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Abstract: A microbial mineral carbonation trial was conducted at the Woodsreef Asbestos Mine 

(NSW, Australia) to test cyanobacteria-accelerated Mg-carbonate mineral precipitation in mine 

tailings. The experiment aimed to produce a carbonate crust on the tailings pile surface using 

atmospheric carbon dioxide and magnesium from serpentine minerals (asbestiform chrysotile; 

Mg3Si2O5(OH)4) and brucite [Mg(OH)2]. The crust would serve two purposes: Sequestering carbon 

and stabilizing the hazardous tailings. Two plots (0.5 m3) on the tailings pile were treated with 

sulfuric acid prior to one plot being inoculated with a cyanobacteria-dominated consortium 

enriched from the mine pit lakes. After 11 weeks, mineral abundances in control and treated 

tailings were quantified by Rietveld refinement of powder X-ray diffraction data. Both treated plots 

possessed pyroaurite [Mg6Fe2(CO3)(OH)16·4H2O] at 2 cm depth, made visible by its orange-red 

color. The inoculated plot exhibited an increase in the hydromagnesite [Mg5(CO3)4(OH)2·4H2O] 

content from 2–4 cm depth. The degree of mineral carbonation was limited compared to previous 

experiments, revealing the difficulty of transitioning from laboratory conditions to mine-site 

mineral carbonation. Water and carbon availability were limiting factors for mineral carbonation. 

Overcoming these limitations and enhancing microbial activity could make microbial carbonation 

a viable strategy for carbon sequestration in mine tailings. 

Keywords: mineral carbonation; mine tailings; chrysotile asbestos; CO2 storage; cement 

precipitation; carbonate minerals; microbial carbonation; cyanobacteria 

 

1. Introduction 

Mineral carbonation has been presented as a strategy for offsetting anthropogenic carbon 

dioxide (CO2) emissions [1–3], in part because it provides a safe, long-term carbon reservoir for large 

quantities of CO2 [1]. Numerous mineral carbonation mechanisms have been investigated for use on 

ultramafic minerals in ophiolites and mine waste products [4–15]. Natural “passive” carbonation of 

mine tailings has been documented at several mine sites [7,8,15–18], and could be enhanced by 

increasing exposure of the tailings to atmospheric CO2 through aeration of the tailings or altering the 

tailing deposition rate [9,19,20]. Using ultramafic mine tailings produced by chrysotile, diamond, 

nickel, chromite, and platinum group element mines [8,21] as feedstocks for carbonation gives value 
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to these waste products and allows mining companies to partially offset their operational carbon 

emissions.  

Asbestos mine tailings are found at numerous active and historic mine sites worldwide 

[8,15,17,21–23]. Mining activity has ceased at many of these locations; however, megatons of tailings 

containing asbestiform minerals remain, posing a threat to the health of nearby residents [24] and 

polluting natural waterways [22]. Although the mineralogy of the tailings at derelict asbestos mines 

is well characterized [8,21,25], and asbestos mineral hazard-assessment guidelines are available 

[26,27], the challenge of remediating this industrial waste remains unsolved. Targeting asbestos 

mine tailings as a feedstock for mineral carbonation has the potential to aid in tailings containment 

and remediation with the added value of offsetting carbon emissions.  

Laboratory-scale investigations have demonstrated carbonate mineral formation from mine 

tailings using biologically mediated and abiotic mechanisms [14,28–30]. Microorganisms, 

particularly cyanobacteria [31–36] and ureolytic bacteria [37,38], can enable carbonate mineral 

precipitation reactions. Cyanobacteria mediate carbonate mineral precipitation by increasing the pH 

and alkalinity of the extracellular medium through photosynthesis (Reactions 1–4) [39,40]. These 

organisms also generate extracellular polymeric substances (EPS) capable of providing nucleation 

sites for carbonate minerals [41,42]. The conditions resulting from this combination of water 

chemistry and nucleation template availability facilitates carbonate mineral precipitation in 

cyanobacteria biofilms and microbial mats. Combining these biogeochemical conditions with the 

high concentrations of cations that can be generated by leaching ultramafic mine tailings (Reaction 5) 

can result in mineral carbonation (Reaction 6) [28]. Bioreactors hosting microbial communities 

capable of precipitating carbonate minerals could be utilized at tailing storage facilities to store 

anthropogenic CO2 [19,43].  

