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Abstract: Due to the gradual depletion of traditional metallic mineral resources, the search
for new potential sources is an important issue. One such source is coal deposits. The
extraction of metals from coal is a way to produce clean energy. This study presents the
results of detailed research on geochemical features and mineralogy to understand the
processes of microelement enrichment in the coal-bearing deposit of Shubarkol, in Central
Kazakhstan. Modern analytical techniques were used to obtain information about the
conditions and processes of trace element accumulation in coal, as well as the modes of
occurrence of these elements. Geochemical data were analyzed using multidimensional sta-
tistical methods, including correlation, clustering, and factor analysis, which allowed us to
draw several scientific conclusions. Numerous factors indicate that the enrichment of trace
elements in sediments is controlled by clastic terrigenous material and low-temperature
hydrothermal solutions circulating in the coal basin. The main sources of removal of trace
elements from coal are ancient igneous rock complexes located within deposits that were
directly involved in coal enrichment through secondary geological processes. According to
estimates, the degree of enrichment of Jurassic coals at Shubarkol was close to the average
value for world coals (0.5 < CC < 2), and coal seams were enriched with lithophilic and
chalcophilic elements such as Ba, U, Yb, Co, La, Nb, Hf, Sc, V, Sr, Cu, and Zn. A correlation
analysis of coal deposits revealed a significant correlation between main oxides and rare
earth elements (REEs). The strongest correlation was between Zr, Hf, Th/Ta, and REEs.
The positive correlations between Zr and Al2O3, Nb and Al2O3 indicate that these elements
(Zr, Hf, Nb, Ta, and REY) are probably related to Al. The results obtained make it possible
to consider coal as a potential mineral resource for the production of rare metals and serve
as a guide for the industrial processing of the most important elements found in coal.

Keywords: geochemistry; REE; coal; Shubarkol deposit; mineralogy; geostatistical analysis;
Kazakhstan

1. Introduction
At present, with the increasing risk of crisis phenomena in the global economy and

the need for the structural reorganization of industrial production, many countries face
the acute challenge of maintaining industrial production with alternative energy resources.
In this context, increased attention is being paid to coal as a natural energy source due to
its significant global reserves and its greater availability compared to other combustible
mineral fuels.
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The increasing demand for rare earth elements (REE), due to their economic signifi-
cance and supply risks, has led to the exploration of alternative secondary sources for these
elements. Coal and coal combustion by-products have been identified as potential raw
materials for REE extraction. This research aimed to investigate the distribution of REEs
and the mechanisms behind their accumulation within coal deposits.

In recent years, questions have been raised about the nature of the accumulation of
impurity elements in coal deposits in different parts of the Earth’s crust and the devel-
opment of mineralization, particularly in regard to environmental problems. Thus far,
the main sources and factors associated with the formation of abnormal concentrations of
various elements and components in coals have been considered [1]. These include rocks
in the feeding area of the coal accumulation basin; the volcanogenic–clastogenic entry of
pyroclastic material into the paleotorph; the hydrothermal introduction of impurity ele-
ments into the paleotorph or coal seam; and hydrological factors. REEs [2] are considered
strategic resources, as they play a crucial role in key sectors of the economy, such as defense,
renewable energy, electronics, and the chemical industry [3,4]. Natural deposits of REEs
are unevenly distributed worldwide, with China accounting for nearly 38% of the global
reserves and dominating this area of production since the late 1980s [5]. Currently, rare
earth element (REE) supplies to Europe are predominantly derived from China, accounting
for 98% [6]. The growing demand for REEs (3.7%–8.6% annually) and the risks associated
with their supply have led to the classification of these elements as a “critical” raw material,
prompting the search for alternative sources [7,8]. Coal has been identified as a potential
source of REEs, and numerous studies have been conducted on the content, forms, and
extraction potential of these elements in coal [9–14].

The analysis of the forms and concentrations of elements in coal, along with the
determination of their geochemical speciation, contributes to the organization of prospect-
ing operations within coal-bearing areas and in framing structures. This allows us to
solve the following important theoretical and practical issues associated with certain
elements [15–17]:

(1) The reconstruction of paleogeographic conditions in coal-bearing formations, enabling
conclusions about the process of coal formation and the origins of the mineral phases
within coal;

(2) The potential extraction of valuable elements from coal and its combustion by-
products (REEs, Ge, Ga, U, etc.);

(3) The elimination of the technical problems associated with the extraction, processing,
and disposal of coal;

(4) The occurrence of anomalies of toxic elements in coal (for example, As, Hg, Se) with a
reduction in their impacts on the environment and human health;

(5) The performance of an environmental safety assessment of coal mining and processing.

The method of determining trace elements in coal is significant from both a scientific
and environmental perspective, as the behavior of these elements during the use of coal is
dependent not only on their concentrations but also on their chemical states or forms.

