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Abstract: Evaluation of stress states in backfilled mine stopes (or similar openings), using arching
theory, can be largely impacted by the value selected for the earth pressure coefficient, K = σ′h/σ′v.
Recently, the current study’s authors addressed the debate about the value of K near the opening
center, based on Rankine’s active coefficient (Ka) and at-rest coefficient (K0). Here, stress ratios in
vertical backfilled stopes are numerically assessed (in two dimension, 2D), considering both the
independent and related backfill internal friction angle (ϕ′) and Poisson’s ratio (ν). Emphasis is placed
on the backfill state near stope walls, where local rotation of stresses occurs, so the coefficient (K)
and principal stress ratio, Kps (= σ′3/σ′1), should be distinguished. Parametric analyses indicate that
values of K and Kps depend on the position and the relationship between ϕ′ and ν. Near the opening
center, K (= Kps) is close to Ka when ν or ϕ′ is below a critical value; otherwise the value approaches
K0, defined from ν. Near both walls, Kps is always close to Ka, while K is near K0 for related ν − ϕ′

cases and depends on their respective values for independent ν and ϕ′. Additional simulations
conducted with interface elements indicate that the stress ratios near the opening center line are
insensitive to interface roughness and are almost identical to values obtained without interfaces, but
the stress ratios near walls may change for less rough or smooth interfaces.

Keywords: mine stopes; backfilled openings; earth pressure coefficient; principal stress ratio; FLAC

1. Introduction

Backfilling mine wastes into stopes has become a common practice in underground mines
worldwide [1–3]. The stress state in backfilled stopes is critical for the design of mine backfill and
its retaining structures [4–7]. Arching theory has been commonly used to evaluate the stress state
in backfilled mine stopes and various similar openings (silo, trench) [8–11]. The vertical (σ′v) and
horizontal (σ′h) effective stresses in two-dimensional backfilled openings with cohesionless fills are
often estimated from the following arching solution based on [9]:

σ′v =
Bγ

2Ktanδ′

[
1− exp

(
−2Ktanδ′

B
h
)]

(1)

σ′h = Kσ′v (2)

where γ (kN/m3) is the backfill unit weight; B (m) is the opening width; h (m) is the depth from the
backfill surface; δ′ (◦) is the interface effective friction angle along the fill-wall contact, and its value
is commonly taken as the backfill effective friction angle ϕ′ (◦) for very rough and stiff rock surfaces;
K (= σ′h/σ′v) is the earth pressure coefficient, defined as the stress ratio of the horizontal over vertical
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effective stresses. In geotechnical engineering, the value of K is commonly related to the movement of
the retaining wall. When the retaining wall moves away enough due to the pressure from the retained
soil, the horizontal stress can decrease as the soil tends to yield. The ratio of the horizontal to vertical
stresses may then correspond to the Rankine’s active earth pressure coefficient (Ka), defined as follows
for cohesionless soils with a horizontal surface and smooth walls:

Ka =
1− sinϕ′

1 + sinϕ′
(3)

If the retaining wall does not move, the semi-infinite soil is considered to remain in an at-rest (K0)
state. The value of K is then usually estimated from the well-known Jaky’s semi-empirical equation,
expressed as follows for loose granular soils [12,13]:

(K0)ϕ′ = 1− sinϕ′ (4)

The value of K0 has also been related to Poisson’s ratio (ν), based on Hooke’s law applied to a
semi-infinite isotropic, homogenous and linear elastic mass [14–16]:

(K0)ν =
ν

1− ν
(5)

Considering a unique and consistent value of K0, the two different definitions of K0 (Equations (4)
and (5)) lead to the following relationship for elastoplastic models [17–20]:

ν =
1− sinϕ′

2− sinϕ′
(6)