HCO3− + H2O → CH2O + O2 + OH− (1) 

CO2 + H2O ↔ HCO3− + H+ (2) 

H+ + OH− → H2O (3) 

HCO3− + OH− → CO32− + H2O (4) 

2Mg3Si2O5(OH)4 + 6HSO4− + 6H+ → 6Mg2+ + 6SO42− + 4SiO2·nH2O + (5 − n) H2O (5) 

5Mg2+ + 4CO32− + 2OH− + 5H2O → Mg5(CO3)4(OH)2·5H2O (6) 

Adapting microbial carbonation strategies developed in the laboratory for application to a mine 

site presents a major challenge due to the scale on which the carbonation reactions must be 

conducted [19]. This investigation is the first of its kind to test the feasibility of implementing 

microbial carbonation at a mine site, the Woodsreef Asbestos Mine in New South Wales, Australia. If 

successful, mineral carbonation could serve the dual purpose of remediating and containing the 

fine-grained hazardous tailings, and storing atmospheric CO2 [28].  

2. Materials and Methods  

2.1. Regional Geology of Woodsreef Mine 

The Great Serpentine Belt (GSB) is composed of partially serpentinized harzburgite, massive 

serpentinite, and schistose serpentinite; and it hosts the Woodsreef Mine (Figure 1) [17,44,45]. 

Approximately 550,000 t of fibrous chrysotile was mined at this site between 1971 and 1983, 

producing 75 million t of waste rock and 24.2 million t of tailings that occupy 400 hectares [46,47]. 

The tailings at Woodsreef primarily consist of serpentine-group minerals (lizardite and minor 

chrysotile) [Mg3Si2O5(OH)4], with minor magnetite (Fe3O4), chromite (FeCr2O4), enstatite (MgSiO3), 

forsterite (Mg2SiO4), calcite (CaCO3), quartz (SiO2) and brucite [Mg(OH)2], with hydromagnesite 
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[Mg5(CO3)4(OH)2·4H2O] and pyroaurite [Mg6Fe2(CO3)(OH)16·4H2O] forming as alteration products 

[17,48].  

 

Figure 1. (A) Aerial view of Woodsreef Asbestos Mine, New South Wales, Australia (inset) showing 

the location of the tailings pile. (B) Woodsreef mine hosts 24 million t of asbestos tailings. (C) One of 

the 1 m × 1 m plots used to study acid dissolution and carbonation of mine tailings. (D) Sub-cm 

clasts, primarily serpentinite, cover the surface of the tailings pile. (E) Serpentine, including fibrous 

chrysotile, makes up 90 wt % of the tailings.  

2.2. Experiment Design 

Precipitation of magnesium carbonate minerals was studied in two 1 m × 1 m × 0.5 m (length × 

width × depth) experimental plots on the Woodsreef Mine tailings pile (Figure 1C). Sulfuric acid was 

added to both plots with an initial target of leaching magnesium from serpentine and brucite to a 

depth of ~1/2 m for 2 weeks; however, the permeability of the tailings limited the volume of solution 

that could be added to the plots. Local creek water and concentrated H2SO4 were used to make 

solutions of 0.22 M H2SO4, of which 40.5 L were added to each plot. The leaching solution likely 

infiltrated the tailings down to a depth of ~9 cm based on the tailings having an estimated porosity of 

29%. This porosity estimate is based on the pore volume calculated in a laboratory study that used 
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the Woodsreef tailings as a starting material to study mineral carbonation in column experiments 

[28]. The quantity of acid was selected to maximize magnesium leaching while also maintaining a 

circumneutral pH [28]. The latter is necessary for the survival of cyanobacteria in the carbonation 

trial and ultimately carbonate mineral precipitation. The acidified creek water was added slowly to 

avoid surface runoff onto the tailings surrounding each plot. Note, the sulfuric acid treatment would 

have also released magnesium and CO2 from any pre-existing carbonate minerals in the tailings. 

After 2 weeks, one plot was inoculated with 2 L of a cyanobacteria-dominated consortium (hereafter 

referred to as the Bio-plot). The consortium was enriched from a biofilm collected from the water in 

an open pit that remains from mining activity. The inoculum was applied to the plot with 18 L of 

BG-11 growth medium [49] prepared using local creek water.  

The second plot did not receive an inoculum (hereafter referred to as the Chem-plot) and 

provided a means of characterizing mineral carbonation in acid weathered tailings without the aid 

of the microbial consortium. A volume of 20 L of creek water was added to the Chem-plot at the 

2-week time point to match the solution volume added to the Bio-plot. Both plots were left exposed 

to the atmosphere under natural conditions for 9 weeks. An adjacent plot of tailings, which were 

neither leached nor inoculated, was used as a mineralogical baseline for the experiment.  

