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Abstract: This paper reports the mineralogy and geochemistry of the Early Permian No. 5 coal
from the Chuancaogedan Mine, Junger Coalfield, China, using optical microscopy, scanning electron
microscopy (SEM), Low-temperature ashing X-ray diffraction (LTA-XRD) in combination with
Siroquant software, X-ray fluorescence (XRF), and inductively coupled plasma mass spectrometry
(ICP-MS). The minerals in the No. 5 coal from the Chuancaogedan Mine dominantly consist of
kaolinite, with minor amounts of quartz, pyrite, magnetite, gypsum, calcite, jarosite and mixed-layer
illite/smectite (I/S). The most abundant species within high-temperature plasma-derived coals were
SiO2 (averaging 16.90%), Al2O3 (13.87%), TiO2 (0.55%) and P2O5 (0.05%). Notable minor and trace
elements of the coal include Zr (245.89 mg/kg), Li (78.54 mg/kg), Hg (65.42 mg/kg), Pb (38.95 mg/kg),
U (7.85 mg/kg) and Se (6.69 mg/kg). The coal has an ultra-low sulfur content (0.40%). Lithium, Ga,
Se, Zr and Hf present strongly positive correlation with ash yield, Si and Al, suggesting they are
associated with aluminosilicate minerals in the No. 5 coal. Arsenic is only weakly associated with
mineral matter and Ge in the No. 5 coals might be of organic and/or sulfide affinity.
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1. Introduction

Coal is responsible for about 65% of electricity generation in China. The large abundance of
coal makes it a reliable, long-term fuel source for both in China and in other coal-rich countries like
Australia, Turkey and South Africa. With the increasing use of coal, a large amount of pollutants are
produced, not only gas emissions (SOx, NOx and CO2) but also ash residues. Environmental impact
of coal and coal combustion are generally associated with the minerals and the trace elements in coal.
Studies on the mineralogy and geochemistry of coal are the basic work for researching environmental
impact of coal and coal combustion. Dai et al. [1,2], Gürdal [3], Yang [4] Wang [5], Kolker [6],
Finkelman [7] and Tang et al. [8] have done much research on mineralogical and geochemical
characteristics of the coal in many areas. The Ordos basin is the most important energy base in
China. Late Paleozoic coals from the Ordos basin have attracted much attention. Dai et al. [9–11], and
Wang et al. [12] have studied the geochemistry and mineralogy of the coal and its coal combustion
products from the Heidaigou, Guanbanwusu, and Haerwusu Surface Mines in the Junger Coalfield.
The previous studies mostly focused on the No. 6 coals in Junger Coalfield. In this paper, we report
the data on the mineralogy and elemental geochemistry of the No. 5 Coals in the Chuancaogedan
mine, Junger coalfield, China.
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2. Geological Setting

The Junger Coalfield is located on the northeastern margin of the Ordos Basin. The coalfield is
65-km long (N–S) and 26-km wide (W–E), with a total area of 1700 km2. The geological setting of
the area has been described in detail by Dai et al. [9]. The Chuancaogedan Mine is situated in the
southeastern part of the Junger Coalfield (Figure 1).
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3. Samples and Analytical Procedures 

Fifteen bench samples of the No. 5 Coal were collected from the Chuancaogedan Mine, Junger 
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ground to pass 200 mesh, and stored in brown glass bottles for chemical analyses. 

Proximate analyses were measured in accordance with ASTM standards (ASTM D3173-11 [14], 
ASTM D3175-11 [15], and ASTM D3174-11 [16], respectively). Total sulfur was determined following 
the ASTMD 3177-02 [17]. 

Mineralogical analyses of the coal samples were performed by means of Powder X-ray 
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Low-temperature ashing of the powdered coal samples was carried out using an EMITECH 
K1050X plasma asher (Quorum, Lewes, UK) prior to XRD analysis. XRD analysis of the 
low-temperature ashes was performed on a D/max-2500/PC powder diffractometer (Rigaku, Tokyo, 
Japan) with Ni-filtered Cu-Kα radiation and a scintillation detector. Each XRD pattern was recorded 
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110–150 m of which is mainly the Taiyuan and Shanxi formation (Figure 2). The Taiyuan Formation,
with a thickness of 52 m, is mainly made up of sandstone, mudstone and coals. In the Shanxi
Formation, which has a thickness of 67 m, there are five coal seams, named No. 1, No. 2, No. 3,
No. 4 and No. 5 Coals in order from top to bottom.

