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Abstract: Volcanic layers in coal seams in southwestern China coalfields have received much attention
given their significance in coal geology studies and their potential economic value. In this study, the
mineralogical and geochemical compositions of C19 and C25 coal seams were examined, and the
following findings were obtained. (1) Clay minerals in sample C19-r are argillized, and sedimentary
layering is not observed. The acicular idiomorphic crystals of apatite and the phenocrysts of Ti-augite
coexisting with magnetite in roof sample C19-r are common minerals in basaltic rock. The rare earth
elements (REE) distribution pattern of C19-r, which is characterized by positive Eu anomalies and
M-REE enrichment, is the same as that of high-Ti basalt. The concentrations of Ti, V, Co, Cr, Ni,
Cu, Zn, Nb, Ta, Zr, and Hf in C19-r are closer to those of high-Ti basalt. In conclusion, roof sample
C19-r consists of tuffaceous clay, probably with a high-Ti mafic magma source. (2) The geochemical
characteristics of the C25 coals are same as those reported for coal affected by alkali volcanic ash,
enrichment in Nb, Ta, Zr, Hf, and REE, causing the C25 minable coal seams to have higher potential
value. Such a vertical study of coals and host rocks could provide more information for coal-forming
depositional environment analysis, for identification of volcanic eruption time and magma intrusion,
and for facilitating stratigraphic subdivision and correlation.

Keywords: southeastern Sichuan; Late Permian; Shiping mine; volcanic layers in coal seams;
high-Ti basalt

1. Introduction

Volcanic ash ejected from volcanoes falls into peat swamps and subsequently can form a thin
and stable stratum in coal seams, which is usually “tonstein” and in some cases, occurs as roof and
floor strata of coal seams [1,2]. These volcanic layers in coal seams get much attention as they can
help to identify times of volcanic eruption and magma intrusion in this area, assess the coal-forming
environments, and facilitate stratigraphic subdivision and correlation [1–8]. Moreover, some volcanic
layers in the coal seams may contain valuable trace elements (such as rare earth elements, Nb, Ta, Zr,
Hf, and Ga) that could increase the potential value of the coal [4,5]. Consequently, host rocks (tonsteins,
floor and roof) in coal seams related to volcanic ash are of great importance in coal geology [2,3,6,7].

Volcanic activity frequently occurred in the Late Permian age in southwestern China [1,2,9–13],
and volcanic ashes deposited in the peat-forming environment have been found in some coal seams
in this area [1–5]. These volcanic layers found in southwest China can be divided into four types:
felsic [2,14], alkali [2,4,5,15,16], mafic [1,3], and dacitic [3]. It was reported that felsic and dacitic
volcanic layers are common in Late Permian coal seams in southwestern China [1,2,6,7]. Alkali
volcanic layer in the coal seams in southwestern China have attracted much attention given that coal
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seams affected by alkali volcanic ash are enriched in Nb, Ta, Zr, Hf, and REE [2,4,5,15,16]. However,
because mafic eruptions generally do not form tuffs, mafic volcanic layers occur rarely in coal-bearing
strata around the world and only a few have been found in the Late Permian coals from southwestern
China [1,3].

More attention has been paid to tonsteins in coal seams [5,16]; however, research on the roof
and floor strata with a volcanic source was scarcely reported [3]. In this paper, geochemical and
mineralogical characteristics of the roof sample in the C19 coal seam with a high-Ti mafic magma
source were investigated. Variation in the element geochemistry and mineralogy of the C19 and C25
coals and floor sample in Late Permian from the Shiping mine, Sichuan, southwestern China was
also described, with an emphasis on elements and minerals of volcanic origin in these coals and hosts
rocks. Such a vertical study of coals and host rocks could provide more information for coal-forming
depositional environments analysis, for identification of volcanic eruption time and magma intrusion,
and for facilitating stratigraphic subdivision and correlation.

2. Materials and Methods

The Shiping mine is located in the southeastern part of Sichuan Province, southwestern China
(Figure 1).
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Figure 1. Distribution of Late Permian Emeishan basalts in southwestern China [13].