The stresses in backfilled openings calculated with Equations (1) and (2) can be significantly
influenced by the value of the earth pressure coefficient K [10,21,22]. Near the center of a vertical
backfilled mine stope, the K value has sometimes been associated with the at-rest earth pressure
coefficient K0 [23–27], whereas others have stated that the Rankine’s active earth pressure coefficient
Ka is more representative [21,22,28–30]. Recently, Yang [31] performed numerical simulations to
help clarify this debated issue. It was found that near the opening center, the coefficient K could
be either represented by Ka or K0, depending on the values of the backfill Poisson’s ratio (ν)
and internal friction angle (ϕ′) and their mutual relationship. The dependency mechanism of
the backfill state near the opening center was further analyzed by Yang [31], considering linear
elasticity and yielding of the backfill based on the commonly used Mohr-Coulomb elasto-plastic model.
Jahanbakhshzadeh et al. [32] investigated the non-uniform distribution of K in inclined backfilled
stopes using the related backfill parameters, ν and ϕ′.

In previous studies, the stress ratio, K, has not been investigated in detail for locations near the
opening walls, where the backfill state could be of particular interest for mining engineers. As the
stresses are not uniform across the stope width [33,34], due to shear stresses developing between the
fill and walls, applying a constant K to the entire opening is not representative [20,32]. In addition, the
value of the principal stress ratio, Kps (= σ′3/σ′1; defined as the ratio of the minor to major principal
stresses) can differ from that of K near opening walls where the horizontal and vertical stresses
may be different from the minor and major principal stresses. Therefore, there is a need to evaluate
both stress ratios K and Kps near the walls, where rotating stresses may be of particular interest for
stability and displacement analyses. Also, interface elements were not considered in the previous
numerical simulations (mentioned above) when analyzing the value of K. This approach is valid
for most backfilled stope cases, as yielding usually takes place in the fill material near very rough
rock surfaces [11,35]. For planar and smooth interfaces, yielding may, however, occur along fill-rock
contacts [36]. It is thus deemed necessary to take this aspect into account.
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In this paper, the earth pressure coefficient (K) and the principal stress ratio (Kps) in vertical
openings with cohesionless fills are numerically analyzed. For the sake of completeness, the numerical
results of the K value near the opening center are also briefly recalled. The focus is placed on the
stress ratios K and Kps near the opening walls, considering both independent and related (through
Equation (6)) values of ν and ϕ′ of backfill. A systematic parametric analysis is performed to assess the
influence of various factors. The effect of fill-rock interfaces on the two stress ratios is also investigated.

2. Numerical Model

Previous investigations have shown that the finite difference code FLAC [37] can be used to help
assess the behaviour of backfilled stopes [21,22,31,32,35,36,38–40]. Figure 1 shows the reference FLAC
model of a backfilled opening under plane strain conditions. The width of the opening is denoted
by B and the backfill is placed to a height (H) of 40 m (with the top surface left open). Elements of
0.2 m × 0.2 m are used for the backfill and radial meshes are used for the surrounding rock mass,
based on sensitivity analyses (see details in [31]). The rock mass is modeled as a linear-elastic material;
its mechanical properties are shown in Figure 1. The backfill obeys the Mohr-Coulomb criterion and
elasto-plastic constitutive model; its dry unit weight (γ) is 18 kN/m3, effective cohesion (c′) is nil, and
dilation angle (ψ) is 0◦ (non-associated flow rule). The backfill Young’s modulus (E), internal friction
angle (ϕ′) and Poisson’s ratio (ν) are taken as variables.
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Figure 1. Numerical model of a backfilled opening built with a finite difference code FLAC.

Figure 1 also illustrates that the base of the modeled rock mass is fixed in all directions, while
the two side outer boundaries are only allowed to move vertically. The vertical opening is created
instantaneously and then backfilled in 40 layers (1 m/layer). The excavation-induced displacements
are zeroed before backfilling, corresponding to the “delayed backfill” deposited after the entire stope
is mined out (i.e., full convergence of the stiff rock walls) [39].

