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Abstract: The adsorption of toluene from aqueous solutions onto hydrophobic zeolites was studied
by combining chromatographic, thermal and structural techniques. Three beta zeolites (notated BEAs,
since they belong to BEA framework type), with different SiO2/Al2O3 ratios (i.e., 25, 38 and 360),
before and after calcination, were tested as adsorbents of toluene from aqueous media. This was
performed by measuring the adsorbed quantities of toluene onto zeolites in a wide concentration
range of solute. The adsorption data were fitted with isotherms whose models are based on surface
heterogeneity of the adsorbent, according to the defective structure of beta zeolites. The thermal
treatment considerably increases the adsorption of toluene, in the low concentration range, on all
BEAs, probably due to surface and structural modifications induced by calcination. Among the
calcined BEAs, the most hydrophobic zeolite (i.e., that with SiO2/Al2O3 ratio of 360) showed the
highest binding constant, probably due to its high affinity for an organophilic solute such as toluene.
The high sorption capacity was confirmed by thermogravimetric analyses on BEAs, before and after
saturation with toluene.
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1. Introduction

In recent years public concern has been rapidly grown regarding water pollution phenomena.
Petroleum hydrocarbons represent one of the most common categories of water pollutants. Gasoline
leakage from storage tank, transportation, pipelines and petrochemical wastewaters introduce these
compounds into the environment, making surface waters and/or groundwaters unsuitable for many
uses, including drinking [1]. BTEX (Benzene, toluene, ethylbenzene and xylene) are frequently detected
in chemical and petrochemical wastewaters. These contaminants can cause adverse health effects
to humans even at low concentrations [2]. Therefore their removal from groundwater and surface
waters is a problem of great importance. Among several techniques developed for BTEX removal from
waters, adsorption is one of the most efficient methods, thanks to satisfactory efficiencies even at low
concentrations [3], easy operation and low cost [4]. Recently, high-silica zeolites have been shown
to be environmental friendly materials able to efficiently sorb several organic pollutants from water,
such as pharmaceuticals [5–7], polycyclic aromatic hydrocarbons [8], phenols [9] and petrol-derived
compounds [10–12].

In literature, several works have focused on the advantages of zeolites as adsorbents, such as high
selectivity and capacity, rapid kinetics, reduced interference from salt and humic substances, excellent
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resistance to chemical, biological, mechanical and thermal stress [9,13,14]. Even if zeolites are more
expensive with respect to other adsorbents, they offer the possibility to be regenerated without loss of
performances at relatively low temperatures, as demonstrated in previous works [10,15].

The investigation of several synthetic zeolites such as ZSM-5 [10], mordenite [4], ferrierite [16]
and Y [11] for the removal of petrol-derived compounds from aqueous solutions showed that they are
a promising material for water clean-up procedures. Another adsorbent that could be employed in
such treatment is zeolite beta due to its large porosity and high surface area. Zeolite beta, indeed, has a
three-dimensional intersecting channels system, two mutually perpendicular straight channels each
with a cross section of 6.6 × 6.7 Å and a sinusoidal channel with a cross section of 5.6 × 5.6 Å [17].
This tortuous channels system is constituted by the intersection of the two main channels. The
channel intersections of zeolite beta generate cavities whose sizes are in the order of 12–13 Å [17].
Crystallographic faults are frequently observed in beta zeolite and a structural model was proposed
by Jansen et al. [18] to explain the creation of local defects by the connection of distorted layers.
The structure of zeolite beta is disordered along [00l] and it is related to three ordered structures by
a/3 and/or b/3 displacements. The three ordered polytypes are designated frameworks A, B, and
C [19,20]. Polytype A is tetragonal (space group P4122 or P4322, cell parameters a = b ≈ 12.5 Å and
c ≈ 26.4 Å), polytype B is monoclinic (space group C2/c, cell parameters a ≈ b ≈ 17.6 Å, c ≈ 14.4 Å
and β ≈ 114◦), as well as Polytype C (space group P2/c, cell parameters a ≈ b ≈ 12.5 Å, c ≈ 27.6 Å,
and β ≈ 107◦).