This work was the final result of research conducted during the implementation of
a scientific project. Numerous geochemical and mineralogical data collected over several
years studying the Shubarkol deposit were processed using both direct and indirect meth-
ods. Statistical methods were used for the first time, including correlation coefficients
between elements, as well as cluster analysis and factor analysis. These methods are some
of the most common indirect approaches to interpreting modes of element occurrence, and
the results obtained by them were significantly new for coal geochemistry at Shubarkol.
However, considering the limitations of using statistical methods [18,19], their results are
not accurate data but serve only as confirmation of previous studies on geological factors in-
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fluencing trace element introduction into coal deposits. Studies of the content, distribution,
and mineralization of critical elements in coal provide not only important references for
potential discovery of such deposits but also substantial geochemical and mineralogical ev-
idence to identify the geological genesis of coal seams. This research also helps to correlate
the formation of coal seams with post-sedimentary modification of coal basins and regional
geological evolution, which has important implications for the economic development of
the coal industry and the protection of the environment in coal use, as well as ensuring the
safety of metal resources [20]. Statistical methods are some of the most frequently used
indirect approaches for the interpretation of elements’ modes of occurrence. These methods
include the coefficient of correlation between the elements, as well as cluster and factor
analysis. In this work, using data obtained from 120 samples from the Shubarkol deposit,
it is demonstrated that statistical analysis with slightly different sets of elements can lead
to significantly different conclusions regarding the elements’ modes of occurrence. Here,
it is assumed that statistical methods can provide useful information about the modes of
occurrence of trace elements for a limited set of samples. This is supported by previously
obtained data on the accumulation of trace elements in coal, which may be a potential
method for extracting metals from coal deposits and dumps. This approach is relevant to
industrial and commercial applications because it reduces disposal costs and minimizes
harmful environmental impact.

The present study aimed to investigate the geochemistry of the Shubarkol coal deposit,
located in Central Kazakhstan, in the western part of the Central Asian orogenic belt
(Figure 1). These coal deposits have low ash and sulfur content, making them a valuable fuel.
In addition, coals contain a variety of impurities. Coal mining at this deposit is accompanied
by the constant geochemical analysis of the coals and coal-bearing rocks in order to assess
the potential for the extraction of certain elements that reach industrial concentrations.
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Figure 1. Location of the Shubarkol deposit.

Geological Settings

Despite the large number of coal deposits in Kazakhstan, the Shubarkol deposit meets
most of the country’s domestic demand for solid fuel. Additionally, a significant proportion
of the coal produced from the deposit is exported to markets in Northwestern Europe and
the Commonwealth of Independent States (CIS).

The Shubarkol deposit was formed in an inherited depression on ancient sedimentary
complexes in the Caledonian accretion-folded regions of the central Sarysu–Teniz uplift [21].
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Deep faults had a significant impact on this area, which led to a variety of ore formations
and complex transformations.

The host rocks are terrigenous-carbonate sediments from the Upper Devonian and
Lower Carboniferous periods, as well as terrigenous rocks from the Middle and Upper
Carboniferous periods [22]. The Jurassic sediments of the Shubarkol syncline (Figure 2)
are carbon-bearing. The Lower Jurassic coal-bearing sediments, with a thickness of up to
330 m, form a sub-latitudinal thrust (7.16 km) with gentle western and eastern wings (5–10◦

and 5–15◦, respectively) and steeper southern and northern wings (20–48◦ and 40–90◦,
respectively). In the inner part of the deposit, the angles of inclination of the rocks do
not exceed 3–5◦. In the central part of the syncline, there is a gentle transversal uplift in
the coal-bearing layers that fades to the north of the long axis of the feature. This uplift
divides the fold into the western and eastern sections. The deposit consists of three sections:
western, central, and eastern (see Figure 2). Industrial coal mining takes place in the lower
part of the Jurassic sedimentary section, where three coal seams are distinguished: the
upper, middle, and lower seams. The upper seam, which is currently being mined using an
open-pit method, is considered to be the most promising for future development.

The composition of the Shubarko.l deposit’s coals is varied, and they enriched trace
elements such as Ba, Sr, Th, Rb, Co, Ce, Zn, and Sc [23]. The influence of the source rocks
on the geochemical composition of coal is emphasized by the accumulation of certain
elements. Plutonic rocks, such as granodiorites, quartz diorites, and granites, are common
in the southern part of the studied coal deposit and may be considered a source of these
lithophilic rare metals. The coals also contain elevated levels of Hf, Ta, and Nb, as well
as Sr, which are characteristic of alkaline rocks and granitoids. The enrichment of Zn, Ba,
and Pb in the rocks is consistent with the occurrence of hydrothermal barium–lead–zinc
deposits, similar to those found in the Atasu area [24].
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2. Materials and Methods
2.1. Sample Collection and Preparation

Furrow samples of coals and mudstones weighing 1.2–1.5 kg each were collected
for the geochemical analysis. Sample preparation, involving reductions in initial samples
weighing 1.5–2 kg and their abrasion to 250 g, was conducted in the laboratory of Azimuth
Geology LLP, Karaganda. A total of 120 samples were collected, at a distance of 30–50 cm
from each other, from the upper coal horizons of the central and western sections (layers
2B, 1B, and 1B2). Sample preparation for the analytical studies was carried out according
to the standard method: drying in natural conditions, crushing, quartering, and abrasion.

2.2. Experimental Analytical Methods
2.2.1. ICP-OES and ICP-MS Analysis

The determination of the elemental content of the samples was conducted via induc-
tively coupled plasma–atomic emission spectroscopy (ICP-OES) using the iCAP 7600 Duo
(Thermo Scientific, Waltham, MA, USA)) and inductively coupled plasma spectroscopy
(ICP-MS) using an Agilent 7500 spectrometer (Agilent Technologies, Santa Clara, CA, USA).
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These methods were performed in an accredited, leading laboratory at the Federal State
Budget Enterprise of Science Far East Geological Institute of the Far Eastern Branch of
the Russian Academy of Sciences (FEGI FEB RAS) (Vladivostok, Russia) (analyst: N.V.
Zarubina). The ICP-OES method was used to determine the contents of Ti, Al, Fe, Mn,
Mg, Ca, Na, K, and P in terms of oxides; the ICP-MS method was used to determine the
contents of Li, Be, S, Al, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Sn, Sb, Te, Y, Mo,
Ag, Zr, Cd, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Tl, Pb, Bi, Th,
and U. To assess the accuracy of the research results, standard samples of the CLB-1 and
SARM 19 coals from the US Geological Survey were analyzed with each batch of samples.

