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Abstract: The temperature-induced desorption of methyl tert-butyl ether (MTBE) from aqueous
solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and
chromatographic techniques. This kind of information is crucial for designing and optimizing
the regeneration treatment of such zeolite. The evolution of the structural features monitored by
full profile Rietveld refinements revealed that a monoclinic (P2; /1) to orthorhombic (Pnma) phase
transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in
the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C.
Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite
crystallinity loss, but with slight deformations in the channel apertures.
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1. Introduction

The removal of methyl-tert-butyl-ether (MTBE, C5H;,0) from surface waters, groundwater and
urban storm water is an important goal in water treatment technology [1,2] due to the widespread
occurrence of MTBE, combined with possible human carcinogenic effects [3]. This chemical is one of
the main constituents of petroleum fuel and is characterized by small molecular size, high aqueous
solubility (43,000-54,300 mg~L_1), low Henry’s law constant (0.023-0.12; dimensionless), low vapour
pressure (43 mg-L~! and 249 mmHg at 25 °C), and high resistance to biodegradation [4,5]. The US
Environmental Protection Agency (EPA) estimated that MTBE concentration in drinking water should
not exceed 20 pg-L’1 in terms of odour and 40 pg-L’1 in terms of taste [6]. Currently, water treatment
technologies, such as air stripping, aerobic biodegradation, filtration, chemical oxidation reactions and
membrane technology involve high operation costs and could produce toxic secondary pollutants in
the environment [1,7].

Recently, adsorption on hydrophobic zeolites has received the greatest interest in water treatment
technology due to their organic contaminant selectivity, thermal and chemical stability, strong
mechanical properties, rapid kinetics and absence of salt and humic substance interference [8-20].
In order for the adsorption process to be cost effective, the progressive deactivation of saturated
sorbents has become an essential task [20]. Thermal treatment is the most common regeneration
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technique, where organic host molecules are decomposed and/or oxidized at high temperature.
Zeolites showed an excellent stability during the heating process and their behavior can be affected
by several factors such as chemical composition, framework order-disorder and topology, nature
and amount of extra-framework species, synthesis conditions, structure directing agents [21-28].
Consequently there is a strong interest in understanding the mechanisms behind the thermal
regenerative solution which makes zeolites regenerable materials that are efficiently reusable in
the contaminants adsorption process.

Several recent studies have demonstrated that zeolites exhibit considerably large MTBE adsorption
uptakes [29-35] and that ZSM-5 was a cost-competitive adsorbent when considering both life time
and usage rate of the adsorbent material [14,31]. Zeolite Socony Mobil-5 (ZSM-5, MFI-type framework
topology [36]) is a medium pore material whose framework is characterized by two channel systems:
sinusoidal 10-membered rings (10-MR) channels (ZZ) (sinusoidal ring A and sinusoidal ring B) along
the (100) direction, interconnected with 10-MR straight channels (5C) (SC ring A and SC ring B) parallel
to the (010) direction. Another tortuous pore path runs parallel to the (001) direction. The adsorption
of MTBE onto high silica ZSM-5 zeolite (510, /Al,O3 = 200) was investigated by Martucci et al. [31]
by batch adsorption and X-ray powder diffraction (XRPD) analyses from aqueous solution, and by
infrared spectroscopy from the gas phase in the presence of water. MTBE exhibits a type-I isotherm,
thus indicating a different interaction mechanism. XRPD and infrared (IR) spectroscopy reveal the
occurrence clustering of water and MTBE during adsorption from both the liquid and gas phase. These
H-bonded oligomers interact with zeolite thus leading to framework flexibility for MFI-type zeolites.
Rapid kinetics combined with good adsorption capacity suggest that this microporous material can be
used to efficiently remove this emerging organic contaminant from water.

One of the main targets of the present work is to continuously monitor the thermal
MTBE decomposition process, as well as the structural modifications on ZSM-5 upon
temperature-programmed desorption treatment. This in situ synchrotron XRD powder diffraction
study was used as a key to understand the features of both adsorption and desorption processes, thus
helping in the design of water treatment appliances based on microporous materials.

2. Materials and Methods

2.1. Chemicals

Methyl tert-butyl ether (99% purity) and sodium chloride was obtained from Sigma-Aldrich
(St. Louis, MO, USA). The concentration of contaminant in the aqueous solution was determined by
Headspace Gas Chromatography coupled to Mass Spectrometry (HS-GC-MS). The ZSM-5 sample
used in this work was a hydrophobic zeolite (code CBV 28014) provided by Zeolyst International
(Conshohocken, PA, USA) in its ammonium form and used as received (SiO,/ Al,O3 molar ratio = 280,
NayO < 0.05 wt % and surface area = 400 m?-g~1).