The sedimentary sequences in the Shiping mine include the Quaternary, Upper Triassic Xujiahe
Formation, Middle Triassic Leikoupo Formation, Lower Triassic Jialingjiang and Feixianguan
Formations, Upper Permian Changxing and Longtan Formations, Middle Permian Maokou and
Xixia Formation, Lower Permian Liangshan Formation, and Silurian.

The coal-bearing sequence of the Shiping mine is the Late Permian Longtan Formation, which
is composed mainly of mudstone, siltstone, sandstone, flint-bearing limestone, muddy sandstone,
claystone, and six coal seams (Figure 2).

The Longtan Formation contains two major minable coal seams, namely the C19 and the
C25. The C25 coal is the lowermost coal seam in the Late Permian strata of southwestern China.
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The thickness of the C25 coal seam is 0.80–1.30 m. The C19 coal, with a thickness of 1.50–2.00 m, is the
lower-middle coal seam in the Late Permian strata of southwestern China.
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3. Samples and Analytical Procedures

Six samples, including four coal bench samples (C19-1, C25-1, C25-2, and C25-3), one roof sample
(C19-r), and one floor sample (C25-f), were taken from C19 and C25 coal seams mined at the coal
working face of the Shiping mine (Figure 2). The identifications of all samples were shown in Figure 2.
Each sample was cut over an area 10 cm wide and 10 cm deep. All samples were stored immediately
in plastic bags to minimize contamination and oxidation.

Proximate analysis was conducted with ASTM Standards D3173-11 [17], D3174-11 [18], and
D3175-11 [19]. Total sulfur and forms of sulfur were determined under ASTM Standards D3177-02 [20]
and D2492-02 [21], respectively. Petrographic examination of the coals was performed under
optical microscope following ASTM Standard D2797/D2797M-11a [22]. Mean random reflectance of
vitrinite (percent Ro,ran) was determined by using a Leica DM-4500P microscope (Leica Camera
AG, Wetzlar, Germany). Maceral constituents were identified under white-light reflectance oil
immersion microscopy.

A field emission-scanning electron microscope (FE-SEM, FEI Quanta™ 650 FEG, FEI, Hillsboro,
OR, USA), in conjunction with an EDAX energy-dispersive X-ray spectrometer (Genesis Apex 4, EDAX
Inc., Mahwah, NJ, USA), was used to study morphology and microstructure and also to determine the
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distribution of some elements in the coal and rock samples. Low-temperature (oxygen-plasma) ashing
(LTA) was performed, using an Emitech K1050X plasma asher (Quorum Inc., Lewes, UK), to remove
organic matter in the coal prior to XRD analysis. The residues of this process were then analyzed
by X-ray diffraction (XRD) using a D/max-2500/PC powder diffractometer (Rigaku, Tokyo, Japan)
with Ni-filtered Cu-Kα radiation and a scintillation detector. The XRD pattern was recorded over a 2θ
interval of 2.6˝–70˝, with a step size of 0.01˝.

Concentrations of major element oxides in the samples (on ash basis; ashing temperature of 815 ˝C)
were obtained by X-ray fluorescence (XRF) spectrometry. Mercury was determined by a Milestone
DMA-80 Hg analyzer (Milestone, Sorisole, Italy). Fluorine analysis was conducted using ASTM
Standard D5987-96 [23]. Inductively coupled plasma mass spectrometry (Thermo Fisher, Edmonton,
AB, Canada, X series II ICP-MS) was used to determine the trace elements in the samples. All samples
were digested using an UltraClave Microwave High Pressure Reactor (Milestone Inc., Shelton, CT,
USA). Details for these coal-related sample digestion and ICP-MS analysis techniques are given by
Dai et al. [1]. Arsenic and selenium were determined by ICP-MS, using collision cell technology (CCT),
in order to avoid disturbance of polyatomic ions [24].