It has been reported that thermal and hydrothermal treatments induce chemical and structural
modifications in beta zeolites, for instance Trombetta et al. [21] observed that thermal treatments can
cause dealumination and formation of extraframework aluminium species. The ease of dealumination
of beta may be due to the presence of defect sites close to the framework aluminium which promotes
bond hydrolysis, nonetheless the microporous structure is not affected by the loss of aluminium [22].
Other zeolites, such as ZSM-5 or mordenite, do not show significant crystallinity loss or dealumination
after thermal treatment [10,15,22]. The precise structural modifications of beta zeolite are still a matter
of research and the global effect of calcination on beta acidity is not totally clear, because of the presence
of several types of acidic sites, with different acidity degree [23,24]. However, it can be inferred that beta
zeolites could undergo to greater variations in adsorption properties due to calcination with respect
to other zeolites. Also the hydrophilic/hydrophobic features, controlled by varying the SiO2/Al2O3

ratio (SAR), can influence the behaviour of zeolites towards polar/non-polar reactants and products in
adsorption and catalytic processes. In fact, the roles played both by calcination and by SAR on catalytic
activity of beta zeolites received great attention [25,26]. However there are only few works dealing
with the effects of both chemical the composition and thermal treatments of beta on the adsorption
properties toward solutes from water solutions. Indeed, the phenomena observed in catalytic gas
phase systems could be different from those in aqueous matrix, since it has already been reported that
the presence of water can strongly interfere with organic compounds adsorption [27].

Therefore, the objective of this work is to investigate the adsorptive properties of beta zeolites
(notated BEAs, since they belong to BEA framework type), with different Silica/Alumina ratios (SAR)
before and after calcination for the removal of toluene (TOL) from aqueous solutions. The selected
adsorbents were commercial beta zeolites: the possibility to find them on the market and to use them
as-received from the manufacturer was considered a strong decision point for their selection.

2. Materials and Methods

2.1. Chemicals

Toluene (99% purity) was obtained from Sigma-Aldrich (Steinheim, Germany). High-performance
liquid chromatography (HPLC) grade acetonitrile (ACN) was purchased from Merck (Darmstadt,
Germany). The water was Milli-Q grade (Millipore, Billerica, MA, USA). Zeolite beta powders were
obtained from Zeolyst International (Conshohocken, PA, USA) and their main characteristics are
reported in Table 1.
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Table 1. Zeolites characteristics.

Name Product Code SiO2/Al2O3 Nominal Cation Surface Area (m2·g−1)

Beta25 CP814E 25 Ammonium 680
Beta38 CP814C 38 Ammonium 710

Beta360 CP811C-300 360 Hydrogen 620

All the adsorbents were employed as-received (named Beta25, Beta38 and Beta360) and after
a calcination process (referred to as Beta25c, Beta38c and Beta360c). Calcination was carried out by
raising the temperature from room temperature to 600 ◦C in 1 h, then holding at 600 ◦C for 4 h. Finally,
adsorbents were kept at room temperature for 3 h. Dry air circulation was maintained during both
heating and cooling down. The calcined samples were kept in a desiccator and used within 2 days
after thermal treatment.

2.2. Experimental

The adsorption isotherm was determined using the batch method. Batch experiments were
carried out in duplicate in 20 mL crimp top reaction glass flasks sealed with polytetrafluoroethylene
(PTFE) septa (Supelco, Bellefonte, PA, USA). The flasks were filled in order to have the minimum
headspace and a solid/solution ratio of 1:2 (mg·mL−1) was employed. After equilibration, for 24 h at a
temperature of 25.3 ± 0.5 ◦C under stirring, the solids were separated from the aqueous solution by
filtration trough 0.22 µm polyvinylidene fluoride (PVDF) membrane filters purchased from Agilent
Technologies (Santa Clara, CA, USA). The concentration of TOL was determined in the solutions
before and after equilibration with zeolite by High Performance Liquid Chromatography/Diode Array
Detection (HPLC/DAD) purchased from Waters (Waters Corporation, Milford, MA, USA).