3. Samples and Analytical Procedures

Fifteen bench samples of the No. 5 Coal were collected from the Chuancaogedan Mine, Junger
Coalfield following the Chinese Standard Method GB 482-2008 [13], the cumulative thickness of the
No. 5 Coal is about 4.0 m. From bottom to top, the fifteen bench samples are ZG501 to ZG517. All
samples were air-dried, sealed in polyethylene bags to prevent oxidation, and parts of them were
ground to pass 200 mesh, and stored in brown glass bottles for chemical analyses.

Proximate analyses were measured in accordance with ASTM standards (ASTM D3173-11 [14],
ASTM D3175-11 [15], and ASTM D3174-11 [16], respectively). Total sulfur was determined following
the ASTMD 3177-02 [17].

Mineralogical analyses of the coal samples were performed by means of Powder X-ray
diffraction (XRD), optical microscopy and scanning electron microscopy (SEM).

Low-temperature ashing of the powdered coal samples was carried out using an EMITECH
K1050X plasma asher (Quorum, Lewes, UK) prior to XRD analysis. XRD analysis of the
low-temperature ashes was performed on a D/max-2500/PC powder diffractometer (Rigaku, Tokyo,
Japan) with Ni-filtered Cu-Kα radiation and a scintillation detector. Each XRD pattern was recorded
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over a 2θ interval of 2.6˝–70˝, with a step size of 0.01˝. X-ray diffractograms of the Low-temperature
ashings (LTAs) and non-coal samples were subjected to quantitative mineralogical analysis using the
Siroquant™ interpretation software system (Sietronics, Mitchell, Australia). More analytical details
are given by Dai et al. [18,19] and Wang et al. [20].

X-ray fluorescence (XRF) spectrometry (ARL ADVANT’XP+, ThermoFisher, Waltham, MA,
USA) was used to determine the major element oxides in high-temperature ashed coal samples,
including SiO2, Al2O3, CaO, K2O, Na2O, Fe2O3, MnO, MgO, TiO2 and P2O5. Trace elements within
acid-digested ashed coal samples, except for As, Se, Hg and F, were determined by conventional
inductively coupled plasma mass spectrometry (ICP-MS). For its analysis, samples were digested
using an UltraClave Microwave High Pressure Reactor (Milestone, Sorisole, Italy). The basic load for
the digestion tank was composed of 330-mL distilled H2O, 30-mL 30% H2O2, and 2-mL 98% H2SO4.
Initial nitrogen pressure was set at 50 bars and the highest temperature was set at 240 ˝C that lasted
for 75 min. The reagents for 50-mg sample digestion were 5 mL 40% HF, 2 mL 65% HNO3 and 1 mL
30% H2O2. Multi-element standards were used for calibration of trace element concentrations. More
details are given by Dai et al. [21] Arsenic and Sewere analyzed by more advanced ICP-MS which
utilized collision/reaction cell technology (ICP-CCT-MS) as outlined by Li et al. [22]. Fluorine was
determined by an ion-selective electrode (ISE) method. Mercury was determined using a Milestone
DMA-80 Hg analyzer (Milestone, Sorisole, Italy).

The quantitative analysis of minerals and determinations of elements were completed at the State
Key Laboratory of Coal Resources and Safe Mining of China University of Mining and Technology
(Beijing, China).
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4. Results and Discussion

4.1. Coal Chemistry

The results of the total sulfur and proximate analysis of samples from the No. 5 coal are presented
in Table 1. Ash yields of the Chuancaogedan No. 5 coal range from 5.95% to 60.70% (Figure 3),
with an average of 32.69%, indicating a high ash coal according to Chinese National Standard (GB/T
15224.1-2004, 10.01% to 16.00% for low ash coal, 16.01% to 29.00% for medium ash coal, and >29.00%
for high ash coal) [23]. The ash yields tend to increase from the bottom to the top in the coal seam.

The contents of volatile matter of the No. 5 coal varies from 32.57% to 50.30% through the
coal-seam section (Figure 3), with a mean of 37.22%, suggesting that the Chuancaogedan coals are
medium-high volatile bituminous coals based on MT/T 849-2000 (28.01% to 37.00% for medium-high
volatile coal, 37.01% to 50.00% for high volatile coal and >29.00% for super high volatile coal) [24].