4. Results

4.1. Coal Chemistry and Coal Petrology

The vitrinite random reflectance (Ro,ran average 2.21%) and the weighted average volatile matter
(Vdaf average 15.98%) of the coal bench samples (Table 1) indicate a bituminous coal according to
the ASTM classification D388-12, 2012 [25]. The total sulfur content varies considerably between the
C19 (0.59%) and C25 (average 3.52%) coals, and the coals can be classified as low-sulfur coal and
high-sulfur coal, respectively, according to Chinese standard GB 15224.1-2004 [26].

Table 1. Bench thickness (cm), proximate analysis (%), vitrinite random reflectance (%), and gross
calorific values (MJ/kg) of coal benches from the Shiping mine.

Samples Thickness Mad Ad Vdaf St,d Ss,d Sp,d So,d Ro,ran Qgr,d

C19-1 50 1.75 17.42 9.14 0.59 nd nd nd 2.30 29.35
C25-1 40 2.70 16.52 13.90 6.53 2.11 3.58 0.84 2.21 28.13
C25-2 40 1.32 16.66 13.04 1.45 0.33 1.08 0.05 2.23 28.99
C25-3 50 1.58 44.54 27.84 2.59 0.81 1.40 0.38 2.10 15.45

M, moisture; A, ash yield; V, volatile matter; St, total sulfur; ad, air-dry basis; d, dry basis; daf, dry and ash-free
basis; Ro,ran, random reflectance; Qgr,d, gross calorific value, on a dry basis; nd, not detected.

The C19 and C25 coals contain abundant vitrinite (Table 2), with collodetrinite (Figure 3A) being
the most abundant maceral, followed by collotelinite (Figure 3A), along with small proportions of
telinite (Figure 3B) and vitrodetrinite (Figure 3C).

Inertinite macerals occur in lesser proportions (Table 2) and are dominated by semifusinite
(Figure 3A), followed by macrinite (Figure 3D) and inertodetrinite (Figure 3A), with trace amounts of
micrinite (Figure 3E) and fusinite (Figure 3F). The cell structures of the semifusinite and fusinite are
better preserved and have swelled and deformed form (Figure 3A,F).

Table 2. Maceral composition (vol. %; on mineral-free basis) of the Shiping coals.

Samples Cd Ct T Cg Vd T-V F Sf Ma Mi Sc Id T-I

C19-1 47.9 32.7 0.4 bdl 2.7 83.7 0.4 8.6 1.6 0.4 bdl 5.4 16.3
C25-1 54.5 21.8 bdl bdl 2.3 78.6 bdl 14.4 4.3 bdl bdl 2.7 21.4
C25-2 60.8 25.2 0.4 bdl 0.7 87.1 bdl 7.2 2.9 bdl bdl 2.9 12.9
C25-3 51.1 19.6 0.9 bdl 2.3 74.0 bdl 10.0 8.7 0.5 bdl 6.8 26.0

Cd, collodetrinite; Ct, collotelinite; T, telinite; Cg, corpogelinite; Vd, vitrodetrinite; T-V, total vitrinite; F, fusinite;
Sf, semifusinite; Ma, macrinite; Mi, micrinite; Id, inertodetrinite; T-I, total inertinite. bdl, below detection limit.
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Figure 3. Macerals in the coal samples, reflected light, and oil immersion. (A) collodetrinite, collotelinite,
semifusinite, and inertodetrinite in sample C25-1; (B) telinite in sample C25-2; (C) vitrodetrinite
in sample C25-1; (D) fusinite with swelling cells in sample C25-3; (E) micrinite in sample C25-3;
(F) macrinite in sample C25-3.

4.2. Modes of Occurrence of Minerals

The mineral compositions of the C19 and C25 coal low-temperature ashes (LTA), roof, and floor
samples, as determined by XRD and Siroquant software, are listed in Table 3.