2.2. Experimental

The saturation capacity was determined using the batch method. Batch experiments were
carried out in triplicate in 20 mL crimp top reaction glass flasks sealed with polytetrafluoroethylene
(PTFE) septa (Supelco, Bellefonte, PA, USA). The flasks were filled in order to have the minimum
headspace and a solid /solution ratio of 1:2 (mg-mL~!) was employed. After equilibration, for 24 h at
a temperature of 25.3 & 0.5 °C under stirring, the solids were separated from the aqueous solution
by centrifugation (10,000 rpm for 30 min) and analysed by HS-SPME-GC. More details are reported
in Martucci et al. [31]. The MTBE adsorbed quantities (q) and equilibrium concentrations (Ce), were
determined in solution before and after equilibration with the zeolite by HS-SPME-GC.
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2.3. Instrumentation

The analysis was carried out using an Agilent GC-MS system (Santa Clara, CA, USA) consisting
of a GC 6850 Series II Network coupled to a Pal G6500-CTC injector and a Mass Selective Detector 5973
Network. The injected solutions consist of 100 mL of sample solutions, diluted in 10 mL of an aqueous
solution saturated with NaCl, containing 10 mL of 500 mg-L~! of fuorobenzene in methanol as the
internal standard. HS autosampler injector conditions are as follows: incubation oven temperature
80 °C, incubation time 50 min, headspace syringe temperature 85 °C, agitation speed 250 rpm, agitation
on time 30 s, agitation off time 5 s, injection volume 500 mL. In situ high-temperature X-ray diffraction
data were collected at the high-resolution powder diffraction beamline ID31 (European Synchrotron
Radiation Facility, ESRF, Grenoble, France). Once diffracted, the incident X-ray (A = 0.400031 A) was
directed through nine Si 111 analyzer crystals and then collected in parallel by means of nine detectors.
A subsequent data-reduction was performed to produce the equivalent step scan. X-ray diffraction
patterns were recorded from room temperature to 600 °C in air (heating rate of 0.083 °C-s~!), in the
0.5-19.5 20 range. The General Structure Analysis System (GSAS) [37] package with the Experiment
Graphical User Interfaces (EXPGUI) graphical interface [38] was used for Rietveld structure refinements
starting from the framework fractional atomic coordinates reported by Martucci et al. [31]. The typical
Rietveld fits from the temperature series and a table of the Rwp at all temperatures are reported as
Supplementary Materials (Figures S1-517). Atomic coordinates at 30, 100 and 400 °C are also reported
as Supplementary Materials (Tables S1-53).

3. Results and Discussion

3.1. Adsorption from Aqueous Solutions

MTBE adsorption isotherms on ZSM-5 were obtained at 25 °C by Martucci et al. [31] and follow
a Langmuir model. This indicates that the interactions of MTBE with the zeolite framework are
energetically similar to each other. Starting from the isotherm data, saturated samples were prepared by
putting into contact a given amount of zeolite with an aqueous solution of MTBE having a concentration
of 200 mg-L~!. The adsorbed quantity g (mg-g~!) was calculated as follows:

m
where Cj is the initial concentration in solution (mg-L’l), C. is the concentration at equilibrium
(mg-L™1), V is the solution volume (L) and m is the mass of sorbent (g). Four different samples were
prepared, the average saturation capacity and standard deviation were 95 + 7 mg-g~!, confirming the
saturation capacity previously found in Martucci et al. [31]. The saturated samples were homogenized
and employed for the structural analysis.

After thermal desorption, the three samples of regenerated zeolite were saturated with MTBE in
the same conditions. The average saturation capacity was 92 + 8 mg-g~!. Therefore, the regenerated
material shows an adsorption capacity that does not significantly differ from that of the as received
materials, confirming the possibility to reuse the adsorbent material.

3.2. Structural Analyses

According to Martucci et al. [31], MTBE molecules are hosted in two crystallographically
independent sites: MTBE1 near the intersections of sinusoidal and straight 10 MR channels (Cla,
C2a, C3a, C4a, C5a, Ola sites in Table S1); and MTBE2 in the sinusoidal 10 MR channel (C1b, C2b,
C3b, C4b, C5b, O1b sites in Table S1), respectively. Figure 1 shows the high-loaded structure of
ZSM-5-MTBE, with the guest molecules located in both channels. On the whole, eight MTBE molecules
(corresponding to ~11% zeolite dry weight (dw)) and about two water molecules (corresponding to
about 0.5% zeolite dw) were detected. Rietveld structure refinement confirmed the occurrence of
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MTBE-water complexes interacting with the framework, stabilizing the guest structure within the
zeolite host framework. The presence of organic compound—water molecule oligomers has also been
recently reported in mordenite [39], ferrierite [29] as well as in the same Y and ZSM-5 zeolite after
1,2-dichloroethane (DCE) adsorption from aqueous solutions [18].