The No. 5 coals have a moisture content of 2.22% to 5.61% (Figure 3), with an average of 3.81%,
indicating a low-medium rank coal in accordance of MT/T 850-2000 (ď5% for low moisture coal, 5%
to 15% for medium moisture coal, and >15% for high moisture coal) [25].

The total sulfur of No. 5 coals changes from 0.12% to 0.83% (Figure 3), averaging 0.40%, which
corresponds to ultra-low-sulfur coal according to Chinese National Standard (GB/T 15224.2-2010)
(<0.5% for super low sulfur coal, 0.51% to 0.9% for low sulfur coal and 0.9% to 1.50% for medium
sulfur coal) [26].
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Table 1. Proximate analysis and total sulfur in the No. 5 Coal (%).

Sample Proximate Analysis St,dMad Vdaf Ad

ZG517 2.78 50.3 60.7 0.12
ZG515 3.19 35.52 38.9 0.18
ZG514 3.91 34.3 21.38 0.40
ZG513 4.14 36.9 30.46 0.61
ZG512 3.86 35.59 32.79 0.35
ZG511 3.64 37.39 41.16 0.30
ZG509 3.82 32.57 23.9 0.47
ZG508 2.22 40.84 51.02 0.21
ZG507 3.54 32.91 37.88 0.36
ZG506 2.94 37.23 36.66 0.36
ZG505 4.39 37.61 29.17 0.64
ZG504 2.42 35.75 40.04 0.29
ZG503 5.61 37.47 17.41 0.83
ZG502 5.2 38.63 22.89 0.46
ZG501 5.52 35.29 5.95 0.48

Average 3.81 37.22 32.69 0.40

M, moisture; V, volatile matter; A, ash yield; St, total sulfur; ad, air-dry basis; d, dry basis; daf, dry and
ash-free basis.

4.2. Minerals in the No. 5 Coal

The mineral phase percentages were calculated to a coal ash basis from the XRD results obtained
on the low temperature ashes and are reported in Table 2. The results show that minerals in the No. 5
coal are mainly made up of kaolinite, followed by gypsum (averaging 0.99%), magnetite (0.85%),
calcite (0.33%), quartz (0.31%), pyrite (0.26%) and mixed-layer I/S (0.01%).

Table 2. Mineral contents in coal samples from the Chuancaogedan Mine measured by
Low-temperature ashing X-ray diffraction (LTA-XRD) (%).

Samples Kaolinite Quartz Magnetite Pyrite Gypsum Calcite Jarosite I/S

ZG517 55.42 0.97 4.31 - - - - -
ZG515 38.32 - 0.58 - - - - -
ZG514 21.38 - - - - - - -
ZG513 30.46 - - - - - - -
ZG512 32.79 - - - - - - -
ZG511 41.16 - - - - - - -
ZG509 23.57 0.07 - 0.26 - - - -
ZG508 50.76 - 0.26 - - - - -
ZG507 37.77 0.11 - - - - -
ZG506 36.22 - 0.44 - - - - -
ZG505 29.11 - 0.06 - - - - -
ZG504 39.72 0.08 0.24 - - - - -
ZG503 15.32 - - - 1.15 0.33 0.61 -
ZG502 22.07 - - - 0.82 - - -
ZG501 5.89 - 0.05 - - - - 0.01

I/S: mixed-layer illite/smectite.

Kaolinite is common in coal [27,28]. As presented in Table 2, kaolinite is the most abundant
mineral in the Chuancaogedan coal seam, with abundance within the ash varying from 5.89% to
55.42% (average 32.00%). Kaolinite occurs as infillings of cells or fractures (Figure 4A–C). In addition,
kaolinite presents as thin-layered or flocculent forms (Figure 5A,B) in the No. 5 Coal.

792



Minerals 2015, 5, 788–800

Pyrite is only observed in ZG509 (0.26 wt %) (Figure 6), occurring as fracture-fillings (Figure 4D)
or as pyrite aggregates (Figure 5C).