Regional weather data were acquired for the duration of the experiment from a nearby 

meteorology station (30.38° S, 150.61° E) [50]. Inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) using a Perkin Elmer Optima 3300 DV (Perkin Elmer, Waltham, MA, USA) 

and fluid injection analysis (FIA) using a Lachat QuikChem8500 Flow Injection Analyzer (Lachat, 

Loveland, CO, USA) were used to measure the abundance of cations and nutrients in the creek 

water, respectively. An HCl titration was used to calculate the alkalinity of the creek water as mg/L 

HCO3− [51].  

2.3. Mineralogical Characterization of the Tailings 

The mineralogy of the top ~1/2 m of the tailings was characterized using powder X-ray 

diffraction (XRD) for each stage of the carbonation trial: unreacted tailings, the Chem-plot after 2 

weeks, the Chem-plot after 11 weeks, and the Bio-plot after 11 weeks. Each sample set consisted of a 

depth profile to 47 cm below the surface of the tailings pile as a means of determining how the 

mineralogy changed with depth and time over the course of the carbonation trial. The depth profiles 

for the unreacted tailings and the Chem-plot after 2 weeks consisted of triplicate samples (~15 g 

each) collected from 0–2 cm, 2–17 cm, 17–32 cm, and 32–47 cm; with these depth selections based on 

macroscopically visible transitions in grain size and mineralogy of the tailings. The 2-week 

Chem-plot samples were collected from one half of the plot, leaving the other half undisturbed such 

that it could be sampled at the conclusion of the experiment. After 11 weeks, triplicate samples were 

collected from both plots at the following depth intervals: 0–2 cm, 2–4 cm, 4–17 cm, 17–32 cm, and 

32–47 cm. The tailings from 2–4 cm depth were selected as an additional sampling horizon because 

they appeared macroscopically different than the adjacent tailings above and below.  

Powder X-ray diffraction (XRD) was used to identify the mineral phases in the tailings samples. 

The samples were air dried for 2 weeks and pulverized. An internal standard of 10 wt % fluorite 

(CaF2) was added to a subsample of each tailings sample. The internal fluorite standard along with 

structureless pattern fitting (independent of atomic scattering) provided a means of quantifying the 

abundance of the poorly ordered serpentine in the tailings using the method of Wilson, Raudsepp 

and Dipple [21].  

Each fluorite-doped sample was micronized for 7 min under anhydrous ethanol in a McCrone 

Micronising Mill using agate grinding elements. The samples were air dried in Petri dishes prior to 

disaggregation with an agate mortar and pestle. The samples were loaded in back-loading cavity 

mounts prior to analysis using a Bruker D8 Advance Eco X-ray diffractometer (Bruker, Billerica, MA, 

USA) with a Cu source operated at 40 kV and 25 mA. Phase identification was completed with 

reference to the ICDD PDF-2 Release 2015 database using DIFFRACplus Eva v.2 software [52]. 

Rietveld refinements [53–55] were completed using Topas Version 3 [52] and the fundamental 

parameters approach [56]. The peaks of both serpentine minerals (lizardite and chrysotile) were 
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fitted using a Pawley phase [57] produced by refinement of a pure specimen of chrysotile and 

employing the unit cell and space group for this phase [58]. Once a correct fit was achieved for other 

major phases, the relative intensities for the serpentine peaks were refined. The refinements did not 

include a step correcting for preferred orientation because refinements for samples that contain 

phases with severe preferred orientation are commonly more accurate without such corrections [59].  

Samples of the tailings from each experiment time point were characterized using scanning 

electron microscopy (SEM) in conjunction with elemental analysis using energy dispersive X-ray 

spectroscopy (EDS). The samples were mounted on stainless steel stubs using adhesive carbon tabs 

and coated with 10 nm of iridium using a Quarum Q150T S sputter coater prior to being 

characterized using a JEOL JSM-7100F Field Emission SEM (FE-SEM) (JEOL, Ltd., Akishima, Japan). 

At the conclusion of the experiment, 1 g of tailings from 0–2 cm and 2–4 cm from both plots were 

added to BG-11 growth medium [49] as a means of confirming the presence of viable cells.  

3. Results 

3.1. Field Observations 

The tailing sampling horizons were based on macroscopic observations made at the beginning 

of the experiment: 0–2 cm consisted of fine-grained fibrous tailings, 2–17 cm consisted of 

pebbled-sized grains of serpentinite mixed with fine-grained fibrous tailings, 17–32 cm and 32–47 

cm both consisted of fine-grained tailings. These horizons were consistent in the tailing profiles 

sampled in both plots as well as the control tailings. Acid addition to the tailings caused the rapid 

formation of an orange-red precipitate similar in appearance to pyroaurite found in the tailings and 

on the walls of the mine pit. Eleven weeks after leaching, both plots exhibited a ~2 mm-thick, orange 

horizon of what appeared to be pyroaurite approximately 2 cm below the surface of the tailings 

(Figure 2).  