All samples contain clay minerals and pyrite (Table 3). The clay minerals in the C19 coal seams
are mainly kaolinite, followed by illite and illite-smectite mixed layer clays. Kaolinite is the only clay
mineral in the C25 coal seams. Kaolinite in the coals occurs as discrete particles (Figure 4A), cell-fillings
(Figure 4B), and fracture-fillings (Figure 4A). Pyrite occurs as discrete particle aggregates (Figure 5A)
and as cell fillings (Figure 5B), but it is present mainly as framboidal (Figure 5C) and needle-like forms
together with marcasite (Figure 5D).
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Table 3. LTA yields of coal samples and mineral compositions (%) of coal LTAs, partings, roofs, and
floors determined by XRD and Siroquant.

Minerals C19-r C19-1 C25-1 C25-2 C25-3 C25-f

LTAs - 17.58 24.94 20.21 49.35 -
Kaolinite 34.5 34.8 51.2 27.6 65.5 80.3

Illite 9.8 15.5 - - - -
I/S mixed-layer 26.6 1.6 - - - -

Quartz 19.8 26.6 1.4 - - -
Pyrite 0.4 7.4 27.9 3 3.4 5.4

Marcasite - 10.3 - - - -
Anatase 4.9 - 3.1 - - -
Rutile - - 6.8 - - -
Calcite 0.4 - 7.3 66 28.4 4.1
Siderite 3 - - - - -
Jarosite 0.6 - - - - 2

Bassanite - 3.7 2.2 3.4 2.7 -
Gypsum - - - - - 8.2
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anatase, rutile (Figure 8A), and fluocerite (Figure 8B) are distributed in the kaolinite matrix. 

 
Figure 7. Calcite in C25-2. Optical microscope, reflected light. (A) Fracture-filling calcite and;  
(B) Fracture-filling calcite. 

Figure 5. Pyrite in the C25 coal. (A) Particles of pyrite in sample C25-2; (B) cell-filling pyrite in sample
C25-3; (C) framboidal pyrite in sample C25-3; (D) needle-like forms combined with marcasite in sample
C25-3. Optical microscope, reflected light.

Quartz and marcasite are mainly contained in the C19 coal (Table 3). Quartz in coals occurs as
discrete particles (Figure 6A), cell-fillings (Figure 4B), and fracture-fillings (Figure 6B), and marcasite
occurs as needle-like forms together with pyrite (Figure 5D).
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Calcite, Ti-oxide minerals, and fluocerite are mainly contained in the C25 coals. The calcite in the
C25 coals occurs as fracture fillings (Figure 7). As observed by SEM-EDS analysis of C25 coals, anatase,
rutile (Figure 8A), and fluocerite (Figure 8B) are distributed in the kaolinite matrix.
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Figure 8. Back-scattered electron images of (A) Ti-oxide and (B) fluocerite in C25-3.

Chalcopyrite, titaniferous magnetite, apatite, and Ti-augite are present only in roof sample C19-r.
Chalcopyrite occurs as fracture fillings (Figure 9A). Barite occurs in the form of discrete particles
(Figure 9B). Titaniferous magnetite occurs as irregular granular. Apatite occurs as acicular idiomorphic
crystals (Figure 9C). Ti-augite and rare magnetite occur as phenocrysts (Figure 9D). Marcasite was
observed by SEM-EDS analysis in sample C25-f (Figure 10).
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Figure 10. SEM back-scattered electron images of marcasite in C25-f. (A) Marcasite and claystone;
(B) Marcasite.

4.3. Concentration and Distribution of Major and Trace Elements

4.3.1. Major Element Oxides

The element compositions of the C19 and C25 coals, roof, and floor are listed in Table 4.

Table 4. Bench thickness (cm), major element oxides (%), loss on ignition (%), and trace elements (µg/g)
in the Shiping coals and host rocks.