Magnetite presents in seven samples; the content varies from 0.05% to 4.31%. Other minerals,
such as quartz, calcite, jarosite, mixed-layer illite/smectite (I/S) and gypsum, are only present in a
few samples. Gypsum occurs in columnar form as shown by SEM scans (Figure 5D).
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The major elements in coals from the Chuancaogedan Mine are dominated by SiO2, Al2O3, and
Fe2O3 (Table 3), which conform to major mineral compositions of the coals (kaolinite, magnetite
and pyrite). Average values for high-temperature plasma No. 5 coal samples are as follows: SiO2

(16.90 wt %), Al2O3 (13.87 wt %), Fe2O3 (0.70 wt %), TiO2 (0.55 wt %), CaO (0.26 wt %), K2O
(0.06 wt %), MgO (0.04 wt %), Na2O (0.02 wt %), and P2O5 (0.05 wt %). Coals from Chuancaogedan
Mine contain higher proportions of SiO2, Al2O3, TiO2, P2O5, and lower proportions of Fe2O3, Na2O
than the average values for Chinese coals reported by Dai et al. [29].

The SiO2/Al2O3 ratios range from 1.17 to 1.27, with an average of 1.22 for the No.5 coal. This is
higher than those of other Chinese coals (1.42) [29] and also higher than the theoretical SiO2/Al2O3

ratio of kaolinite (1.18), suggesting quartz or amorphous silica occurs in the mineral matter portion of
the coal. The ash has a TiO2 content of 0.88% to 2.93%, much higher than the proportion within ash of
other Chinese coals, and this is mainly affiliated with magnetite in No. 5 coal. Iron may be isomorphic
replaced by Ti in magnetite (Fe3O4). The average contents of K2O and Na2O are 0.18% and 0.05%,
respectively. K2O and Na2O are probably attributed to mixed-layer I/S. The concentration of Fe2O3

varies from 0.27% to 1.66%, with an average of 0.70%. The positive relation coefficient between Fe2O3

and St,d (rFe2O3-St,d = 0.66) suggest that Fe is mainly associated with sulfide (pyrite).

4.3.2. Trace Elements

In contrast with the common Chinese coals [29], the No. 5 coals are slightly enriched in Li
(averaging 78.54 mg/kg), Se (6.69 mg/kg), Zr (245.89 mg/kg), Hg (65.42 mg/kg), Pb (38.95 mg/kg),
and U (7.85 mg/kg), with CC between 2 and 5 (CC, concentration coefficient, is the ratio of element
concentration in investigated coals vs. Chinese coals or world hard coals [30]), while As (averaging
0.28 mg/kg), Co (3.44 mg/kg), Sr (93.10 mg/kg), Sb (0.36 mg/kg), and Tl (0.16 mg/kg) are depleted
(with CC lower than 0.5), and the remaining elements (CC are between 0.5 and 2) are close to the
average values for Chinese coals [29].

As stated above, elements including Li, Se, Zr and Hf are higher than that for Chinese average
coals [29], and F and Ga are close to the average values. The correlation coefficients between F, Ga

794



Minerals 2015, 5, 788–800

and ash are 0.81 and 0.78, respectively, and the main mineral in coals is kaolinite, so they are probably
related to the kaolinite (Figures 4 and 5). The high trace elements and boehmite in the No. 6 coals were
derived from the weathered and oxidized bauxite in the exposed crust of the older Benxi Formation
(Missisippian) situated to the northeast of the coal basin [11]. Benxi Formation bauxite; was an
important terrigenous source for most Late Paleozoic coals in Junger coalfield, China [9]. During
peat accumulation, the Junger Coalfield was in the low lying area between the Yinshan Oldland to
the N and W and the upwarped Benxi Formation to the N and E. The paleo rivers ran dominantly in
the N and E directions from these sediment-source regions to the Junger Coalfield [31].

4.3.3. Evaluated Li, Ga, Se, Zr, Hf, As, and Ge in the No. 5 Coal

Lithium: The content of Li in the No. 5 coals varies from 17.76 to 157.83 mg/kg (average
78.54 mg/kg), which is much higher than that of the No. 6 coals (average 37.80 mg/kg) [9] and
Chinese coals (average 14 mg/kg) [29]. Lithium in coal samples is positively correlated with ash
yield, Si, and Al, with correlation coefficients of 0.88, 0.69 and 0.62, respectively (Table 4), suggesting
that Li is associated with aluminosilicate minerals.