No obvious carbonate crust was observed on the surface of the tailings in either plot at the 

conclusion of the experiment. The Bio-plot contained a laterally continuous horizon of white 

material from 2–4 cm depth, and carbonate-coated serpentinite clasts from 4–17 cm. There was no 

macroscopically visible evidence of microbial growth in the Bio-plot after 11 weeks. The Chem-plot 

contained a similar, though irregularly distributed, white horizon from 2–4 cm. No such horizon 

was observed in the unreacted tailings.  

A total of 248 mm of rain fell on the site during the experiment, with up to 37 mm falling in a 

single rain event and periods of no precipitation lasting up to 16 days (SI Figure S1) [50]. The mean 

daily minimum and maximum temperatures were 15 °C and 31 °C, respectively [50].  

The creek water added to the plots had a titration-determined alkalinity of 472.75 mg/L as 

HCO3−. Magnesium, sodium and calcium were the most abundant cations, with concentrations of 

70.4 ppm, 37.4 ppm, and 29.2 ppm, respectively (SI Table S1). The creek water contained PO43−, NO3−, 

and NO2−, at concentrations of 27.4 ppb, 1.2 ppb, and 1.1 ppb, respectively (SI Table S1). Note, since 

the concentration of magnesium in the creek water is low compared to what can be produced 

through acid leaching of chrysotile tailings [28], the magnesium added to the plots by way of the 

creek water is considered to have made a negligible contribution to Mg-mineral carbonation, and is 

not considered throughout the remainder of the manuscript. 



Minerals 2017, 7, 191  6 of 19 

 

 

Figure 2. (A) After 11 weeks, a 2 mm-thick horizon of pyroaurite (orange material) formed at a depth 

of 2 cm in both plots. Below this horizon, a white layer of hydromagnesite was found from 2–4 cm 

depth (bottom right corner of photograph). (B) Intermixed pyroaurite (orange) and hydromagnesite 

(white) at the contact between the two horizons in the Bio-plot.  

3.2. Rietveld Refinement Results  

Quantitative XRD data for the unreacted tailings indicate that the surface (0–2 cm) of the 

tailings pile was composed of 91.2 wt % serpentine (lizardite and minor chrysotile), plus minor 

amounts of magnetite (3.5 wt %), forsterite (2.3 wt %), pyroaurite (1.3 wt %), enstatite (0.8 wt %), and 

trace abundances quartz, calcite, and brucite (Table 1). The abundance of serpentine in the Chem- 

and Bio-plot tailings was slightly lower, containing 90.2 wt % and 90.6 wt % serpentine, respectively. 

In the depth profile of the unreacted tailings, pyroaurite was most abundant between 2 cm and 17 

cm at 2.6 wt % (Table 1). Like pyroaurite, hydromagnesite was most abundant in the tailings 

sampled from just below the surface, with no hydromagnesite being detected in any of the 0–2 cm 

tailing samples. Hydromagnesite was present at an abundance of 1.1 wt % in the tailings from 2–17 

cm (Table 1). The 2–4 cm horizon contained 1.3 wt %, 1.1 wt %, and 1.9 wt % hydromagnesite in the 

Chem-plot (2 weeks), Chem-plot (11 weeks), and Bio-plot (11 weeks), respectively.  

A 

B 
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Table 1. Rietveld results for the tailings sampled over the duration of the carbonation trial. Each value is given as an average of triplicate samples. The full dataset and 

corresponding Rwp values are available in the supplementary information file (SI Tables S2–S5).  

Depth Profile Depth (cm) 
Mineral Phase (wt %) 

Serpentine Pyroaurite Magnetite Hydromagnesite Brucite Calcite Forsterite Enstatite Quartz Total 

Unreacted tailings 

0–2 91.2 1.3 3.5 0.0 0.1 0.2 2.3 0.8 0.5 100.0 

2–17 88.8 2.6 2.2 1.1 0.3 0.4 2.7 1.5 0.2 100.0 

17–32 90.2 1.9 2.1 0.7 0.2 0.7 2.4 1.7 0.1 100.0 

32–47 90.8 1.3 2.1 0.0 0.4 0.5 2.9 2.0 0.0 100.0 

Leached tailings (2 weeks) 

0–2 92.7 1.3 2.5 0.2 0.2 0.1 1.7 0.8 0.5 100.0 

2–17 88.6 3.4 2.1 1.3 0.2 0.4 2.3 1.4 0.2 100.0 

17–32 89.1 2.3 2.5 1.2 0.2 0.6 2.8 1.2 0.1 100.0 

32–47 93.2 1.5 1.9 0.3 0.1 0.5 1.7 0.8 0.0 100.0 

Leached tailings (11 weeks) 