2.2.2. Electron Microscopic Analysis

The visualization and qualitative elemental analysis of the powder, lumpy material,
and coal and clay layer samples were conducted using analytical scanning electron mi-
croscopy in combination with energy-dispersive X-ray spectroscopy (SEM–EDS), and the
clay samples were studied using X-ray Energy-Dispersive Spectroscopy (XEDS). Electron
microscopic analysis of the samples was performed in the laboratory for micro- and nano-
research using a Tescan Lyra 3 XMH (Brno—Kohoutovice, Czech Republic) two-beam
scanning electron microscope and Aztec X-Max 80 Standard EDS (Abingdon, Oxfordshire,
UK). Using the highly localized method of analytical scanning electron microscopy (SEM-
EDS), the morphometric characteristics of the solid-phase components in the samples were
analyzed, and the elemental compositions of these components were determined. An
automated search for the mineral phases was conducted with the set characteristics using
the AZtecFeature 3.1 software modules, including the electronic documentation of images
captured in various modes under the scanning electron microscope and the definition of
the compositions of the obtained X-ray-dispersive spectra.

2.3. Statistical Analysis

The statistical analysis was performed for 58 components, consisting of 49 elements
and 9 petrogenic oxides, based on the ICP-OES and ICP-MS results. The main (basic) statis-
tical indicators were assessed, and diagrams and correlation relationships were constructed
using Excel spreadsheets.

When studying complex geological systems, methods of multidimensional mathe-
matical statistics are used, such as cluster and factor analysis. Cluster analysis identifies
classes (or clusters) of parameters based on a set of variables that characterize geological
objects. Objects belonging to the same class exhibit greater similarity to each other than
objects belonging to different classes. The most common method of cluster analysis used in
scientific research, which was also adopted in this study, is the unification method (tree
clustering). This method involves creating a hierarchical tree that can be used to detect and
interpret clusters (branches).

Factor analysis is a statistical technique used to identify hidden patterns or factors
that can explain the variability in a set of related variables. It allows us to understand
the internal factors that contribute to the specific characteristics of a phenomenon. Using
factor analysis, a measure of the relationship between the parameters is determined, and
generalized factors that underlie the changes in the characteristics are identified. The aim
of this analysis is to represent a large number of parameters in terms of a smaller number
of more comprehensive internal characteristics of a phenomenon (reducing the data using
the principal component method); at the same time, these are the most significant and
determinant factors. The main findings of such an analysis are presented in the form of
factor loadings and factor scores. The STATISTICA 10 software was used to conduct the
multivariate statistical analysis in this study.
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3. Results and Discussion
During the course of the laboratory and analytical research, 120 coal samples were

analyzed. The interpretation of the data made it possible to identify trace elements, whose
average concentrations in the coals and the surrounding clay layers are presented in the
subsequent diagrams (Figure 3). The average concentrations of most impurity elements in
the Jurassic coals and mudstones from the Shubarkol deposit were lower than the average
values for these elements in hard coal [25] and the average concentrations in sedimentary
rocks. The high contrast in the anomalies of impurity elements allows for the prediction of
coal seams containing industrially significant concentrations of Ce, V, Yb, U, Sc, Sr, and Zr.
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and (b) mudstones from the Shubarkol deposit.

The average REE content in the coals from the Shubarkol deposit (layers 2B, 1B2, and
1B1) in comparison to that in hard coals around the world and in the upper continental
crust (UCC) is shown in Table 1. The analysis of these data indicated that the rare earth
element (REE) content in the Shubarkol coals was low when compared to hard coals [25]
and significantly lower (two–three times) relative to the upper continental crust (UCC) [26].

Table 1. The average REE content in the coals, ppm.

Coals
Rare Earth Elements, ppm

La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ∑REE

Shubarkol 8.06 17.5 2.11 9 1.97 0.4 2 0.31 1.79 10.1 0.38 1.13 0.17 1.19 0.18 56.4

UCC [26] 30.0 64.0 7.1 26 4.50 0.9 3.8 0.64 3.50 22.0 0.80 2.30 0.33 2.20 0.32 168.4

Hard
coals,

from [25]
11.0 23.0 3.4 11 2.40 0.4 2.7 0.31 2.10 8.20 0.57 1.00 0.30 1.00 0.20 67.6

According to the results of the analysis in [24], the distribution of REEs according to
the concentration coefficients [27] in Jurassic coal indicated that LREE: La-Nd was slightly
depleted; the MREEs consisted of Sm-Dy; and it was slightly enriched in HREEs such as
Ho-Lu. Since the ion radius of the REEs decreases according to the La→Lu sequence, the
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alkalinity of these elements gradually decreases. According to [28], the ability of REEs to
complex increases in the La→Lu sequence, and the HREEs’ ability to complex is greater
than that of the LREEs, so the migration ability of the latter is higher. Thus, it is speculated
that the sources of the heavy REEs in the coals of Central Kazakhstan included a decrease
in the pH values of terrigenous materials when entering a peat bog and an increase in the
absorption capacity of the REEs from La to Lu, which led to their accumulation in peat [24].