The program of calculations is given in detail in Table 1 for independent (Cases 0 to 5) and linked
(Cases 0′ to 4′; through Equation (6)) values of ν and ϕ′, respectively. Interface elements between the
backfill and the surrounding rock walls considered in Cases 5 and 4′ are characterized by the effective
interface friction angle (δ′), and the normal (Kn) and shear (Kt) stiffnesses [37].
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Table 1. Various geometric and mechanical characteristics used in numerical simulations conducted
with independent (Cases 0 to 5) and linked (Cases 0′ to 4′) values of ν and ϕ′.

Case Figure No. B (m) E (MPa) ϕ′ (◦) ν (-) δ′ (◦)

Independent
ϕ′ and ν

0 2, 3, 4 8 300 30 0.2 -
1 5a Variable 300 30 0.2 -
2 5b 8 Variable 30 0.2 -
3 6 8 300 Variable 0.2 -
4 7 8 300 30 Variable -
5 11, 12 8 300 30 0.2, 0.3 Variable a

Related
ϕ′ and ν

0′ 2, 3, 4, 10 8 300 30 0.333 -
1′ 8a Variable 300 30 0.333 -
2′ 8b 8 Variable 30 0.333 -
3′ 9 8 300 Variable -
4′ 13 8 300 Variable Variable a

- not applicable; a with interface elements. B represents the opening width and δ′ represents the effective interface
friction angle.

3. Numerical Results Obtained without Interface Elements

Figure 2 illustrates the stress contours obtained from FLAC simulations for independent (Case 0
in Table 1) and interrelated (Case 0′ in Table 1) values of ν and ϕ′. In FLAC, positive stresses indicate
tension and negative stresses indicate compression by default. The signs of the stresses obtained
from numerical modelling with FLAC were inversed to follow the sign convention (positive in
compression and negative in tension) used in geotechnical engineering. The results show that an
arching effect develops within the backfill for both cases (with σ′v smaller than the overburden at
depth). A non-uniform distribution across the opening width is observed for both the vertical and
horizontal stresses. At a given depth, it can be seen that the stresses near the walls were lower than
those at the center. These indicate that the values of K along the vertical center line (VCL) and near
rock walls (RW) could be different.
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independent (Case 0) and interrelated (Case 0′) values of ν and ϕ′ (see Table 1 for details).

Figure 3a presents the stress distributions along the VCL in the backfilled stope for both Case 0
(independent ν and ϕ′; ν = 0.2, ϕ′ = 30◦) and Case 0′ (related ν and ϕ′ through Equation (6); ν = 0.333
and ϕ′ = 30◦); Figure 3b shows the principal (σ′1 and σ′3) stresses and horizontal (σ′h) and vertical (σ′v)
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stresses near the RW, respectively. The vertical and horizontal stresses due to overburden (OB) were
also plotted, based on σ′v = γh and σ′h = (K0)ϕ ′σ

′
v. The stresses along the RW correspond to a vertical

line located at a distance of 0.2 m (one element size) from the rock. For both cases, Figure 3 shows that
the values of σ′v and σ′h were significantly lower than those based on the OB, especially near the base
of the backfilled opening.
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in the backfill for independent (Case 0) and related (Case 0′) values of ν and ϕ′ (see Table 1 for details).

Along the VCL of the two-dimensional opening, the major and minor principal stresses are the
vertical and horizontal stresses, respectively. The principal stress ratio Kps (= σ′3/σ′1) is thus the same
as the earth pressure coefficient K (= σ′h/σ′v).