Elements C19-r C19-1 C25-1 C25-2 C25-3 C25-f

Thickness - 50 40 40 50 -
SiO2 43.4 13.5 4.75 4.20 16.1 25.5
TiO2 3.88 0.279 0.291 0.229 0.482 0.934

Al2O3 22.5 1.88 4.51 4.12 14.5 22.4
Fe2O3 1.90 0.337 5.50 1.40 2.70 4.49
MnO 0.007 0.003 0.004 0.037 0.017 0.004
MgO 0.363 0.096 0.066 0.064 0.176 0.192
CaO 0.708 0.426 0.389 3.78 5.75 2.63

Na2O 0.480 0.053 0.050 0.022 0.055 0.057
K2O 1.15 0.017 0.066 0.031 0.122 0.228
P2O5 0.403 0.007 0.009 0.006 0.016 0.026
LOI 24.6 82.9 83.9 83.6 56.2 39.8

SiO2/Al2O3 1.93 7.19 1.05 1.02 1.11 1.14
Li 49.1 9.97 21.7 33.2 178 343
Be 3.38 2.89 7.73 16.2 9.47 9.29
F 787 36.8 77.2 52.4 342 480
Sc 22.6 5.00 6.79 4.07 8.96 15.3
V 331 38.5 61.0 26.3 646 2904
Cr 118 12.7 24.1 13.8 282 1837
Co 16.2 17.9 2.61 2.35 3.83 20.0
Ni 36.9 34.6 14.8 9.65 46.2 166
Cu 278 20.6 14.8 9.42 29.2 95.8
Zn 300 13.9 20.4 14.7 80.6 71.5
Ga 38.0 4.06 12.8 9.01 36.5 75.3
Ge 2.47 0.93 3.79 8.62 10.3 4.80
As 11.4 1.66 3.29 2.67 7.98 25.2
Se 22.2 4.02 5.09 4.09 22.8 63.2
Rb 33.7 0.496 1.53 0.554 3.43 6.02
Sr 759 77.9 164 325 301 177
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Table 4. Cont.

Elements C19-r C19-1 C25-1 C25-2 C25-3 C25-f

Y 69.2 10.6 20.2 17.1 197 137
Zr 613 82.7 228 125 1744 1648
Nb 91.3 11.4 17.0 19.1 192 131
Mo 20.0 0.868 1.31 0.707 3.82 24.2
Cd 1.63 0.210 0.666 0.432 14.6 17.9
In 0.183 0.046 0.020 0.045 0.226 0.563
Sn 4.88 0.831 1.12 1.18 7.89 12.6
Sb 1.26 0.097 0.251 0.177 0.966 7.63
Cs 4.07 0.071 0.206 0.069 1.06 1.82
Ba 223 13.5 18.3 9.47 46.3 78.0

REE 703 40.7 73.8 124 1037 1323
La 127 5.48 11.4 25.4 173 221
Ce 274 11.7 19.5 44.3 322 533
Pr 29.8 1.29 2.13 5.21 42.5 54.6
Nd 117 4.72 7.72 18.1 159 224
Sm 26.0 1.08 1.77 3.15 30.6 39.8
Eu 6.45 0.254 0.416 0.436 2.82 3.26
Gd 22.5 1.34 2.32 3.44 32.2 36.5
Tb 2.76 0.222 0.438 0.493 4.87 5.07
Dy 13.1 1.39 2.97 2.67 28.6 27.3
Ho 2.46 0.313 0.636 0.535 6.01 5.58
Er 6.35 0.969 1.92 1.46 17.5 15.6
Tm 0.878 0.149 0.282 0.203 2.50 2.37
Yb 5.48 0.994 1.85 1.26 16.1 15.6
Lu 0.804 0.159 0.280 0.189 2.35 2.39
Hf 13.7 1.78 3.51 3.01 38.2 28.0
Ta 5.43 0.619 0.835 0.930 5.16 5.93

Hg (ppb) 59.8 19.5 396 197 372 621
Tl 0.077 0.004 0.188 0.045 0.083 0.115
Pb 66.6 6.18 12.5 2.19 12.6 29.1
Bi 0.164 0.212 0.146 0.205 0.427 0.598
Th 17.8 3.20 4.19 4.61 16.9 28.0
U 4.34 0.753 2.33 1.30 155 505

The percentages of Al2O3 and CaO in the C19 coal (C19-1) are lower than those in the more normal
Chinese coals reported by Dai et al. [27]. The SiO2/Al2O3 ratio of sample C19-1 (7.19 on average) is
much higher than that of other Chinese coals (1.42) [27] and also than the theoretical ratio for kaolinite
(1.18), indicating free SiO2 in the coal. The percentages of other major element oxides, however, are
either lower than or close to those in common Chinese coals.