Figure 1. High-loaded structure of ZSM-5-methyl-tert-buthyl-ether (MTBE) along a and ¢ directions,
respectively. Water molecules are represented as light blue spheres.

The automatic indexing of the peaks, carried out by the High Score Plus v. 3.0 software [40],
revealed the gradual overlapping of groups of peaks (i.e., 131 + 13 — 1 and 311 + 31 — 1 in the first
angular range, and 133 + 13 — 3 and 313 + 31 — 3 in the second range) attesting the monoclinic to
orthorhombic phase transition, with a Tc close to 100 & 5 °C. Figure 2 shows the evolution of the
investigated ZSM-5 sample close to the expected transition temperature, Tc, in the 3.70-4.30 and
5.60-6.50 20 range. Therefore, recent works [41-43] reported this phenomenon both in the unloaded
ZSM-5 as well as in the same samples after organics adsorption. The evolution of refined unit cell
parameters as a function of temperature is illustrated in Figure 2.
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Figure 2. Evolution of the investigated ZSM-5-MTBE close to the expected transition temperature
(30, 50, 70, 90 and 110 °C, respectively) in the 3.70-4.30 (a) and 5.60-6.50 (b) 26 (°) range.
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The general trend shows an initial increase of all the lattice parameters except for the b parameter
(Figure 3 and Table S1). In particular, the unit cell volume increases until about 125 + 5 °C, then
it remains about constant in the range between 125 and 200 &+ 5 °C and starts to decrease after
200 +£ 5 °C. Similar behaviour was observed during the desorption process of 1,2-dichloroethane [44]
and toluene [45].
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Figure 3. Temperature evolution of ZSM-5-MTBE unit cell parameters during in situ thermal organic
burning. All values are normalized compared to those refined at room temperature.

According to Pasti et al., Martucci et al. [44] and Rodeghero et al. [45] this behavior can be
explained by the relaxation of the interactions between the oligomers and the framework oxygens.
The refined distances clearly indicate that during the heating, this attractive force exerting a negative
pressure is released and the framework is free to relax and expand. The process is also correlated
to the MTBE desorption process which starts at 100 °C and is complete at ~300 °C. Figure 4 shows
both the evolution of MTBE molecules per unit cell (p.u.c.) and the unit cell volume as a function
of temperature.
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Figure 4. Evolution of MTBE and water (W) molecules and unit cell volume as a function
of temperature.

After the full desorption of organics, a contraction of the unit cell volume is observed until
600 °C. This phenomenon is explained as a thermal negative expansion (NTE), already observed not
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only in MFI-type materials [41,45-48], but also in other microporous materials [22-27,48-51], thus
attesting the relaxation of framework distortions induced by host molecules which diffuse through the
zeolite channels during the heating process. The desorption process occurred without any significant
zeolite crystal. Above 300 °C, the channels ellipticity decreases and wide-open apertures regularize.
This process is accompanied by variations in the opening of the zeolite framework pore system and
consequently, in the Crystallographic Free Areas (C.FA.) (Figure 5).
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Figure 5. Crystallographic Free Areas (C.F.A.) of the 10-ring channels and ellipticity of the 10-ring
channels as a function of temperature. ZZ stands for zigzag or sinusoidal channel; SC stands for
straight channel.

4. Conclusions

This study reports experimental results concerning the desorption of methyl-tert-butyl-ether
from the pores of a silica-rich zeolite ZSM-5. The temperature-induced desorption of this oxygenated
compound from aqueous solutions onto hydrophobic ZSM-5 was studied by combining in situ
synchrotron powder diffraction and chromatographic techniques. The evolution of the structural
features monitored by full profile Rietveld refinements revealed that a monoclinic (P2;/n) to
orthorhombic (Pnma) phase transition occurred at about 100 °C. Complete MTBE desorption was
achieved upon heating at about 250 °C. Notwithstanding the change in the unit-cell parameters,
Rietveld refinement demonstrated that the desorption process occurred without any significant zeolite
crystallinity loss, but with slight deformations in the channel apertures. After the full organics
desorption, a contraction of the unit cell volume is observed, thus indicating negative thermal
expansion (NTE) for this material. On the basis of all these results, ZSM-5 represents a promising
adsorbent medium to remove MTBE contaminant from water.

Supplementary Materials: The following are available online at www.mdpi.com/2075-163X/7/3/34/s1,
Figures S1-517: Observed (dotted upper line), calculated (solid upper line), and difference (solid lower line)
powder diffraction patterns of ZSM-5 at 30, 50, 75, 90, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 550 and
600 °C. Crystallographic data from the Rietveld refinement are also reported; Tables S1-S3: Fractional atomic
coordinates of ZSM-5 loaded with MTBE at Room Temperature (30 °C), 100 and 400 °C.
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