Role of Collectors and Depressants in Mineral Flotation: A Theoretical Analysis Based on Extended DLVO Theory

Yaowen Xing ${ }^{1,2,3^{*}}$, Xiahui Gui ${ }^{3, *}$, Firat Karakas ${ }^{2,4}$ and Yijun Cao ${ }^{3}$

${ }^{1}$ School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
2 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; karakas@mpip-mainz.mpg.de
${ }^{3}$ Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; yijuncao@126.com
${ }^{4}$ Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; karakasf@itu.edu.tr

* Correspondence: cumtxyw@126.com or xing@mpip-mainz.mpg.de (Y.X.); guixiahui1985@163.com (X.G.); Tel.: +86-0516-83591116 (Y.X.)

Figure S1. Potential curves between a $200-\mu \mathrm{m}$-radius hydrophilic silica sphere covered with hydrophobic hemispherical asperities with different radii and an air bubble in $5 \times 10^{-3} \mathrm{M} \mathrm{NaCl}$ solution: (a) 0.5 nm ; (b) 1 nm . The corresponding surface coverage fractions, θ, are 0.0625% and 0.25%, respectively. The number distribution density of asperity, n, is fixed at $7.96 \times 10^{14} \mathrm{~m}^{-2}$. Surface potentials of the air bubble and silica are both -35 mV . The decay length of hydrophobic force is 1.5 nm.

Figure S2. Potential curves between a $200-\mu \mathrm{m}$-radius hydrophilic silica sphere covered with different number distribution densities of hydrophobic hemispherical asperities and an air bubble in $5 \times 10^{-3} \mathrm{M}$ NaCl solution: (a) $1.99 \times 10^{14} \mathrm{~m}^{-2}$; (b) $7.96 \times 10^{14} \mathrm{~m}^{-2}$. The corresponding surface coverage fractions, θ, are 0.0625% and 0.25%, respectively. The radius of asperity, r, is fixed at 1 nm . Surface potentials of the air bubble and silica are both -35 mV . The decay length of hydrophobic force is 1.5 nm .

Figure S3. Potential curves between a $200-\mu \mathrm{m}$-radius hydrophobic silica sphere covered with hydrophilic hemispherical asperities with different radii and an air bubble in $5 \times 10^{-3} \mathrm{M} \mathrm{NaCl}$ solution: (a) 0.5 nm ; (b) 1 nm ; (c) 2 nm ; (d) 4 nm . The corresponding surface coverage fractions, θ, are $0.0625 \%, 0.25 \%, 1 \%$, and 4%, respectively. The number distribution density of asperity, n, is fixed at $7.96 \times 10^{14} \mathrm{~m}^{-2}$. Surface potentials of the air bubble and silica are both -35 mV . The decay length of hydrophobic force is 1.5 nm .

Figure S4. Potential curves between a $200-\mu \mathrm{m}$-radius hydrophobic silica sphere covered with different number distribution densities of hydrophilic hemispherical asperities and an air bubble in $5 \times 10^{-3} \mathrm{M} \mathrm{NaCl}$ solution: (a) $1.24 \times 10^{13} \mathrm{~m}^{-2}$; (b) $4.98 \times 10^{13} \mathrm{~m}^{-2}$; (c) $1.99 \times 10^{14} \mathrm{~m}^{-2}$; (d) $7.96 \times 10^{14} \mathrm{~m}^{-2}$. The corresponding surface coverage fractions, θ, are $0.0625 \%, 0.25 \%, 1 \%$, and 4%, respectively. The radius of asperity, r, is fixed at 4 nm . Surface potentials of the air bubble and silica are both -35 mV . The decay length of hydrophobic force is 1.5 nm .