0–2 90.2 1.5 2.8 0.0 0.2 0.2 2.7 1.9 0.5 100.0 

2–4 88.6 2.6 2.2 1.1 0.2 0.3 3.3 1.5 0.3 100.0 

4–17 89.9 2.5 2.4 1.4 0.2 0.4 1.9 1.2 0.1 100.0 

17–32 91.9 1.1 2.2 0.3 0.3 0.5 2.1 1.5 0.0 100.0 

32–47 95.0 0.7 1.9 0.0 0.2 0.5 1.3 0.5 0.0 100.0 

Leached and inoculated tailings (11 weeks) 

0–2 90.6 0.9 3.2 0.0 0.2 0.2 3.0 1.3 0.6 100.0 

2–4 89.6 2.5 2.1 1.9 0.1 0.4 2.2 0.8 0.4 100.0 

4–17 90.4 2.4 2.0 1.2 0.1 0.7 2.2 1.0 0.0 100.0 

17–32 92.0 1.1 2.1 0.7 0.2 0.5 2.5 0.9 0.0 100.0 

32–47 92.4 1.0 2.3 0.0 0.5 0.6 2.2 1.1 0.0 100.0 
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3.3. Electron Microscopy 

SEM of the unreacted tailings revealed abundant fibrous chrysotile (Figure 1E). Back-scattered 

electron SEM of a cross-section of the white horizon found in the Bio-plot from 2–4 cm depth 

revealed Mg-carbonate cement on serpentinite grains (Figure 3). The cement appears to initially 

form as meniscus cements at grain contacts, leaving unfilled voids between grains (Figure 3A,B). In 

some cases, cement has filled the voids generating a laterally continuous crust (Figure 3C,D). 

Secondary precipitates cementing chrysotile fibers in place were observed using secondary electron 

(SE-) SEM (Figure 3E,F). Precipitated silica exhibited several morphologies: Sub-micrometer thick 

coatings on grains that conform to the alignment of the chrysotile fibers (Figure 4A), amorphous 

botryoidal agglomerates (diameter < 1 μm) on serpentinite grain surfaces (Figure 4B), and as 

desiccated crusts of amorphous silica engulfing disarticulated chrysotile fibers (Figure 4C,D). 

SE-SEM of the sample collected from the pyroaurite horizon at 2 cm depth in the Bio-plot revealed 

aggregates of anhedral, platy crystals (Figure 5A,B). SE-SEM of the white 2–4 cm horizon in the 

Bio-plot showed plates of hydromagnesite intermixed with chrysotile fibers (Figure 5C,D). When 

added to BG-11 growth medium, the tailings from 0–2 cm and 2–4 cm in the Bio-plot exhibited 

positive growth of filamentous cyanobacteria (Figure 6A,B). No growth occurred in the Chem-plot 

tailings added to BG-11 growth medium, confirming the absence of viable cyanobacteria.  
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Figure 3. Electron micrographs of a cross-section through the carbonate horizon (2–4 cm depth) in 

the Bio-plot. (A) The hydromagnesite initially formed as meniscus cements at grain contacts. (B) 

Cements can be observed immobilizing bundles of chrysotile fibers. (C) In some cases, voids are 

in-filled with hydromagnesite cement. (D) The hydromagnesite cement has immobilized serpentinite 

grains. (E) Cement beginning to form among fibers of chrysotile (arrow). (F) Chrysotile fibers (arrow) 

enclosed in cement forming within a serpentinite grain. Note, hmg: hydromagnesite, serp: 

serpentinite.  

 

Figure 4. Electron micrographs depicting the various morphologies of silica in the Bio-plot. (A) A 

layer of amorphous silica formed through incongruent dissolution of chrysotile from 2–4 cm depth in 

the Bio-plot. Note, left side of micrograph: silica, right side of micrograph: chrysotile. (B) Botryoidal 

silica precipitated on the surface of serpentinite grains in the Bio-plot at a depth of 2–4 cm. (C) 

Desiccated crust of amorphous silica sampled from the 2-cm deep pyroaurite horizon in the Bio-plot, 

containing chrysotile fibers (D). Note: hmg: hydromagnesite, si: silica.  
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Figure 5. SE-SEM micrographs of the pyroaurite horizon found at 2-cm depth in the Bio-plot after 11 

weeks showing (A) the relatively poor crystallinity of the pyroaurite indicated by subhedral 

platelets; and (B) the disarticulated chrysotile fibers found among the pyroaurite crystals. Secondary 

electron micrographs of the carbonate horizon found from 2–4 cm depth in the Bio-plot after 11 

weeks showing (C) the extent of platy hydromagnesite mixed with (D) residual chrysotile fibers.  
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Figure 6. SE-SEM micrographs of the biofilm that grew after addition of tailings collected from 0–2 

cm depth in the Bio-plot after the 11-week experiment to BG-11 growth medium in the laboratory. 