2.3. Instrumentation

The HPLC/DAD was employed under isocratric elution conditions. The column (Agilent
Technologies) was 150 × 4.6 mm, packed with a C18 silica-based stationary phase with a particle
diameter of 5 µm and thermostated at 25 ◦C. The injection volume was 20 µL for all standards
and samples. The mobile phase was a mixture ACN:H2O 70:30 and the flow rate was 1 mL/min.
Detection wavelength was set at 215 nm Thermogravimetric (TG), differential thermogravimetric
(DTG) and differential thermal analyses (DTA) measurements of exhausted samples were performed
in air up to 900 ◦C, at 10 ◦C·min−1 heating rate, using a simultaneous thermal analysis (STA) 409 PC
LUXX®—NETZSCH Gerätebau GmbH (Verona, Italy). X-ray powder diffraction (XRPD) patterns
of zeolites after TOL adsorption were measured on a Bruker (Billerica, MA, USA) D8 Advance
Diffractometer equipped with a Si (Li)SOL-X solid-state detector. Statistical elaborations were carried
out through MATLAB® ver. 9.1 software (The MathWorks Inc., Natick, MA, USA).

3. Results and Discussion

3.1. Adsorption from Aqueous Solutions

The adsorption kinetics was studied in order to obtain some important parameters, such as the
kinetic constant, which allow the estimation of the time requested for reaching the equilibrium.
Moreover, from kinetics measurements, qualitative information about the steps governing the
adsorption process can be gained. The uptake q (mg·g−1) was calculated as follows:

q =
(C0 − Ce)V

m
(1)

where C0 is the initial concentrations in solution (mg·L−1), Ce is the concentration at time t in kinetics
experiments or at equilibrium (mg·L−1) for isotherm modelling, V is the solution volume (L) and m is
the mass of adsorbent (g).
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The kinetics was very fast for all the studied materials and the time to reach equilibrium was
about 10 min. As an example, the uptake data obtained for TOL on Beta360 are shown in Figure 1.
The data of Figure 1 were fitted by the pseudo-second order model (Equation (2)), which has been
employed in many studies concerning the adsorption of organic compounds onto zeolites [28,29].

qt =
k2q2t

1 + k2qt
(2)

where qt and q are the amounts of solute sorbed per mass of adsorbent at time t and at equilibrium,
respectively, and k2 is the second-order adsorption rate constant. The equilibrium uptake q and the
adsorption rate constant k2 were obtained from non-linear fit of qt vs. t. Values of 3.39 (3.28, 3.50) and
0.46 (0.31, 0.62) were obtained for qe and k2, respectively: the confidence limits at 95% of probability are
reported in brackets. The pseudo-second-order model fitted well all the sorption data as demonstrated
by the resulting high coefficients of determination (R2 = 0.9915). From Figure 1 it can also be seen that
the surface adsorption (first part of the curve) is a faster process than the intraparticle diffusion of TOL
into the zeolite micropores as alredy observed for ZSM-5 [10].Minerals 2017, 7, 22  5 of 12 
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The relationship between the solute amount adsorbed for per unit mass of adsorbent q and its
concentration at equilibrium Ce is provided by equilibrium adsorption isotherms. The Langmuir
isotherm has been frequently used to describe the adsorption of organics in aqueous solutions onto
hydrophobic zeolites [10,15,29]. This model considers a monolayer adsorption onto energetically
equivalent adsorption sites and negligible sorbate–sorbate interactions. It can be represented by the
following equation [30].

q =
qSbCe

1 + bCe
(3)

where b is the binding constant (L·mg−1) and qs is the saturation capacity of the adsorbent material
(mg·g−1). This model has already been employed for adsorption on BEAs of several classes of organic
compounds, such as pharmaceuticals [6], etheramine [29], xylene isomers and ethylbenzene [31].

Freundlich isotherm is a relationship describing non-ideal and reversible adsorption, not restricted
to the formation of monolayer. In fact, this empirical model can be applied to multilayer adsorption,
with non-uniform distribution of adsorption heat and affinities over the heterogeneous surface [32].
The Freundlich isotherm model can be expressed as [33].

q = KFCe
1/n (4)
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where KF is a constant indicative of the adsorption capacity and 1/n is a measure of the surface
heterogeneity, ranging between 0 and 1. The surface heterogeneity increases as 1/n gets closer to zero.
The Freundlich isotherm equation was found to have a better fit than the Langmuir equation for TOL
adsorption on as-received BEAs (vide infra). This model was also used also by Wang et al. [28] for
describing the adsorption of 1,3-propanediol on BEAs zeolites.