The concentrations of the trace elements in the Shubarkol deposit were close to the
average values for worldwide coals (0.5 < CC < 2), according to [29]. Large ionic lithophilic
elements (Ba, Sr, Sc, Zr, and V) had the highest concentrations, while the remaining REEs
exhibited average values. This confirms that the coals from the Shubarkol deposit are
characterized by a lithophilic–chalcophilic type of speciation, and the coals are specialized
in Va, U, Au, Yb, Cd, La, Nb, Hg, Se, Sc, Sr, and Zn [24].

Based on the geochemical characteristics of the elements and the application of direct
analytical methods, it has been established that there are numerous mineral inclusions of
Ba and Zn (barite and sphalerite) in coal, due to their high content in coal deposits. This is
due to the migration of mobile and organometallic forms during diagenesis, which leads to
the presence of nanoparticles with an aluminosilicate composition, such as Si-Zr-Al and
Ti-Si-Al. These are autigenic epigenetic mineral formations that were transported to peat
bogs as mechanical impurities by surface water and wind. Studies of oxidized coals have
shown that the concentrators of impurity elements consist mainly of calcium and strontium
sulfides. Hypergenic oxidation is caused by sulfurous acid water.

During our electron microscopic studies, well-faceted crystals of zircon, native silicon,
and baddeleyite were found in the mudstones in the Shubarkol deposit [24]. At the same
time, some zircons contained an admixture of scandium, titanium, and yttrium or other
heavy REEs. A rarer baddeleyite was found in some clay and coal in contact with zircons.
This association may indicate a calm mode of transport associated with zircon minerals or
different modes of REE migration in the coal and host rocks [30].

In order to identify trends in the distribution of the chemical elements in the coal, the
correlation coefficients (r) between the elements were calculated. The coefficients obtained
for the coal samples are shown in Table 2. Several geochemical associations are evident in
these correlation coefficients.

Table 2. Paired correlation coefficients between chemical elements in Shubarkol coals. Top-down
coefficients for (a) petrogenic components, (b) trace elements, and (c) REEs (51 sub-samples from
each sample).

(a)

TiO2

0.932 Al2O3

0.290 0.219 Fe2O3

0.530 0.459 0.411 MnO

0.580 0.677 0.095 0.152 MgO

−0.291 −0.284 −0.079 −0.018 −0.185 CaO

0.154 0.115 −0.094 0.054 0.484 0.155 Na2O

0.604 0.734 0.163 0.167 0.937 −0.219 0.225 K2O

0.183 0.159 0.033 0.314 −0.092 0.518 −0.021 −0.081 P2O5
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Table 2. Cont.

(b)

Sc

0.683 Cr

0.243 0.41 Rb

0.221 0.132 0.072 Sr

0.783 0.730 0.523 0.022 Zr

0.707 0.562 0.642 0.126 0.900 Nb

0.652 0.790 0.010 0.186 0.387 0.156 Sb

0.173 0.348 0.972 0.018 0.436 0.580 0.040 Cs

0.210 0.124 0.063 0.997 0.007 0.108 0.170 0.009 Ba

0.776 0.718 0.538 0.020 0.997 0.910 0.368 0.446 0.005 Hf

0.519 0.399 0.667 0.148 0.795 0.939 0.080 0.619 0.127 0.808 Ta

0.263 0.219 0.627 0.102 0.521 0.696 0.159 0.614 0.078 0.532 0.715 Tl

0.351 0.241 0.277 0.033 0.411 0.494 0.094 0.172 0.034 0.426 0.427 0.403 Pb

0.662 0.528 0.633 0.136 0.910 0.972 0.078 0.564 0.115 0.919 0.936 0.686 0.469 Th

0.643 0.544 0.320 0.189 0.800 0.818 0.195 0.241 0.161 0.796 0.751 0.600 0.505 0.837 U

(c)

Y

0.055 La

0.100 0.967 Ce

0.182 0.930 0.983 Pr

0.332 0.806 0.912 0.965 Nd

0.674 0.506 0.676 0.771 0.892 Sm

0.618 0.579 0.713 0.807 0.905 0.969 Eu

0.847 0.293 0.476 0.572 0.721 0.941 0.910 Gd

0.935 0.074 0.247 0.350 0.512 0.824 0.790 0.958 Tb

0.968 0.024 0.129 0.226 0.379 0.724 0.690 0.891 0.980 Dy

0.974 0.061 0.074 0.160 0.298 0.647 0.614 0.829 0.942 0.987 Ho

0.944 0.029 0.076 0.149 0.256 0.579 0.552 0.752 0.877 0.946 0.982 Er

0.896 0.040 0.037 0.096 0.177 0.484 0.454 0.648 0.790 0.884 0.940 0.984 Tm

0.851 0.022 0.039 0.089 0.150 0.438 0.407 0.590 0.736 0.839 0.902 0.963 0.992 Yb

0.827 0.002 0.049 0.096 0.148 0.420 0.393 0.559 0.703 0.810 0.880 0.950 0.985 0.995 Lu

Trace elements in coal can form parts of minerals, bind to organic matter, and dissolve
in pore water. Minerals are the main carriers of trace elements in coal. Correlation analysis
is an indirect statistical method for the study of the elements that occur in coal. After
obtaining a correlation coefficient, it is possible to determine the degree of similarity
between them in order to measure the genetic relationships between various trace elements
in coal.