For ϕ′ = 30◦, when the value ν increases from 0.2 (Case 0, independent ν and ϕ′) to 0.333 (Case 0′,
with Equation (6)), Figure 3a shows that the vertical principal stress (σ′v = σ′1) along the VCL tends to
decrease significantly while the horizontal principal stress (σ′h = σ′3) slightly increases. Near the RW,
the principal stresses and the vertical and horizontal stresses are nearly insensitive to the change of
ν, except near the base of the opening, where the major principal stress (σ′1) and the vertical stress
(σ′v) decrease slightly when ν goes from 0.2 to 0.333 (Figure 3b). These results tend to indicate that the
two stress ratios (Kps and K) obtained from the two assumptions may differ somewhat. This effect is
also illustrated in Figure 4, which shows that the values of Kps and K along the VCL (Figure 4a) and
near the RW (Figure 4b) all increase when ν varies from 0.2 (Case 0) to 0.333 (Case 0′), with a larger
variation along the VCL.
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3.1. K = Kps along the Vertical Center Line (VCL)

Numerical results reported by Yang [31] indicated that the coefficient K (= Kps) along the VCL
of backfilled openings is close to Ka when the backfill Poisson’s ratio is below a critical value
defined from its internal friction angle ϕ′ (i.e., for ν ≤ (1 − sin ϕ′)/2), suggesting that the fill is
yielding and approaching an active state near the opening center. Beyond this critical value (i.e.,
for ν > (1 – sin ϕ′)/2), the ratio K (= Kps) along the VCL becomes close to K0 defined from the Poisson’s
ratio (Equation (5)). As a special case of the latter situation, with related ν and ϕ′ through Equation (6),
ν = (1 − sin ϕ′)/(2 − sin ϕ′) is always larger than the critical value of ν (= (1 − sin ϕ′)/2) suggested by
Yang [31]. The corresponding coefficient K (= Kps) along the VCL of backfilled stopes is thus close to K0

when this condition applies. These results have been explained by Yang [31] using the Mohr-Coulomb
elasto-plastic model.

3.2. Kps and K near the Rock Wall (RW)

In this section, additional simulation results are presented to illustrate the effect of various
parameters on stress ratios, K and Kps, near the RW of backfilled openings for different cases with
independent and linked values of ν and ϕ′.

3.2.1. Independent ϕ′ and ν

Figure 5 shows the variations of Kps and K near the RW as a function of the opening width (B)
(Figure 5a; Case 1) and backfill Young’s modulus (E) (Figure 5b; Case 2) for independent values of ϕ′

and ν. In both cases, it is seen that the values of Kps near the RW are close to Rankine’s active earth
pressure coefficient Ka (Equation (3)) for changing values of B (from 4 to 20 m) and E (from 10 MPa to
1 GPa), except very near the surface and base of the opening. Figure 5 also indicates that the value
of K (about 0.4) near the RW is between K0 and Ka for these ranges of B (4 to 20 m) and E (10 MPa to
1 GPa). These results indicate that the stress ratios (K and Kps) are almost unchanged by the variation
of opening width and backfill Young’s modulus (for these conditions).
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(b) E (Case 2 in Table 1) for independent values of ν and ϕ′.

Figure 6 illustrates the vertical profiles of Kps (Figure 6a) and K (Figure 6b) near the RW for
different values of ϕ′ with constant ν (Case 3). It can be observed from Figure 6a that the principal
stress ratio Kps near the RW is always very close to Rankine’s coefficient (Ka) for ϕ′ increasing from 10◦

to 40◦. Figure 6b shows that the K values near the RW stay close to Jaky’s K0 for ϕ′ = 10◦. As the ϕ′

value increases, K tends to diverge from K0 and move towards Ka; K ≈ Ka when ϕ′ = 40◦. It is also seen
that the K value (about 0.4) near the RW is between K0 and Ka for ϕ′ = 30◦, as shown above in Case 1
(Figure 5a) and Case 2 (Figure 5b).