Another isotherm model employed to describe multiple adsorbate/adsorbent interactions is that
proposed by Tóth [34].

q =
qSbCe

[1 + (bCe)
v]

1/v (5)

where ν is a parameter accounting for the heterogeneity of adsorption energies. If ν = 1, the Tóth model
corresponds to the Langmuir model [34].

The adsorption isotherms of TOL on both as-received and calcined BEAs are shown in Figure 2,
where it can be noted that the isotherms shape of as-received and calcined beta zeolites are different
from each other mainly due to modification on the adsorbate/surface interaction energy caused by
calcination of the adsorbent. In particular, the thermal treatment considerably increases the adsorption
efficiency of all BEAs toward TOL in the low concentration range. This finding has also been observed
also for polar compounds such as pharmaceuticals [6]. It has been suggested that part of the adsorption
properties of BEA zeolites originates from faults in the zeolitic structure [35]. In addition to its Brønsted
acidity, beta zeolite also displays also Lewis acidity [36]. The calcination leads to the conversion
of NH4-BEA to H-BEA for Beta25 and Beta38 (see Table 1), as well as to structural and surface
modifications for all the three beta zeolites [36,37]. In particular, the thermal treatment can lead to
silanols condensation and, consequently, to the degradation of Brønsted acid sites by dehydroxylation.
Together with the removal of water, the formation of Lewis acid sites occurs [24], as proposed by some
studies [21,23] which found an increase in the ratio Lewis/Brønsted acid sites in the calcined material
with respect to the as-received one. However, the global effect of calcination on beta acidity is not totally
clear, because of the presence of several types of acidic sites, with different acidity degree [24,38]. It can
be inferred that beta Lewis acid sites, whose formation has been promoted by thermal treatment, could
interact with toluene as reported by Maretto et al. [39]. Therefore, calcination can lead to structural
and compositional changes in beta zeolites, inducing to differences in adsorption properties [22,40].
The experimental data were fitted with all the three models (see Equations (3)–(5)). In order to compare
these models, the statistical analysis of the fitting based of the square sum of errors and the number of
parameters was performed. The isotherm parameters of the best fitted model estimated by non-linear
fitting of the as-received and calcined BEAs are shown in Tables 2 and 3, respectively.

Table 2. Isotherm parameters for the adsorption of TOL on as-received BEAs estimated by non-linear
fitting, according to the Freundlich model. The confidence limits at 95% of probability of the estimated
parameters are reported in brackets.

As-Received Materials KF (mg·g−1)·(L·g−1)n n R2

Beta25 5.2 (3.5, 7.0) 0.86 (0.77, 0.95) 0.9953
Beta38 4.2 (2.5, 5.9) 0.79 (0.69, 0.89) 0.9936

Beta360 4.1 (2.8, 5.3) 0.93 (0.72, 1.1) 0.9956

Table 3. Isotherm parameters for the adsorption of TOL on calcined BEAs estimated by non-linear
fitting, according to the Tóth model. The confidence limits at 95% of probability of the estimated
parameters are reported in brackets.