From the analysis of the correlation matrix for the petrogenic elements (Table 2a), it can
be concluded that there are no correlations between iron and the other components, which
suggests the independence of their formation in coal. This may occur via introduction from
surrounding plutons and volcanites, as well as their formation during coal accumulation
or in subsequent periods. The titanium oxide in the coal is positively correlated with
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Al2O3 (r = 0.93), which may indicate the entry of titanium into the composition of clay
minerals [31]. The ICP-MS results showed that some kaolinite contained Ti, most likely in
the form of submicron oxides.

A positive and significant correlation was established between Zr, Hf, Th, and Ta,
which indicates the accumulation of these elements in heavy accessory minerals [32]. The
correlation analysis (Table 2b) indicated that there was a significant and positive relationship
between hafnium coals and Zr, Ta, Nb, Cs, and Th and other lithophilic rare metals. This
suggests the accumulation of a significant proportion of hafnium, which was not due to
clastogenic substances but resulted from its sorption concentration from aqueous solutions
and, possibly, biogenic accumulation. Hf and Zr have very similar chemical properties. Hf
does not have its own minerals, but it accompanies Zr in all its mineral forms, as their ionic
radii are similar (Zr = 0.74, Hf = 0.75).

The correlation analysis of Nb and Ta in the coals from the Shubarkol deposit showed
that there was a significant correlation between these elements (r = 0.94). Considering
that Zr and Nb are generally considered to have an inorganic affinity in high-grade coals
(bituminous or anthracite) [20], the positive correlation coefficients between Zr and Al2O3

and Nb and Al203 (see Figure 4) may indicate their presence in coal as kaolinite.
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Tantalum was positively and significantly associated with Th and Hf, mainly with hy-
drolysis elements. As shown by S. Palmer and R. Philby, who studied Ohio coal (Powhatan),
although the Ta content in coal correlates with the amount of clay substances, it is contained
in the micromineral phase of the pelitic dimension—rutile [33].

Thus, the conducted studies [32,34] and the literature analysis show that the concen-
tration of tantalum and niobium in coal is due to both their accumulation in the clastogenic
substance and their concentration in the organic mass of the coal. Anomalous concentra-
tions are of a chemogenic sorption nature. Tantalum and niobium, concentrated in organic
matter, can be found in both sorbed form and in the form of finely dispersed mineral
phases [32].

A strong, positive correlation was established between Cs and Rb (r = 0.97), which
indicates the attraction of Cs towards clay matter and closely related autogenic mineral-
ization [18]. It is assumed that, if Rb is mostly sorbed by clay particles, Cs will also be
concentrated in organic matter.

Strontium had a positive correlation with barium (r > 0.90). According to [33], car-
bonates and sulfates (for example, micromineral autigenic Sr-barite) are the most likely
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carriers of Sr. The results showed that Ba and Sr were mainly associated with carbonate and
phosphate minerals. They were mainly found in strontium sulfate (presumably celestine)
and iron oxide (Figure 5), and it is possible that the increased concentrations of Sr and Ba
in Shubarkol are associated with apatite mineralization, resulting from the weathering of
basement rocks in sediment source areas.
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The study of the correlations between the REEs showed that heavy REEs had positive
and significant correlations with each other (Table 2c). La and Ce, as well as Nd and Pr, were
correlated, but, according to [33], the predominant form of a rare earth element (organic
matter or mineral substance) cannot be determined. The positive correlations between
La and Ce and between Nd and Pr may also indicate that the micromineral monazite is a
common host mineral.

The association among heavy REEs (Yb, Tb, Lu), which exhibited very strong corre-
lations, likely indicates that there is one source of these elements and one accumulation
mechanism among them.

According to Eskenazi [35–37], in low-ash coals, lanthanides are largely included in
the sorption ash, whereas, in ash coals, the virtual fraction of REEclast dominates. In this
case, heavy lanthanides predominantly accumulate in the composition of REEsorp, while
light lanthanides accumulate in terrigenous ash, which is consistent with their differential
mobility in the underground waters of the hypergenesis zone. In general, heavy lanthanides
are more carbonophilic than light ones.

A joint analysis of the petrogenic components and microelements allowed us to iden-
tify five clusters (see Figure 6): “phosphate”, “rare earth”, “hydrothermal”, “micaceous”,
and “clayey” (“argillite”).

The interpretation of the resulting clusters was carried out while taking into account
the joint association of chemical components and associated minerals, rocks, or geological
processes.

Thus, the “phosphate” cluster included the association of CaO, P2O5, Sr, and Ba,
typical of apatite and phosphorites; this included a group of light rare earth elements (Ce,
La, Nd, Pr) as the most important impurities in phosphate minerals. At the same time, the
ratios (Figure 7) between Sr and Ba with CaO and P2O5, as well as the data obtained from
the microprobe analysis (Figure 8), suggest that Sr, Ba, and light REEs were concentrated in
phosphorus-containing minerals (apatite, monazite) or rocks (phosphorites).
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The established modes of occurrence of the rare earth elements in the coals of the
Shubarkol deposit—in the form of aggregates of plate-like, foliated, columnar crystals
or fragments of prismatic crystals (see Figure 8)—indicate the authigenic nature of their
formation [32].