The percentages of Al2O3 and CaO in the C25 coals are higher than those in the more normal
Chinese coals reported by Dai et al. [27]. The percentages of other major element oxides, however, are
either lower than or close to those in common Chinese coals. The SiO2/Al2O3 ratio of the C25 coals
(1.06 on average) is lower than that of other Chinese coals (1.42) [27], and also than the theoretical ratio
for kaolinite (1.18), indicating no free SiO2 in the coal.

It should be noted that the percentages of TiO2 are high in roof sample C19-r (3.88%) but low in
the C19 coal, C25 coals, and the floor sample (sample C25-f) (0.23–0.93%). Oxides SiO2, TiO2, Al2O3,
MgO, Na2O, K2O, and P2O5 show a pattern of vertical variation the same as that of the ash yield
through the seam section (Figure 11).
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Figure 11. Variations of ash yield and selected major elements (%) through the roof, coal seam, and
floor section of the Shiping C19 and C25 coal.

4.3.2. Trace Elements

Trace elements in most of the coal samples of this study are lower than or close to those of hard
coals of the world [28]. However, a large number of trace elements are enriched in sample C25-3
(Figure 12).

Compared to the average for hard coals of the world [28] and based on the trace-element
enrichment classification [29], a large number of trace elements are depleted in samples C19-1, C25-1,
and C25-2. The trace elements with a concentration coefficient (CC = ratio of element concentration in
Shiping coals/concentration hard coals of the world [28]) <0.5 include As, Rb, Sb, Cs, Ba, Tl, and Bi.
Only Zr in sample C25-1 (5 < CC < 10) and Be in sample C25-2 (5 < CC < 10) are enriched.

Compared to the average for hard coals of the world [28], a large number of trace elements,
including Li, V, Cr, Se, Zr, Nb, Cd, REE, Hf, Ta, and U, are enriched in C25-3 (CC > 10). Trace elements
with a CC of 5–10 include Ga, In, Sn, and Th. Many other elements, including Be, F, Sc, Ni, Zn, Ge, Sr,
and Hg, are slightly enriched (CC = 2–5) in the coal. The concentrations of the remaining elements are
depleted or close to the average for hard coals of the world [28].
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Figure 12. Concentration coefficients (CCs) of trace elements in the Shiping coals, normalized by
average trace element concentrations in hard coals of the world [28] and based on the trace-element
enrichment classification [29].

Compared to the average for the world clay [30] (Figure 13), trace elements Se and Mo are enriched
in roof sample C19-r (CC > 10). Trace elements with a CC of 5–10 include Cu, Nb, and Eu. Many other
elements, including Rb, Cs, Ba, Tl, and Bi are depleted (CC < 0.5) in C19-r. The concentrations of the
remaining elements are slightly enriched (CC = 2–5) or close to (CC= 0.5–2) the average for world
clay [30].

Compared to the average for the world clay [30] (Figure 13), a large number of trace elements,
including V, Cr, Se, Nb, Mo, Cd, and U, are enriched in floor sample C25-f (CC > 10). Trace elements
with a CC of 5–10 include Li, Zr, In, Sb, REE, Hf, Ta, and Hg. Some elements, including Rb, Cs, Ba, and
Tl, are depleted (CC < 0.5) in sample C25-f. The concentrations of the remaining elements are slightly
enriched (CC = 2–5) or close to (CC = 0.5–2) the average for world clay [30].
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Figure 13. Concentration coefficients (CCs) of trace elements in the Shiping roof and floor samples,
normalized by average trace element concentrations in clay of the world [30].