(A) The biofilm is composed primarily of filamentous cyanobacteria that can be seen producing small 

quantities of mesh-like exopolymer (B). 

4. Discussion 

4.1. Precipitate Morphologies As an Indication of Chemistry 

The mineral formation conditions in the plots can be interpreted from the SEM observations. 

The meniscus cements forming at grain contacts in Figure 3A,B suggest low water content at the 

time of precipitation; mineral nucleation occurred in boundary layer water at point contacts 

followed by voids being in-filled with cement (Figure 3C,D). The layer of material aligned with the 

underlying chrysotile fibers in Figure 4A is likely a product of incongruent dissolution during 

chemical weathering. A difference in activation energy between magnesium and silicon in the 

serpentine crystal structure means that the Mg-rich, octahedrally coordinated brucite layers are 

dissolved more readily than the tetrahedral siloxane (Si-rich) layers [60–65]. Non-stoichiometric 

leaching causes magnesium to be removed from the crystal structure at a rate up to an order of 

magnitude faster than silica [63]. Mg-depletion generates a porous framework of the residual 

siloxane layers, which collapses to produce nano-fibriform silica through a solid-state 

transformation instead of dissolution and re-precipitation [62]. As silica does not readily remain in 

solution, any dissolved silica produced during chemical weathering of the chrysotile fibers likely 

re-precipitated to form textures such as the botryoidal phase in Figure 4B or the amorphous 

desiccation crust found in the 2 cm pyroaurite horizon in the Chem-plot (Figure 4C,D). The 

anhedral, platy morphology exhibited by pyroaurite in Figure 5A,B is similar to that observed by 

Taylor et al. [66], and the presence of this phase suggests the prevalence of a carbon-limited 

environment (discussed below) [48]; however, sufficient carbon was present to precipitate the 

observed hydromagnesite (Figure 5C,D). 

4.2. Mineral Carbonation Success 

The hydromagnesite abundance increased in the 2–4 cm sample of the Bio-plot to contain  

1.9 wt % hydromagnesite (Table 1). The low abundances of hydromagnesite, pyroaurite, and brucite 

compared to serpentine make it difficult to compare the behaviour of these phases between the 

experimental plots because the uncertainty on refined wt % abundances increases with decreasing 

mineral abundance using this technique [21]. This challenge could be overcome in future studies by 

using magnesium and carbon isotopes to, respectively, track the conversion of silicate minerals and 

atmospheric CO2 to carbonate mineral phases. Normalizing the mole fraction of Mg in each of these 

minerals to that contained in serpentine reveals general trends (Figure 7). When compared to both 
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the unreacted tailings (Figure 7C) and the Chem-plot (Figure 7B), the 2–4 cm sample from the 

Bio-plot (Figure 7A) shows enrichment in Mg-content in hydromagnesite with a comparable amount 

of Mg being found in hydromagnesite and pyroaurite. In spite of this, the inability of either plot to 

reach its full carbonation potential suggests the presence of a limiting condition. 

 

Figure 7. Mole fraction of the Mg content in pyroaurite, hydromagnesite, and brucite in the (A) 

unreacted, control tailings; (B) Chem-plot; and (C) Bio-plot.  

4.3. Water As a Limiting Factor 

Water is required for microbial carbonation of mine tailings; it acts as a solvent for carrying 

ions, as a reactant to be incorporated into the crystal structure of hydrated Mg-carbonate minerals, 

and it is necessary for microbial survival. Schaef et al. [67], Assima et al. [68], and Harrison et al. [69] 

demonstrated that limited water availability can inhibit hydrated Mg-carbonate mineral 

precipitation from brucite. Furthermore, Assima, Larachi, Beaudoin and Molson [68] and Harrison, 

Dipple, Power and Mayer [69] have shown that there is an optimal range of pore-water saturation 

for carbonation of brucite. The water (40 L) added to each plot plus the rainfall (248 mm) should 

have been sufficient for complete carbonation, assuming 100% reaction of the acid treatment. 