Figure 7 shows the variations of Kps (Figure 7a) and K (Figure 7b) near the RW for different values
of Poisson’s ratio ν (constant ϕ′ = 30◦; Case 4). It can be seen from Figure 7a that the values of principal
stress ratio Kps near the RW are almost constant and close to Ka for ν ≤ 0.3. These values are similar
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to those of Kps near the RW in Cases 1 to 3 (with ν = 0.2) presented above. The Kps values slightly
increase (but stay close to Ka) for ν > 0.3. The value of K near the RW shown in Figure 7b indicates that
it remains nearly constant for ν ≤ 0.3 and close to (K0)ν obtained with ν = 0.3. When ν is above 0.3,
the K values tend to increase and can be estimated by (K0)ν, except very near the surface and base of
the opening.Minerals 2017, 7, 201 7 of 14 
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3.2.2. Related ϕ′ and ν

In the case of related values of ν and ϕ′ (through Equation (6)), the values of the at-rest earth
pressure coefficient K0 estimated from the angle ϕ′ (Equation (4)) and Poisson’s ratio ν (Equation (5))
are unique and consistent.

Figure 8 illustrates the vertical profiles of K and Kps near the RW for different values of opening
width (B) (Figure 8a; Case 1′) and backfill Young’s modulus (E) (Figure 8b; Case 2′) when ϕ′ and ν

are connected (Equation (6)). As B increases from 4 to 20 m, Figure 8a shows that the values of K near
the RW are close to the at-rest earth pressure coefficient K0 while those of Kps are close to Rankine’s
coefficient Ka, except very near the opening surface and base. The K values near the RW (Figure 8b) are
almost superposed with K0 when the value of E varies from 10 MPa to 1 GPa. The Kps near the RW is
close to Ka, as shown in Figure 8b. These results indicate that the opening width and Young’s modulus
have little effect on the earth pressure coefficient and principal stress ratio for the investigated ranges.

Figure 9 shows the variations of Kps (Figure 9a) and K (Figure 9b) near the RW (Case 3′ in Table 1),
when ϕ′ increases from 10◦ to 40◦ (and related ν changes from 0.452 to 0.263, through Equation (6)).
Figure 9a illustrates that the principal stress ratio Kps near the RW tends to slightly exceed Ka, as the ϕ′
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value goes from 10◦ to 40◦. Figure 9b indicates that earth pressure coefficient K near the RW tends to
decrease with the increase in ϕ′ (and decrease in ν); the value of K agrees very well with K0.Minerals 2017, 7, 201 8 of 14 
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Figure 9. Vertical profiles of (a) Kps and (b) K near the RW for different ϕ′ values related to ν values
(Case 3′ in Table 1).

Figure 10 illustrates the distributions of Kps and K across the stope width B at different heights for
related ν and ϕ′ (Case 0′ in Table 1). It can be seen that Kps changes gradually from K0 near the center
to a value close to Ka near the walls; this variation is due to the frictional shear stresses developing
along the rock walls, which affect the magnitude and orientation of the principal stresses. Figure 10
also indicates that the values of K remains close to K0 across the opening width; this is in agreement
with the simulations results obtained by Jahanbakhshzadeh et al. [32].
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4. Numerical Results Obtained with Interface Elements

The results presented above have been obtained from numerical simulations conducted without
interface elements between the backfill and rock walls. Additional simulations are performed to
investigate the effect of the interface characteristics on the stress ratios in backfilled openings.

The stiffness of the interface elements between the backfill and rock walls are determined using
the approach suggested in the FLAC manual [37] to ensure stable numerical results [36]. The tensile
strength and cohesion along the interfaces are nil. The backfill and interfaces properties used in these
simulations conducted with interface elements (Cases 5 and 4′) are given in Table 1 above. The interface
friction angle (δ′) can vary from zero (frictionless interface) to a maximum value corresponding to the
backfill internal friction angle (ϕ′) (rough interfaces).

In various civil engineering applications, pressure estimation is often made by assuming
δ′ = 2ϕ′/3 along fill-wall interfaces [41,42]. In underground mine stopes, rough interfaces are
commonly encountered due to production blasting (with δ′ = ϕ′). The effect of the angle (δ′) on
stress ratios (Kps and K), near the center and walls of a vertical backfilled opening, is analyzed here for
both independent and related values of ϕ′ and ν.