4.3.3. Rare Earth Elements

A threefold classification of rare earth elements [31] was used in this study. By comparison with the
upper continental crust (UCC), three enrichment types were identified: L-REE (light REE; LaN/LuN > 1),
M-REE (medium REE; LaN/SmN < 1, GdN/LuN > 1), and H-REE (heavy REE; LaN/LuN < 1) [31].

The REE enrichment patterns in the C19-1 and C25-1 coal benches are characterized by weak Eu
anomalies and H- and M-REE enrichment (Figure 14A). The REE enrichment patterns in sample C25-2
and C25-3 coal benches are characterized by strong negative Eu anomalies and M-REE enrichment
(Figure 14B,C).
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The REE enrichment patterns in the roof sample C19-r (Figure 15A) are characterized by
positive Eu anomalies and M-REE enrichment. Floor sample C25-f has the same REE enrichment
patterns as the C25 coals (Figure 15B), which are characterized by strong negative Eu anomalies and
M-REE enrichment.
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5. Discussion

A number of volcanic layers [33–35] and dispersed volcanic ashes in organic matter of coal
seams [36–40] have been observed in the southwestern China coalfield, and these volcanic layers can
be divided into four types: felsic, alkali, mafic, and dacitic [1,2,10]. In this paper, we have discussed
the characteristics of the elements and minerals in the C19 and C25 coal seams, which are affected by
different types of volcanic activity.

5.1. C19 Coal Seam and Basalt

The petrological characteristics of roof sample C19-r are different from those of other normal roof
deposits. The clay minerals in C19-r are argillized (Figure 9A,D), and sedimentary layering is not
observed (Figure 16), indicating that roof sample C19-r probably is a tuffaceous clay.

The contents of kaolinite, Illite, I/S, etc. are the same as in the floors of the C2 and C3 Coals in
Xinde Mine, Xuanwei, eastern Yunnan, China [3]. These floor strata are identified as fully argillized,
fine-grained, tuffaceous clays with high-Ti mafic magma source [3].

A vermicular texture in the kaolinite of roof sample C19-r (Figure 9B) is often used as an indicator
of a volcanic origin [2,3,41–43]. The acicular idiomorphic crystals of apatite and the phenocrysts of
Ti-augite coexisting with magnetite in roof sample C19-r (Figure 9C,D) are common minerals in basaltic
rock [2,12,44–46]. Irregular granular titaniferous magnetite in C19-r (Figure 9B) is a typical mineral
in basalt [47–50]. All the crystal modes of minerals indicate that roof sample C19-r has a high-Ti
basalt origin.

The major elements TiO2/Al2O3 ratio can indicate the acidic/basic/intermediate property of
deposits, including normal sedimentary rocks, coal seam, and tonsteins [5,6,14,51–60]. The TiO2/Al2O3

ratios are >0.08 for mafic, 0.08–0.02 for intermediate, and <0.02 for silicic rocks [1–3]. The TiO2/Al2O3

ratio for C19-r is 0.17, indicating a mafic origin. Trace elements, including V, Co, Cr, Ni, Cu, Zn, Nb, Ta,
Zr, Hf, and TiO2 in C19-r, are closer to those of mafic tuff rather than alkalic and silicic tuff [1].

The concentration of TiO2 in C19-r is high (3.88%). Concentrations of TiO2 in basalt higher than
2.8% are indicative of high-Ti basalt [10,11]. The concentrations of trace elements, including V, Co,
Cr, Ni, Cu, Zn, Nb, Ta, Zr, and Hf, in sample C19-r are closer to those of high-Ti basalt than to those
of low-Ti basalt (Table 5). The elemental compositions indicate that roof sample C19-r has a high-Ti
basaltic volcanic source.