However, the observed surface runoff suggests incomplete infiltration of the full 0.5 m3 volume of 

each plot, likely caused by the fibrous morphology of the tailings. Although the total solution 
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volume was sufficient for carbonation, it is unlikely that the water was available for carbonate 

precipitation reactions at depth. Limited infiltration would confine magnesium ions to the top of the 

tailings, causing its transport to the surface via evaporation-induced capillary rise. Over 37 mm of 

rain fell 5 days after the Bio-plot was inoculated, potentially washing microbes and dissolved 

magnesium out of the plot. Water infiltration could be better understood by monitoring the moisture 

levels within the tailings pile. Dehydration and heat were likely stressors for the microorganisms 

during the subsequent 16-day period of no precipitation and air temperatures reaching 39 °C. The 

endolithic habitat provided some protection; cyanobacteria were successfully cultured from the 

11-week Bio-plot 0–2 cm and 2–4 cm tailing samples (Figure 6) with no cyanobacteria recovered 

from the Chem-plot.  

4.4. Carbon As a Limiting Factor 

A benefit of cyanobacterial mineral carbonation is photosynthetically generated alkalinity that 

increases the pH and induces carbonate mineral supersaturation. Alkalinity generation as dissolved 

inorganic carbon by cyanobacteria-heterotroph associations provides an indirect pathway for 

transferring atmospheric CO2 to the tailing pore waters [36,39,40,70,71]. Limited microbial growth in 

the Bio-plot means that photosynthesis, and therefore alkalinity production, was underutilized 

under the harsh environmental conditions. This is critical for low permeability tailings because 

infiltration of atmospheric CO2 is a known limiting factor [9]. Additionally, exopolymer production 

is diurnally linked to photosynthesis and active growth; restricted photosynthesis reduces the 

potential for the biofilm to provide carbonate mineral nucleation sites [42]. The formation of the 

pyroaurite horizon suggests the slow ingress of atmospheric CO2 into tailings pore water [48]. The 

increased tendency of aqueous Mg to form hydromagnesite rather than pyroaurite and brucite in the 

Bio-plot (Figure 7), combined with an apparent suppression of the brucite content in the Bio-plot 

from 2–4 cm and 4–17 cm, suggests the Bio-plot suffered less carbon limitation than the Chem-plot. 

The availability of carbon could be better understood by in situ monitoring of CO2 in the tailings 

during future tailing carbonation experiments. The challenge of carbon limitation could be amended 

in such experiments by increasing active microbial growth.  

4.5. Carbonation: Maximizing Tailings Stabilization Versus Carbon Sequestration 

Subsurface endolithic cyanobacteria have been previously found in carbonate crusts from 

Woodsreef Mine [28]. The increased abundance of hydromagnesite in the 2–4 cm Bio-plot samples 

combined with the recovery of cyanobacteria suggests that a protective endolithic habitat was 

developing. Nonetheless, a well consolidated crust such as that produced in the laboratory in 4 

weeks by McCutcheon, Wilson and Southam [28] was not observed. Endolithic biofilm 

establishment would have enabled the production of exopolymer capable of retaining water during 

dry spells, and cations (Mg2+) during rain events, while also providing carbonate mineral nucleation 

sites [39,41–43,72–75].  

Refining the deployment strategy would better utilize the microbial influence on mineral 

carbonation, potentially generating a carbonate crust capable of stabilizing the hazardous tailings, 

reducing off-site transport of the tailings, and contamination of nearby waterways with asbestos 

fibers [22]. Additionally, magnesium carbonate minerals generated from acid-leached ultramafic 

minerals can trap and store transition metals, reducing the possibility of these metals being 

transported off site [76]. The potential health benefits of carbonating chrysotile fibers have been 

previously noted by Pronost, Beaudoin, Lemieux, Hébert, Constantin, Marcouiller, Klein, Duchesne, 

Molson, Larchi and Maldague [15]. Additionally, preliminary soil development through the 

establishment of an endolithic community of microbes and introduction of C, N, and P to the surface 

of the tailings would aid site remediation [28,77,78]. Nutrient availability is a limiting factor for 

successful revegetation of chrysotile tailings [79,80] making the early stages of soil formation vital to 

mine-site rehabilitation. Irrigating the acid-treated tailings could resolve the water limitations 

observed and allow for better growth of the microbial inoculum.  
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The design of this experiment was based on a successful laboratory study [28] in which acid 

weathering and microbial carbonation of chrysotile produced a carbonate crust. The present study 

demonstrated the challenges of ‘on-site’ implementation of mineral carbonation. Severe wetting and 

drying, and high temperatures were deleterious to microbial growth. Although evaporation can be a 

driving force for carbonate formation in arid environments [81], lack of water can be a limiting factor 

for hydrated carbonate mineral precipitation [69], particularly when carbonation is dependent on 

abundant, active cyanobacterial growth. In arid environments, and for mine sites hosting 

non-hazardous ultramafic tailings, it may be advantageous to target maximum carbon sequestration 

rather than tailings stabilization through carbonate crust formation. Constructing carbonate 

precipitation bioreactors such as those proposed by Power, Wilson, Small, Dipple, Wan and 