4.1. K = Kps along the Vertical Center Line (VCL)

New numerical results indicate that stress ratios, Kps = K along the VCL of openings are insensitive
to the value of angle δ′ and remains almost the same as those given by calculations without interface
elements, for both independent and related cases of ϕ′ and ν (see details in [31]). Such numerical results
obtained without interface elements have been presented by Yang [31] and are thus not repeated here.

4.2. Kps and K near the Rock Wall (RW)

4.2.1. Independent ϕ′ and ν

For independent values of ϕ′ and ν, the simulated stress ratios, Kps and K, near the RW may be
influenced by the value of the angle δ′.

Figure 11 illustrates the vertical profiles of the principal stress ratio Kps near the walls when
ν = 0.2 and 0.3 (for constant ϕ′ = 30◦), for different values of δ′ (Case 5 in Table 1). It can be seen that
for δ′ = ϕ′, the value of Kps near the RW is close to Ka, which is similar to Case 4 without interfaces
(Figure 7a). When the δ′ value decreases from ϕ′ to zero, the value of Kps near the walls remains close
to Ka for ν = 0.2 (Figure 11a), while it tends to rise and approach coefficient (K0)ν for ν = 0.3 (Figure 11b).
These results indicate that the value of Kps near the walls tends to approach the value that prevails
near the opening center line, for an angle (δ′) between ϕ′ and zero. A similar trend was observed for
the value of coefficient K near the walls, as illustrated in Figure 12, which shows the variations of K
near the walls with the angle δ′, for ν = 0.2 and 0.3 (with constant ϕ′ = 30◦; Case 5 in Table 1). It can be
seen from Figures 11 and 12 that the values of Kps and K near RW tend to approach each other as the
angle δ′ diminishes from ϕ′ to zero, and finally became equal at δ′ = 0.
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4.2.2. Related ϕ′ and ν

For related values of ν and ϕ′, the coefficient K near the RW is found to be independent of the
angle δ′ and remains almost identical to cases obtained without interface elements (i.e., close to the
at-rest coefficient K0; see Figures 8–10). These similar results are thus not presented here. It is however,
observed that the principal stress ratio Kps near the RW could be affected by the value of the angle δ′.

Figure 13 shows the vertical profiles of the principal stress ratio Kps near the RW as a function of ν

and ϕ′ for different values of δ′ (when ϕ′ and ν are related; Case 4′ in Table 1). For δ′ = ϕ′, Figure 13a
shows results that are very similar to those in Figure 9a for the simulations performed without interface
elements. Additional results (not shown here) also indicate that the value of Kps varies gradually from
Ka near the walls to a value close to K0 near the center of the opening (similarly to the tendency shown
in Figure 10a). As the δ′ value decreases from ϕ′ to zero, the Kps value near the walls tends to approach
coefficient K0 (for the whole range of ϕ′ and ν); the latter also represents the stress ratios near the
opening center. It can also be seen that the value of Kps near the RW tends to approach that of K near
the RW when angle δ′ diminishes; both ratios become identical for δ′ = 0 (Figure 13d). For δ′ = 1/3ϕ′

and δ′ = 0, the stress ratios near the RW are very similar (Figure 13c,d), and remain close to coefficient
K0 across the width of the opening (detailed results not shown here; see [31]).
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In general, as the angle δ′ reduces from ϕ′ to zero, it can be seen from Figures 11–13 (and other
results not shown here but presented in [31]) that the stress ratios Kps and K near the walls generally
tend to become close to each other, with both ratios becoming almost identical to those near the
opening center line. This is due to the smaller rotation of the principal stresses with the reduced δ′,
thereby leading to principal stresses that approach the vertical and horizontal stresses even near the
rock walls. It was also observed that stress ratios obtained with δ′ = 1/3ϕ′ and δ′ = 0 were quite close
to each other.