The “rare earth” cluster united all heavy REEs (Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and
yttrium. It can be assumed that the concentrating mineral in these elements is gadolinite
(Y2FeBe2Si2O10) from normal or alkaline granites. Despite the unlimited isomorphism
among REEs, under certain geological conditions, separate concentrations of elements
from the light (cerium) and heavy (yttrium) subgroups are possible. With alkaline volcanic
rocks and the associated post-magmatic products, the cerium subgroup is predominantly
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developed; meanwhile, with the post-magmatic products of granitoids with increased
alkalinity, the yttrium subgroup is predominantly developed.
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Thus, it is worth emphasizing the igneous rocks located within the studied deposit,
which could have directly participated in the introduction of useful substances into the
coals through secondary geological processes.

The frame structures of the Shubarkol deposit include Early and Middle Caledonian
igneous complexes—mainly granites, leucogranites, granodiorites, diorites, and monzodi-
orites. Thus, in the west, there are large outcrops of Precambrian massifs such as Ulytau
and Sarysu-Tenizsky (Kireisky ledge), consisting of granodiorite and albite alkali–feldspar
complexes. To the east of the Shubarkol deposit, there is the western part of the Central
Kazakhstan volcanic–plutonic belt, consisting mainly of granites, andesites, and trachyte,
as well as rocks from the alkaline series: syenogabbro, monzonite, granosierite, and syeno-
granite. Thus, secondary geological processes such as the destruction and transformation of
ancient magmatic complexes likely contributed to the formation of geochemical associations
in the sedimentary rocks in the Shubarkol coal basin.

Rocks from the Archean and Proterozoic groups participated in the formation of the
deposit—namely crystalline shales and gneiss and Middle Caledonian granites—which
also played an important role in introducing minerals during the post-magmatic period.

The processes of tectonic–magmatic activation had a certain influence on the met-
allogenic and geochemical appearance of this region. The Zhailma–Karaoba zone of
tectonic–magmatic activation in the Hercynian tectogenesis is located within the area of
the Shubarkol deposit (Figure 9). The processes of conjugate activation in the territory
of Central Kazakhstan were powerful and widespread, accompanied by ore formations,
which were associated with rare metal deposits and occurrences [38,39]. They could have
served as a source of rare earth elements that entered nearby coal deposits.
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The general processes and factors that influenced the accumulation of rare earth 
elements in the coal seams of this deposit have been described in [21]. 

The “hydrothermal” cluster included sulfur and elements associated with 
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Figure 9. Main volcanic–plutonic belts of Kazakhstan mineral allocations with REEs. 1–5 orogenic
volcanic–plutonic belts: 1—Early Caledonian, including the overlapping occurrence beneath the Teniz
and Zhezkazgan depressions (O2–3–D2); 2—Middle Caledonian (“Devonian”, “Central Kazakhstan”,
D1–D3); 3—Late Caledonian (D2–D3 or C1?); 4—Early Hercynian (C1–P1); 5—Late Hercynian (C2–P2);
6—outcrops of the Proterozoic basement; 7—Phanerozoic sedimentary basins; 8—Hercynian zones
of tectonic–magmatic activation; 9—Meso-Cenozoic platform cover. Hercynian zones of tectonic–
magmatic activation (zone numbers in circles): 1—Koytas-s, 2—Tleumbet, 3—Bayanaul, 4—Spassk,
5—Uspen, 6—Yuzhnochingiz, 7—East Zhamansarysu, 8—Akbastau–Akzhal, 9—Zhailma–Karaoba,
10—Uytas–Zhezkazgan, 11—Kenzhebai–Zhamanaibat, 12—Susyzkara.

The general processes and factors that influenced the accumulation of rare earth
elements in the coal seams of this deposit have been described in [21].

The “hydrothermal” cluster included sulfur and elements associated with hydrother-
mal processes: Mo, Zn, As, W, Sn, etc. (see Figure 6). The accumulation of Mo and As
was likely due to epigenetic hydrothermal sulfide mineralization. The forms of mineral
inclusions were quite diverse. Numerous sphalerite inclusions were found (Figure 10a), as
well as cadmium sulfides, zincite, and brass, albeit less often (Figure 10b,c). Zincite was
mainly represented by earthy masses on the surface of the coal (Figure 10b).

In many samples, sphalerite was the most common mineral found after rock-forming
minerals. An admixture of cadmium was observed in the compositions of some grains.
Sphalerite was corroded, forming lamellar aggregates in the organic matter from the coal,
with irregularly shaped aggregates and single grains (Figure 11).