Gallium: The Chuancaogedan coals have a Ga content close to the Chinese coal average [26],
ranging from 6.34 to 27.10 mg/kg, with an average of 13.98 mg/kg. Gallium is generally related to
clay minerals in coal [1,32]. The correlation coefficient between Ga and ash yield, Si and Al are 0.78,
0.51 and 0.24, respectively (Table 4). This strongly suggests that kaolinite may contain (but is not high
in) Ga, and Ga mainly occurs in inorganic association.

Selenium: The concentration of Se in the No. 5 coals ranges from 2.02 to 19.07 mg/kg, with a mean
of 6.69 mg/kg. The correlation between Se and ash yield, Si, and Al (correlation coefficient = 0.60, 0.37,
0.11 (Table 4)) suggest that only part of total Se exists in minerals.

Zirconium and Hafnium: Zr and Hf are enriched in the No. 5 coals, with average concentration
of 245.89 mg/kg and 6.93 mg/kg, respectively. The correlation coefficient of Zr-Hf is 0.99 (Table 4),
showing that they have similar occurrence. They are both positively correlated with ash yield, Si, and
Al (rZr-ash = 0.76, rZr-Si = 0.59, rZr-Al = 0.62, rHf-ash = 0.81, rHf-Si = 0.64, rHf-Al = 0.67 (Table 4)),
identifying the occurrence of Zr and Hf in association with aluminosilicate minerals. Zircon is the
most common zirconium mineral, therefore the Zr is believed to be at least partly due to the probable
presence of this heavy mineral these samples [10].

Arsenic: The content of As in the No. 5 coals was below the ICP-MS detection limit for three
samples, but otherwise varies from 0.15 up to 0.64 mg/kg (average 0.28 mg/kg), which is lower than
that of both the No. 6 coals (average 0.56 mg/kg) [9] and Chinese coals (average 5.00 mg/kg) [29]. A
wide variety of As-bearing phases has been observed in high-As coals from southwestern Guizhou;
for example: pyrite; Fe–As oxide; K–Fe sulfate; and As-bearing clays [33,34]. Occurrences of
organically associated As have also been reported in Guizhou coal [34]. Arsenic in the Chongqing
coal correlates with Fe2O3, suggesting a pyrite affinity [35]. The correlation coefficient between As
and ash yield, Si, and Al in Chuancaogedan coals are 0.34, 0.54 and 0.22, respectively, which indicates
that only a small part of the total As occurs in minerals. Arsenic has a negative correlation with Fe2O3

(correlation coefficient of ´0.36), which suggests that As may not be affiliated with pyrite occurrence
in the No. 5 coals.

Germanium: The Chuancaogedan coals have a Ge content of close to the average for Chinese
coals [29], ranging from 0.35 to 4.21 mg/kg, with an average of 1.74 mg/kg. In the Tongda coal
mine, Yimin coalfield, Ge occurs with major organic affinity, and partial sulfide affinity was observed
also. As, Fe, and S show similar trends to Ge, though with a markedly higher sulfide affinity (mainly
in pyrite) [36]. The correlation coefficients of Ge and ash yield, major elements and selected trace
elements in the No. 5 coals range from ´0.53 to 0.40, which means Ge may presents organic and/or
sulfide affinity in these coals.
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Table 3. Elemental concentrations in the No. 5 Coal from Chuancaogedan Mine (oxides in %, elements in mg/kg, Hg in ng/g).

Elemental
Concentrations

Sample
ZG517 ZG515 ZG514 ZG513 ZG512 ZG511 ZG509 ZG508 ZG507 ZG506 ZG505 ZG504 ZG503 ZG502 ZG501 Average Coal a