Southam [5] and modelled in the laboratory by McCutcheon, Power, Harrison, Dipple and Southam 

[43] could achieve greater carbon sequestration. Large-scale leaching of the tailings could deliver 

Mg-rich solutions to wetlands containing alkalinity-generating microbial mats [19]. Mine pits at 

derelict mines could be reengineered for this purpose, and these mineral carbonation technologies 

could be integrated with those targeting biofuel production [82,83]. Selecting an acid treatment that 

will be sufficiently neutralized during chemical weathering of the tailing minerals necessitates 

mineralogical characterization of the tailings [65]. Secondary carbonate minerals generated through 

passive carbonation of older tailings make recently milled tailings a preferred leaching target. 

Accounting for secondary carbonate phases or carbonate gangue minerals, such as the trace amounts 

of calcite in the Woodsreef tailings (Table 1), would enable more effective acid treatment of 

ultramafic tailings prior to mineral carbonation. Using atmospheric CO2 and 

cyanobacteria-generated alkalinity in a carbon sequestration process is advantageous in remote 

locations lacking economically practical sources of CO2 such as flue gases from power generation. At 

mine sites located in close proximity to point sources of CO2, injection of supercritical or gaseous 

CO2 into the tailings may provide a more effective sequestration strategy [20,29,69]. Regardless of 

the mechanism utilized, further in situ experiments are necessary in order to optimize mineral 

carbonation, and must consider the environmental and mine-site parameters and challenges 

highlighted by the results of the present study.  

5. Conclusions 

This investigation provides the first application of microbially mediated carbonate mineral 

precipitation to the stabilization of asbestos mine tailings. An endolithic, phototrophic microbial 

community aided the increase of hydromagnesite abundance within the top few centimeters of the 

tailings. Unfavorable weather conditions caused water and carbon limitations in the tailings, which 

in turn restricted carbonate mineral precipitation. The difficulty of deploying mineral carbonation at 

a mine site becomes apparent when the results of this 11-week experiment are compared to those of 

a 4-week laboratory experiment that generated a well consolidated carbonate crust [28]. The results 

of the present study revealed useful information about mine-site microbial carbonation that can be 

used to develop a more effective strategy for deploying this method of carbonate formation for the 

purpose of containing hazardous asbestos tailings. Alternatively, construction of wetland 

bioreactors could maximize carbon sequestration via mineral carbonation of ultramafic waste. 

Supplementary Materials: The following are available online at www.mdpi.com/2075-163X/7/10/191/s1, 

Figure S1: Maximum air temperature (°C) and precipitation (mm) over the duration of the experiment as 

measured in a nearby town, Table S1: Cation (ppm) and nutrient concentrations (ppb) in the creek water added 

to the experimental plots, Table S2: Rietveld results and corresponding Rwp values for the control tailings. Rwp is 

the weighted pattern index, a function of the least-squares residual, Table S3: Rietveld results and 

corresponding Rwp values for the tailings sampled after 2 weeks following acid leaching. Rwp is the weighted 

pattern index, a function of the least-squares residual, Table S4: Rietveld results and corresponding Rwp values 

for the tailings sampled after 11 weeks following leaching. Rwp is the weighted pattern index, a function of the 

least-squares residual. 
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Materna, J.; et al. Soil biota and upper soil layer development in two contrasting post-mining 

chronosequences. Ecol. Eng. 2001, 17, 275–284. 

79. Meyer, D.R. Nutritional problems associated with the establishment of vegetation on tailings from an 

asbestos mine. Environ. Pollut. Ser. A Ecol. Biol. 1980, 23, 287–298. 

80. Moore, T.R.; Zimmermann, R.C. Establishment of vegetation on serpentine asbestos mine wastes, 

southeastern Quebec, Canada. J. Appl. Ecol. 1977, 14, 589–599. 

81. Oskierski, H.C.; Dlugogorski, B.Z.; Oliver, T.K.; Jacobsen, G. Chemical and isotopic signatures of waters 

associated with the carbonation of ultramafic mine tailings, Woodsreef Asbestos Mine, Australia. Chem. 

Geol. 2016, 436, 11–23. 

  



Minerals 2017, 7, 191  19 of 19 

 

82. Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A 

review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. 

83. Ramanan, R.; Kannan, K.; Deshkar, A.; Yadav, R.; Chakrabarti, T. Enhanced algal CO2 sequestration 

through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour. 

Technol. 2010, 101, 2616–2622. 

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


