detrital spinels is ambiguous, as also evidenced by [25].
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5. Conclusions

In the past few years, most studies on Cr-bearing spinels have dealt with possible non-stoichiometry
from different spinel occurrences. In the present study, the general agreement between electron
microprobe and Mössbauer data indicates that the analyzed spinels were stoichiometric. Moreover, the
structural data revealed that the oxygen positional parameter of amphibole-bearing samples was the
highest observed among Cr-bearing spinels with similar Cr# and Mg#. Consequently, it is suggested that
a structural study of detrital Cr-spinels could be important in discriminating an amphibole-chromitite
source from an ophiolite source.
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