The REE distribution patterns of C19-r are characterized by positive Eu anomalies and M-REE-type
enrichment. This is different from those of normal deposits of Late Permian clay rocks in the Emeishan
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large igneous province, which are generally characterized by weakly negative or no Eu anomalies [1,51],
and are the same as those of high-Ti [10] (Figure 17A). To summarize, roof sample C19-r consists of
tuffaceous clays and probably has a high-Ti mafic magma source.
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Table 5. The trace element (µg/g) in sample C19-r compared with high/low Ti basalts [10].

Samples V Cr Co Ni Cu Zn Ga Zr Nb Hf Ta

C19-r 331 118 16.2 36.9 278 300 38.0 613 91.3 13.7 5.43
High-Ti Basalt 374 71.0 40.3 63.5 248 131 23.9 391 48.5 8.51 2.97
Low-Ti Basalt 289 230 44.5 124 109 90.7 19.9 129 13.4 3.05 0.773

Coal sample C19-1 has trace element and REE distribution patterns similar to those of normal
coal deposits derived from the Kangdian Upland source region [6,7], indicating that sample C19-r is
a normal sedimentary rock.

5.2. C25 Coals and Volcanic Ashes of Alkali Rhyolites

In the early part of the Late Permian, the volcanic ash had mainly alkalic composition [1,2].
The C25 coals examined in this study are the lowermost coal seam of the Late Permian strata, and
these coals are in the same layer as other coals that were affected by alkali volcanics in southwestern
China [4,5,33]. Moreover, the Shiping mine is within the area of alkali tonstein distribution [16].

High field strength elements, including Nb, Ta, Zr, Hf, and REE, are significantly enriched in C25
coals, and other elements such as Sc, Ti, V, Cr, Co, Ni, Cu, and Zn are depleted in C25 coals [4,13].
This characteristic is the same as that of alkali tonsteins and other coals affected by alkali volcanics in
southwestern China [4,5,61]. This indicates that the C25 coal in the Shiping mine had been subjected
to alkalic volcanic ash.

The REE distribution patterns of the C25 coals are characterized by strongly negative Eu anomalies
and M-REE-type enrichment, the same as some Chinese alkali granites [62,63], some alkali tonsteins [1]
reported in the south of China, and some coals affected by alkali volcanics [5] (Figure 17B). Overall,
the C25 coals have high concentrations of Nb, Ta, Zr, Hf, and REE, which came mainly from alkali
volcanics. The origin of these rare metals in the C25 coal present in this study is similar to those in the
coals or coal-bearing sedimentary sequences in the surrounding areas [63–67].
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The floor sample (C25-f) has high concentrations of Nb, Ta, Zr, Hf, and REE and has an REE
distribution pattern similar to that of the C25 coal. It is the same as some alkali tonsteins reported in the
south of China [1]. These results indicate that floor sample C25-f probably has alkali volcanic origin.

6. Conclusions

Sample C19-r does not have distinct stratification, indicating that the roof stratum is not a normal
rock. The acicular idiomorphic crystals of apatite and the phenocrysts of Ti-augite coexisting with
magnetite in roof sample C19-r are common minerals in basaltic volcanic rock. The REE distribution
patterns of C19-r are characterized by positive Eu anomalies and M-REE-type enrichment. All of the
above indicates that the roof sample C19-r probably has a basaltic origin.

The concentration of TiO2 in C19-r is high (3.88%). Concentrations of TiO2 in basalt higher than
2.8% are indicative of high-Ti basalt. The concentrations of trace elements, including V, Co, Cr, Ni, Cu,
Zn, Nb, Ta, Zr, and Hf, in C19-r are closer to those of high-Ti basalt instead of those of low-Ti basalt.
To summarize, roof sample C19-r probably has a high-Ti basaltic origin.

Nb, Ta, Zr, Hf, and REE are significantly enriched in C25 coals, and other elements such as Sc, Ti,
V, Cr, Co, Ni, Cu, and Zn are depleted in C25 coals. The REE distribution patterns of the C25 coals are
characterized by strongly negative Eu anomalies and M-REE-type enrichment. This indicates that the
C25 coals in the Shiping mine were probably affected by alkalic volcanic ashes.
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