5. Discussion

The numerical results presented above were obtained with both independent and linked
(through Equation (6)) values of the internal friction angle (ϕ′) and Poisson’s ratio (ν) of the backfill.
Simulated stress ratios in backfilled openings were shown to be influenced by which of these two
different assumptions is applied (see also [31]). The latter is based on the consistency of obtaining
a single value of K0 with the elasto-plastic model in numerical simulations [19,20,40]. These two
assumptions were investigated to assess their effects on the stress state in the backfill. More work
is underway to evaluate, more specifically, the nature of the relationship between ϕ′ and ν from
experimental results and thus the significance of Equation (6).

The results presented above indicate that near the opening walls, the Kps value is close to Ka in
all simulations conducted with both independent and related ν and ϕ′, for cases without interface
elements and with such elements for rough walls (i.e., δ′ = ϕ′). These results indicate that the fill is
approaching an active state, due to its yielding associated with the large shear stresses developing near
the rough rock faces (see also Figures 11 and 13). Near the opening center, the backfill may approach an
active state when the values of ϕ′ and ν are below the critical values defined above. This indicates that
the wall movement is not a necessary condition to induce an active state in backfilled openings [30].
More work is underway to better define the conditions leading to these conditions.

It is worth mentioning that the validity of any numerical analyses, such as those presented here,
should be checked using other approaches such as close form solutions or experimental data. The latter
type of validation would require the measurement of horizontal and vertical stresses near the center
and walls of backfilled openings, and the assessment of backfill internal friction angle and Poisson’s
ratio. This combination of data does not yet exist (to the authors’ knowledge). Experimental data are
hence urgently needed for this purpose.

It is also recalled that the displacements of the rock walls are considered negligible after placement
of the backfill in the simulations. This is representative of isolated stopes with “delayed backfilling”,
when the fill is deposited after the complete convergence of stiff rock walls. Cases where two interacting
stopes are excavated and filled in sequence, with movements of the walls, have been analyzed by [40].

Other factors, such as pore water pressures and binder-induced cohesion within the backfill
and along the interfaces, may also impact the stress distribution in backfilled openings [35,36,39,43].
These aspects were not considered in the numerical simulations conducted here. Neglecting additional
influence factors allowed for a direct assessment of the earth pressure coefficient introduced in the
arching solution used for estimating stresses in cohesionless dry backfill. Nevertheless, these aspects
should be considered in future work.

The effects of opening inclination, third dimension and loads due to blasting may also alter
the stress state of backfilled openings [20,22,38]. Additional work has been conducted and ongoing
investigations are also underway to take these factors into account.

6. Conclusions

Numerical simulations were performed to analyze the values of stress ratios (earth pressure
coefficient, K = σ′h/σ′v and principal stress ratio, Kps = σ′3/σ′1) in vertical openings with cohesionless
fills, considering both the independent and related backfill internal friction angle (ϕ′) and Poisson’s
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ratio (ν). The numerical results presented above indicate that both values of K and Kps depend on the
position (near the walls or center line) and the relationship between ϕ′ and ν.

Near the center of the opening, K = Kps and this value is close to Rankine’s earth pressure
coefficient Ka when Poisson’s ratio ν or the internal friction angle ϕ′ is below a critical value, defined
by the Coulomb criterion. Otherwise, the value of K (= Kps) correlates well with K0 defined from
Poisson’s ratio.

Near the opening walls, the Kps value is typically close to Ka, suggesting that the fill is yielding
and approaching an active state due to the shearing stresses developing near the rock surface. The K
value near these walls depends on the respective values of ν and ϕ′ when considered independently,
while K is close to K0 for the related backfill parameters ν and ϕ′.

Simulation results obtained with interface elements indicate that the stress ratios (Kps and K)
near the opening center are independent of interface roughness, with values almost identical to those
obtained without interfaces for both independent and related parameters. As the interface friction
angle (δ′) reduces from ϕ′ to zero, the stress ratios Kps and K near the rock walls generally tend to
approach each other, becoming very close to those obtained near the opening center line.

These results help clarify the use of the analytical solution given by Equations (1) and (2), and
how to evaluate the value of the earth pressure coefficient K.
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