Calcined Materials qs (mg·g−1) b (L·mg−1) v R2

Beta25c 234 (193, 275) 0.073 (0.043, 0.10) 0.96 (0.70, 1.2) 0.9584
Beta38c 224 (198, 250) 0.10 (0.075, 0.13) 0.91 (0.72, 1.1) 0.9688
Beta360c 241 (201, 280) 0.55 (0.30, 0.80) 0.84 (0.62, 1.0) 0.9667
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From Tables 2 and 3, it can be seen that as-received zeolites are fitted well by a Freundlich model,
whereas the calcined materials are modelized by a Tóth isotherm equation. In particular, Table 2
shows that n constant for Beta360 is not statistically different, at 95% of probability, from 1, hence
TOL adsorption on this zeolite follows a linear trend. On the contrary, values of n below 1 have
been observed for both Beta25 and Beta38, indicating that the adsorbent surface is heterogeneous.
The values of KF found for the three as-received BEAs are not statistically different from each other at
a probability of 95%. This finding may indicate similar adsorbent/adsorbate interactions, possibly
due to the effect of physisorbed water on the zeolites porosities (see Section 3.2) and to the presence of
structural defects in beta zeolites that make it difficult to assess the properties of the adsorption sites.
By comparing calcined BEAs (Table 3), it can be seen that their saturation capacities are not statistically
different at 95% of probability. High values of qs were obtained for all the calcined adsorbents (above
20% w/w). This last finding makes calcined BEAs very promising as adsorbents in the remediation of
contaminated waters at high concentration levels. Similar values of qs were found in the adsorption
of different organic contaminants on hydrophobic Y zeolite (FAU-type framework topology) [11,12].
However, the binding constants b obtained with Y zeolite were quite low, thus indicating that in the low
concentrations range Y zeolite is generally less efficient than calcined BEAs. At low TOL concentrations,
it has been proved that another hydrophobic zeolite, namely ZSM-5 (MFI-type framework topology) is
very efficient [10]. In this case, in fact, the adsorption isotherm of TOL on ZSM-5 was characterized
by a high binding constant (b was 3.17 ± 0.41), despite the lower saturation capacity of ZSM-5 than
BEAs and Y (around 8% w/w). In the light of the above findings, it can be stated that calcined BEAs
represent a good compromise for that which concerning TOL adsorption from aqueous solutions in
a wide concentrations range. Concerning the binding constant b, Beta360c showed a higher value
than those of Beta25c and Beta38c, which are not significantly different from each other at 95% of
probability. This finding could be explained by considering that adsorption onto zeolites is driven by
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both electrostatic and non-covalent interactions [41]. It can be supposed that electrostatic interactions
have a negligible contribution to the adsorption of an organophilic solute such as TOL, characterized
by logKow of 2.73. Therefore, it can be considered that the adsorption mechanism of TOL onto BEAs is
driven mainly by non-covalent interactions, which become more relevant as SAR value increases.

3.2. Thermal and Structural Analyses

Thermogravimetric analysis were carried out for the as-received materials (i.e., Beta25, Beta38
and Beta360). A total weight loss of about 17% was observed for all the three samples for temperature
up to 900 ◦C.

These weight losses can be divided up into two contributions: the first one at low temperature
(i.e., lower than about 100 ◦C) due to the loss of water molecules weakly bonded to the zeolite surface
and the second one at higher temperature mainly ascribable to the loss of ammonia from Beta25 and
Beta38 as well as losses of structural water molecules and silanols condendation in all the beta samples
(Figure 3).Minerals 2017, 7, 22  8 of 12 
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The TG analyses of calcined BEAs after TOL saturation show weight losses at 900 ◦C of 20.2%,
26.2% and 30% for Beta25c, Beta38c and Beta360c, respectively. However, these weight losses cannot
be easly related to the adsorbed TOL amount since, as reported in Pasti et al. [6], the calcined zeolites
can undergo to rehydratation process and the temperatures at which the adsorbed water and TOL
are removed from the framework are very close to each other’s. This makes it difficult to ascribe the
whole weight loss to water or TOL alone. However, these results are in good agreement with the
saturation capacities of the materials determined by adsorpion experiments (see Table 3). The X-ray
powder diffraction patterns of both as-received and calcined Beta25, Beta38 and Beta360, before and
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after saturation with TOL are reported in Figure 4. By comparing the X-ray powder diffraction pattern
of both the as-received and the calcined materials before and after TOL adsorption (see Figure 4) it can
be observed that the peaks intensities in the low 2θ region change thus confirming the incorporation
of molecules in the framework due to adsorption, moreover the differences in the patterns in the
intermediate and high 2θ region indicates that the process is associated with the framework flexibility
(expansion or contraction of the cell volume) [42,43]. Similar behaviour is also shown when the three
zeolite samples before and after thermal treatment are compared.
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4. Conclusions

This work highlighted the differences in adsorption properties between as-received and calcined
beta zeolites, with three different SARs, toward a water contaminant of great concern such as toluene.
It has been observed that the calcination significantly improves the adsorption properties of all of the
three zeolites.

The adsorption of toluene by calcined BEAs is characterized by high values of saturation capacity.
The most hydrophobic calcined beta, i.e., Beta360c, showed the highest binding constant, thus
indicating stronger adsorbent/adsorbate interactions than those of Beta25c and Beta38c. Consequently,
Beta360 after thermal treatment is a promising adsorbent for the removal of toluene in water-containing
systems. These results open new alternatives for the industrial application of this material, mainly in
hydrocarbons adsorption processes in the presence of water.
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