SiO2 32.55 20.7 11.13 15.98 17.15 21.82 12.32 27.33 19.57 19.55 15.1 20.24 7.94 11.63 2.98 16.9 8.47
Al2O3 25.71 16.72 9.08 13 13.97 17.8 10.2 22.47 16.28 16.03 12.37 17.3 6.55 9.45 2.5 13.87 5.98
Fe2O3 1.66 0.33 0.27 0.56 0.31 0.34 0.46 0.37 0.51 0.34 0.75 0.42 1.3 0.86 0.22 0.7 4.85
TiO2 1.11 0.73 0.52 0.45 0.96 0.76 0.5 0.47 0.73 0.36 0.45 0.77 0.24 0.2 0.07 0.55 0.33
CaO 0.33 0.14 0.12 0.13 0.11 0.16 0.12 0.09 0.17 0.1 0.12 0.2 0.69 0.37 0.08 0.26 1.23
K2O 0.14 0.05 0.02 0.04 0.03 0.04 0.02 0.08 0.09 0.06 0.09 0.17 0.04 0.03 0.01 0.06 0.19
MgO 0.1 0.04 0.02 0.03 0.03 0.02 0.03 0.04 0.05 0.03 0.04 0.06 0.06 0.04 0.01 0.04 0.22
Na2O 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.03 0.03 0.02 0 0.02 0.16
P2O5 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.18 0.01 0.02 0.47 0.01 0.01 0 0.05 0.09

Li 114.2 83.99 46.99 72.25 82.51 120.42 75.33 157.83 83.09 103.42 56.04 79.12 35.33 49.82 17.76 78.54 14
Be 7.75 12.28 6.43 4.16 2.75 1.7 1.97 1.56 3.42 1.41 1.07 2.79 1.78 2.31 3.65 3.67 2
F 345.88 251.06 156.83 193.14 214.15 263.93 159.81 279.3 291.42 208.39 204.84 385.27 137.27 124.31 59.85 218.37 140
Sc 12.79 7.62 4.61 4.57 6.87 9.09 3.62 12.95 14.82 11.47 9.23 10.36 6.51 5.74 3.75 8.27 3
V 64.73 32.79 31.86 28.11 37.3 39.77 44.09 19.05 30.68 27.24 23.07 31.78 11.74 10.8 11.35 29.63 21
Cr 18.61 8.41 12.87 7.89 10.26 7.7 10.48 3.83 8.86 6.49 7.66 13.05 4.43 2.64 1.65 8.32 12
Co 4.98 2.9 4.86 5.4 2.69 2.03 3.23 1.23 1.13 1.7 1.89 0.86 5.99 5.61 7.05 3.44 7
Ni 10.37 10.74 11.54 12.64 6.9 5.13 7.35 4.35 4.63 3.71 5.21 4.16 13.59 17.47 16.9 8.98 14
Cu 18.84 22.08 19.63 20.61 17.23 10.95 17.78 9.13 13.36 16.73 12.42 22.44 7.06 8.36 8 14.97 13
Zn 14.85 7.12 16.37 19.96 17.08 16.39 14.62 11.81 19.36 35.83 30.03 25.94 54.71 35.57 13.6 22.22 35
Ga 27.1 15.62 9.51 13.58 18.24 16.19 13.34 12.89 14.7 13.36 17.16 12.3 10.34 9.05 6.34 13.98 9
As 0.64 0.42 0.36 0.62 0.23 0.18 0.42 0.15 0.24 0.19 0.41 0 0 0.31 0 0.28 5
Se 19.07 4.41 5.64 5.94 10.35 11.07 8.83 3.83 6.51 4.31 5.28 5.09 4.45 3.62 2.02 6.69 2
Rb 5.81 1.92 0.37 1.41 0.73 1 0.25 2.65 2.59 1.84 2.21 4.04 0.28 1.01 0.2 1.75 8
Sr 20.8 12.34 15.2 14.31 11.25 11.54 14.68 14.97 321.07 14.08 24.89 849.94 35.48 18.81 17.13 93.1 423
Y 0.19 0.22 0.29 0.2 0.27 0.18 0.38 0.21 0.28 0.08 0.12 0.3 3.77 0.27 5.43 0.81 20.76
Zr 450.76 241.43 165.49 292.81 303.95 354.05 272.13 221.16 270.52 262.09 326.43 202.89 139.76 150.53 34.28 245.89 52
Ge 1.41 1.15 3.49 4.21 2.74 1.72 1.66 0.77 0.43 1.39 1.67 0.35 1.33 1.4 2.4 1.74 2.78
Mo 1.45 1.77 2.11 2.31 2.72 1.6 1.77 0.72 1.52 1.69 3.14 1.69 3.05 1.9 3.13 2.04 4
Cd 0.35 0.17 0.12 0.21 0.19 0.22 0.18 0.32 0.37 0.39 0.63 0.29 0.22 0.21 0.06 0.26 0.2
Sn 5.21 1.11 0.06 0.77 1.02 1.75 0 2.98 3.01 2.29 1.94 3.08 1.17 2.84 0.63 1.86 2
Sb 0.34 0.28 0.49 0.52 0.38 0.31 0.4 0.22 0.15 0.3 0.64 0.13 0.2 0.57 0.43 0.36 2
Cs 0.72 0.25 0.07 0.31 0.13 0.15 0.06 0.31 0.25 0.14 0.23 0.3 0.04 0.09 0.02 0.2 1
Ba 424.52 13.3 11.1 18.23 17.36 9.69 14.36 11.76 38.57 7.68 23.79 235.07 20.29 10.21 12.67 57.91 56.03
La 0.11 0.16 0.73 0.64 0.57 0.22 0.63 0.28 0.76 0.05 0.08 2.7 4.87 1.22 4.6 1.17 25.78
Ce 1.5 3.96 20.77 17.15 8.1 2.46 8.88 2.57 12.33 1.25 2.33 41.7 25.28 13.79 20.11 12.15 49.11
Nd 0.11 0.2 1.1 0.66 0.58 0.15 0.75 0.19 0.5 0.06 0.15 1.75 6.42 1.03 4.95 1.24 21.5
Sm 0.02 0.04 0.2 0.1 0.09 0.03 0.14 0.03 0.09 0.01 0.03 0.36 1.33 0.13 1.02 0.24 4.3
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Table 3. Cont.