Selenium was present in sulfide (or selenide) form or in native form as micromineral
inclusions in pyrite. Solid solutions of variable composition were formed, with the pre-
dominance of sulfur (closer to galena) or selenium (closer to clausthalite) (Figure 12a). The
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forms of galena and clausthalite were similar—hexagonal, flattened crystals and irregularly
shaped grains. There were both single grains and clusters occupying small areas. Galena
aggregates filled cracks and pores. Weathered selenides formed earthy masses, and an
admixture of mercury (4%) was occasionally found in their composition. The composition
of the oxidation product of clausthalite corresponded to molybdenum (Figure 12b). The
oxidation products of solid solutions were not identified, but they sometimes contain up
to 4% strontium. Mineral inclusions of native selenium were less common in the studied
samples (Figure 12c); they formed flattened, scale-like crystals in which oxygen was present
due to an oxide film.
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The “micaceous” factor combined elements (Fe, Mg, K, Ce) associated with micas,
mainly biotite. They form in pores or cracks together with clay minerals. Iron predominated
in oxide and sulfide forms. Flattened crystals of hematite or goethite were often found
on the surface of the coal, as they were formed by cracks. They were often assembled
into aggregates, forming millimeter-sized plates. Up to 2% manganese was present in the
composition of the minerals. Hydrogetite occurred as sedimentary and earthy formations.
Pyrite was found mainly in the form of framboidal and individual grains (tetrahedral,
octahedral, and hexahedral forms and their combinations). Often, pyrite grains filled
cracks, or plate-like aggregates formed along the cracks; a star-shaped aggregate composed
of lamellar grains of pyrite (marcasite) was identified. Single grains of pyrite contained
impurities of selenium and manganese. Pyrite framboids (Figure 13) were replaced by iron
sulfates. Lamellar and tabular crystals, as well as irregularly shaped grains of iron sulfate,
crystallized on the surfaces of the samples.

The “clay” cluster was distinguished by the presence of Al2O3 and elements often
associated with fine-grained rocks (for example, U) in an aluminosilicate matrix. The
predominant mineral form corresponding to this cluster was kaolinite. Kaolinite occurred
both as earthy aggregates on the surface of organic matter and as veins. Lamellar aggregates
with a spherical shape could be found on the surfaces of the coal samples. Newly formed
plates of sphalerite were found on their peripheries. Concentric formations of hydrogetite
could be located in the center. There were well-crystallized vermiculites of kaolinite that
broke into plates. Titanium oxides can form both earthly aggregates in the voids of organic
matter in coal and large aggregates composed of radiant, needle-like crystals in rock. Single
grains of titanium oxide were also found in the coal. The plate aggregate AI-Ti-Zr-O (Mg,
Sc, Y), with the composition ZrAl2Ti4.5O18, was found in the coal. There were two minerals
with similar sets of elements: carmeltase (ZrAl2Ti1O11) and pangite (TiAlScMgZrCaO3).

The conducted factor analysis (Table 3 and Figure 14) generally confirmed the results
of the cluster analysis (see Figure 6). The “clay” factor, with a factor loading weight of 30.4%,
corresponded to fine-grained and pelitic rocks, which are important for the Shubarkol
deposit (Figure 3). The second and third factors, “rare earth” and “phosphate”, with
weights of 20.3% and 14.5%, respectively, could be combined into a phosphate–rare earth
association, corresponding to the “phosphate” and “rare earth” clusters in Figure 6. The
fourth factor was associated with hydrothermal processes not related to carbon formation.

Thus, according to the cluster and factor analyses, the three most characteristic asso-
ciations among the chemical elements were identified. The concentration coefficients of
the trace elements in the coal deposit according to the selected three groups are shown in
Figure 15. The concentrations of the trace elements are close to (0.5 < CC < 5) or consider-
ably lower than the average concentrations for worldwide coals [21]. However, S had the
highest concentration in the third group (CC = 10,000). The “clay” association (Figure 15A)
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was responsible for the composition of the coal and host rocks; the “rare earth” (Figure 15B)
cluster was significant for phosphate minerals, phosphorites, and REE minerals introduced
into the coal basin and transformed; and the “hydrothermal” (Figure 15A) association was
important for hydrothermal processes within the Shubarkol syncline. The content of the
elements in hard coal was taken as 1 [25].
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Table 3. Factor loadings of rock samples from the Shubarkol deposit (see Figure 14).

Element,
Component

Clay
(Argillite)
(Factor 1)

Rare Earth
(Factor 2)

Phosphate
(Factor 3)

Hydrothermal
(Factor 4)

Micaceous
(Factor 5)