Elemental
Concentrations

Sample
ZG517 ZG515 ZG514 ZG513 ZG512 ZG511 ZG509 ZG508 ZG507 ZG506 ZG505 ZG504 ZG503 ZG502 ZG501 Average Coal a

Eu 0.05 0 0.02 0.01 0.01 0 0.02 0.01 0.02 0 0.01 0.07 0.24 0.02 0.21 0.05 0.87
Yb 0.04 0.03 0.05 0.02 0.03 0.02 0.05 0.03 0.04 0.02 0.02 0.04 0.45 0.04 0.59 0.1 2.12
Hf 13.5 6.96 4.41 7.82 8.16 10.04 7.51 6.61 7.54 8.11 8.94 5.88 3.43 4.03 1.01 6.93 2.4
Ta 3.86 0.95 0.5 0.73 0.97 1.21 0.48 0.77 0.86 0.61 0.38 0.72 0.46 0.82 0.11 0.89 0.7
W 2.5 1.42 0.7 0.65 1.69 1.43 0.67 0.9 1.16 0.42 0.02 1.21 0.66 0.61 1.2 1.02 2
Hg 29 20 44 54 81 17 129 38 45 90 145 52 87 83 66 65.42 15
Tl 0.37 0.36 0.45 0.28 0.02 0.03 0.03 0.02 0.03 0.11 0.27 0.05 0.13 0.14 0.14 0.16 0.4
Pb 55.82 52.08 42.78 40.99 57.31 55.41 54.81 36.74 38.99 32.3 37.3 30.22 20.5 20.03 8.95 38.95 13
Bi 0.77 0.66 0.36 0.44 0.5 0.51 0.39 0.51 0.74 0.42 0.37 0.56 0.36 0.33 0.1 0.47 0.8
Th 1.71 1.32 1.54 1.06 1.09 0.79 2.02 1.17 1.1 0.81 1.41 0.67 2.51 0.65 0.29 1.21 6
U 5.93 18.41 17.64 22.3 8.55 4.8 6.16 4.92 8.73 5.32 5.15 5.1 1.75 2.1 0.91 7.85 3

a Coal, Chinese average coals value by Dai et al. [29] or world hard coals [37].

Table 4. Correlation coefficients between the content of each element in coal and ash yield, major elements.