Li 0.92 −0.20 0.11 −0.11 0.00

Be −0.12 0.78 −0.33 0.24 0.20

S 0.11 −0.20 0.06 0.76 −0.28

Sc 0.71 0.33 0.01 0.02 0.54

V 0.36 0.42 −0.39 0.25 0.54

Cr 0.59 0.31 −0.41 0.27 0.28

Co −0.50 0.60 −0.36 0.18 −0.04

Ni −0.39 0.56 −0.12 −0.11 0.18

Cu 0.80 −0.15 0.19 −0.09 0.19

Zn −0.03 0.09 −0.21 0.02 −0.15

Ga 0.93 −0.08 −0.08 0.02 0.17

Ge 0.74 −0.04 −0.12 0.35 0.40

As 0.31 −0.31 0.07 0.66 −0.34

Se −0.11 −0.05 0.19 0.56 −0.42

Rb 0.65 0.03 −0.13 −0.31 −0.48

Sr 0.12 −0.01 0.90 0.05 0.21

Y 0.07 0.94 −0.12 0.02 −0.21

Zr 0.92 0.12 −0.17 −0.02 0.22

Nb 0.97 −0.02 0.01 −0.11 0.04

Mo 0.11 −0.45 −0.01 0.64 −0.16

Ag 0.95 0.03 −0.06 0.00 0.19

Cd 0.68 −0.20 −0.14 0.27 −0.20

Sn 0.01 −0.22 −0.08 0.05 −0.07

Sb 0.17 0.51 −0.42 0.30 0.52

Te −0.03 −0.02 −0.02 −0.19 0.12

Cs 0.57 −0.03 −0.08 −0.32 −0.49

Ba 0.10 0.02 0.89 0.03 0.22

La 0.32 0.03 0.91 0.05 0.00

Ce 0.16 0.20 0.93 0.03 −0.05

Pr 0.12 0.30 0.93 0.02 −0.07

Nd −0.02 0.46 0.87 0.00 −0.09

Sm −0.11 0.78 0.58 0.02 −0.13

Eu −0.03 0.75 0.64 0.04 −0.01

Gd −0.14 0.92 0.32 0.05 −0.10

Tb −0.07 0.98 0.06 0.07 −0.09

Dy 0.05 0.98 −0.08 0.07 −0.10

Ho 0.15 0.95 −0.15 0.05 −0.12

Er 0.31 0.90 −0.17 0.04 −0.14

Tm 0.43 0.82 −0.22 0.04 −0.18

Yb 0.49 0.77 −0.22 0.05 −0.19

Lu 0.54 0.74 −0.21 0.02 −0.18
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Table 3. Cont.

Element,
Component

Clay
(Argillite)
(Factor 1)

Rare Earth
(Factor 2)

Phosphate
(Factor 3)

Hydrothermal
(Factor 4)

Micaceous
(Factor 5)

Hf 0.93 0.13 −0.17 −0.04 0.20

Ta 0.92 −0.14 0.08 −0.16 −0.13

W 0.25 −0.21 −0.05 0.75 −0.33

Tl 0.72 −0.28 0.13 0.05 −0.33

Pb 0.56 0.32 0.08 0.13 −0.18

Bi 0.88 −0.18 0.15 −0.09 0.12

Th 0.97 −0.06 0.02 −0.10 0.01

U 0.87 −0.19 0.04 0.32 0.19

TiO2 0.95 −0.15 0.12 −0.13 0.01

Al2O3 0.94 −0.18 0.09 −0.11 −0.10

Fe2O3 0.30 −0.01 0.02 0.10 0.10

MnO 0.46 −0.31 0.37 0.08 0.06

MgO 0.66 0.11 −0.17 −0.36 −0.40

CaO −0.31 0.29 0.58 −0.05 0.14

Na2O 0.15 0.19 −0.07 −0.40 0.03

K2O 0.69 0.05 −0.14 −0.32 −0.45

P2O5 0.13 0.02 0.89 0.06 0.24

Factor
weight, % 30.4 20.3 14.5 6.5 5.9

Note: Significant factor loadings are highlighted in bold.
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4. Conclusions
The present work considered the genesis of a coal deposit while using new approaches

to the statistical processing of geochemical data. New data on the geochemical origins
of the trace elements in the Shubarkol deposit were presented. Statistical processing was
performed for 58 components, comprising 9 petrogenic oxides and 49 elements, based on
the results of ICP-OES and ICP-MS. The composition of the coals in the Shubarkol deposit
was diverse, and they contained trace elements and rare metals such as Ba, Sr, Th, Rb, Co,
Ce, Zn, and Sc. Moreover, the results of the geostatistical data processing were confirmed
by the mineralogical associations among the elements in the coals, as obtained via the
SEM-EDS methods.

The electron microscopic studies of the argillites in the Shubarkol deposit revealed
well-faceted crystals of zircon, native silicon, and baddeleyite. In general, all studied
samples were characterized by the predominance of two minerals: kaolinite and quartz.
The ratios between Sr and Ba with CaO and P2O5, as well as the data obtained from the
microprobe analysis, suggest that Sr and Ba, as well as light REEs, are concentrated in
phosphorus-containing minerals (apatite, monazite) or rocks (phosphorites).

The results of the analysis of the REE distribution in the Jurassic coals at the Shubarkol
deposit indicated that they were enriched in heavy rare earth elements and depleted of light
rare earth elements. Possible sources of heavy REEs in coal deposits include a decrease in
the pH of terrigenous materials when entering a peat bog and an increase in the absorption
capacity for REEs from La to Lu, leading to their accumulation in peat.
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The correlation analysis indicated that there was a highly significant, positive asso-
ciation between Hf and Zr, Ta, Nb, Cs, and Th, as well as other lithophile rare metals, in
the studied coals. This allows us to posit that a significant proportion of hafnium was
accumulated, not at the expense of clastogenic substances but via its sorption from aqueous
solutions and possibly through biogenic accumulation. The concentrations of tantalum
and niobium in the coal were due to their accumulation in both the clastic substance and
the organic mass of the coal. Abnormal concentrations were of a chemogenic-sorptive
nature. The association between heavy rare earth elements (Yb, Tb, Lu), with a very strong
correlation between them, likely points to a single source for these elements and a common
mechanism of accumulation in coal.

Multiple indicators of origin indicate that the enrichment of impurity elements in this
deposit is controlled by clastic terrigenous material and low-temperature hydrothermal
solutions, which circulate within the coal basin. A large number of ancient magmatic
complexes, such as granodiorites, quartz diorites, granite, leucogranite, alaskite, syenite
gabbro, and monzonite, are common within the coal deposit. These participated in creating
the geochemical background of the area, as well as framing the rocks and acting as the
main thinners for the introduction of impurities, including REEs, into the sedimentary
basin [38,39].

The overall results of the cluster and factor analyses demonstrate the complex nature
of the coal structure, which is primarily associated with the emergence and further trans-
formation of entire coal deposits. In addition, this work demonstrates the influence of the
initial mineral introduction (using apatite as an example) and superimposed hydrothermal
processes on general mineralization formation. Another important aspect is the assumption
of element migration inside coal deposits as they evolve.
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