Ad SiO2 Al2O3 TiO2 Fe2O3 CaO K2O MgO Na2O P2O5 Li Ga Se Zr Hf As Ge

Ad 1
SiO2 0.66 ** 1

Al2O3 0.51 0.89 ** 1
TiO2 0.09 0.15 0.12 1

Fe2O3 ´0.66 ** ´0.92 ** ´0.93 ** ´0.37 1
CaO ´0.52 * ´0.92 ** ´0.96 ** ´0.29 0.96 ** 1
K2O 0.22 ´0.30 ´0.13 ´0.15 0.14 0.14 1
MgO ´0.51 ´0.91 ** ´0.91 ** ´0.27 0.92 ** 0.92 ** 0.33 1
Na2O ´0.47 ´0.95 ** ´0.91 ** ´0.34 0.93 ** 0.96 ** 0.34 0.91 ** 1
P2O5 0.15 ´0.19 0.15 0.16 ´0.14 ´0.09 0.74 ** 0.05 0.11 1

Li 0.88 ** 0.69 ** 0.62 * ´0.02 ´0.67 ** ´0.56 * ´0.07 ´0.66 ** ´0.51 * ´0.01 1
Ga 0.78 ** 0.51 0.24 0.37 ´0.47 ´0.39 0.13 ´0.30 ´0.41 ´0.10 0.55 * 1
Se 0.60 * 0.37 0.11 0.48 ´0.37 ´0.24 ´0.07 ´0.18 ´0.30 ´0.12 0.41 0.87 ** 1
Zr 0.76 ** 0.59 * 0.36 0.35 ´0.55 * ´0.51 0.05 ´0.47 ´0.50 ´0.11 0.62 * 0.93 ** 0.81 ** 1
Hf 0.81 ** 0.64 * 0.41 0.29 ´0.59 * ´0.53 * 0.07 ´0.49 ´0.52 * ´0.10 0.67 ** 0.94 ** 0.81 ** 0.99 ** 1
As 0.34 0.54 * 0.22 0.20 ´0.36 ´0.41 ´0.23 ´0.32 ´0.51 ´0.41 0.16 0.58 * 0.51 0.63 * 0.61 * 1
Ge ´0.40 0.09 ´0.06 0.26 0.01 ´0.06 ´0.53 * ´0.09 ´0.22 ´0.47 ´0.35 ´0.13 0.03 ´0.04 ´0.10 0.40 1

** Correlation is significant at the 0.01 level (two-tailed); * Correlation is significant at the 0.05 level (two-tailed).
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5. Conclusions

Based on mineralogical and geochemical investigation of the No. 5 coal from Chuancaogedan
Mine, Junger Coalfield, the conclusions are summarized below.

The No. 5 coal at the Chuancaogedan Mine has a high-ash yield (averages of 32.69%) and an
ultra-low-sulfur content (0.40%), while the mean contents of volatile matter and moisture are 37.22%
and 3.81%, respectively.

The mineral component of the No. 5 coal mainly consists of kaolinite, followed by magnetite,
quartz, gypsum, mixed-layer I/S, pyrite, and calcite. Kaolinite is characteristically abundant and
may have been derived from the weathered surface of the Benxi Formation bauxite during peat
accumulation in the coal swamp.

Compared with common Chinese coals, the No. 5 coal is slightly enriched in SiO2 (averaging
16.90%), Al2O3 (13.87%), TiO2 (0.55%), P2O5 (0.55%), Li (78.54 mg/kg), Se (6.69 mg/kg), Zr
(245.89 mg/kg), Hg (65.42 mg/kg), Pb (38.95 mg/kg) and U (7.85 mg/kg), and has a lower
concentration of Fe2O3, Na2O, As, Co, Sr, Sb and Tl, while others are close to averages for Chinese
coals. The SiO2/Al2O3 ratios (average of 1.22) are higher than that of the Chinese coals (1.42) and the
theoretical SiO2/Al2O3 ratio of kaolinite (1.18), suggesting quartz occurs in the mineral matter.

The modes of occurrence of Li, Ga, Se, Zr, Hf, As and Ge in the No. 5 coal were preliminarily
investigated by correlation analysis. The correlation coefficients of Li, Ga, Se, Zr and Hf and ash
yield are 0.88, 0.78, 0.60, 0.76 and 0.81, respectively, suggesting they occur in inorganic association.
Li, Zr and Hf present positive correlation with Si and Al (rLi-Si = 0.69, rLi-Al = 0.62, rZr-Si = 0.59,
rZr-Al = 0.62, rHf-Si = 0.64, rHf-Al = 0.67), indicating they are associated with aluminosilicate
minerals in the No. 5 coal. Arsenic may be associated with organic and/or inorganic components
of the tested coal samples, given that it is only moderately correlated with ash yield, Si, Al, and
Fe2O3. Germanium may have organic and/or sulfide affinity in the No. 5 coals.
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