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Abstract: The results of a detailed examination of an anomalously PGM-rich anorthositic
fragment from the Main Reef of the Yoko-Dovyren massif (Northern Transbaikalia, Russia)
are presented. This fragment is to represent a 15 mm core drilled out from a typical low-
sulfide PGE-rich anorthosite, occurring within the transition zone between troctolite and a
rhythmically stratified sequence of olivine gabbro. Coupling multistage X-ray computed
tomography (CT) with SEM studies allowed for revealing a heterogeneous distribution
of PGMs and sulfides observable as (i) the main 4 mm sulfide globule containing some
small PGMs around its periphery, with (ii) the bulk of the PGMs concentrated within a
3 mm sized scattered sulfide nest, comprising about 6 vol.% of the globule and located at
a distance of 2–3 mm from it. Mass-balance calculations showed that the average sulfide
composing this nest is 120fold richer in PGE than the sulfide globule. Calculations of
sulfide minerals proportions showed that the globule consists of 39 vol.% Po, 21% Pn,
34% Cub, and 6% Ccp (consistent with 35.2 wt.% S, 48.2% Fe, 6.4% Ni, 9.9% Cu, and
0.4% Co), whereas the PGM-enriched sulfide domain includes (vol.%): Po—34, Pn—15,
Ccp—23, and Cub—28 (respectively, S—35.2 wt.%, Fe—45.8%, Ni—4.6%, Cu—14.2%,
and Co—0.3%). Thus, the PGM-enriched nest demonstrates an obvious increase in Cu
relative to the sulfide globule. Further SEM studies of four thin sections of the globule
and associated nest showed that they differ not only in the ratios of base metal sulfides,
but also in the PGE mineralogy. The globule contains more high-temperature PGMs, such
as moncheite, while the nest is enriched in “low-temperature” PGMs, including notable
amounts of lead and mercury. The overwhelming majority of the numerous PGMs in
the unusual domain were detected as tetraferroplatinum, with subordinate potarite and
zvyagintsevite, associated with chlorite and apatite. Such a subdivision of anorthositic
sulfides into two types demonstrating different composition and mineralogy, as well as
contrasting distributions of PGE in the sulfide segregations, was established for the first
time! The origin of the contrast PGM-sulfide assemblages is discussed.

Keywords: Dovyren; PGE-rich anorthosite; computed tomography; sulfides; platinum
group elements

Minerals 2025, 15, 160 https://doi.org/10.3390/min15020160

https://doi.org/10.3390/min15020160
https://doi.org/10.3390/min15020160
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-5081-2731
https://orcid.org/0000-0001-8957-6871
https://doi.org/10.3390/min15020160
https://www.mdpi.com/article/10.3390/min15020160?type=check_update&version=1


Minerals 2025, 15, 160 2 of 15

1. Introduction
This research is a continuation of petrological studies targeted at the search for PGMs

by X-ray computed tomography (CT) and their detailed characterization by SEM in low-
sulfide PGE-rich anorthosite from the Yoko-Dovyren massif (Northern Transbaikalia, Rus-
sia) [1]. The previous publication was focused on methodological aspects of the CT-
examinations, as well as general features of the distribution of PGMs in most sulfide min-
eralized areas of the PGE-anorthosite. Herein, we present more localized and somewhat
unusual observations, which, probably, make further insight into the processes responsible
for the formation of low-sulfide reef-style mineralization.

Increasingly, CT methods are being used to visually and numerically characterize
silicate–sulfide relationships in mineralized rocks of layered intrusions [2–7]. An obvious
disadvantage of classical petrographic methods is the extrapolation of 2D information to
3D structures, which can lead to various distortions. Thus, slides made from a random rock
slice can result in a false idea of important parameters that are necessary for understanding
the formation processes for magmatic sulfides and related PGMs. The major aim of CT
studies includes obtaining statistically based quantitative information on the distribution of
the mineral phases with different X-ray absorptions, which seems to generate insight into
the mechanisms of their genesis. Thus, on the basis of the morphological analysis of sulfides
and their connectivity, the authors of [4] made a conclusion about the probable percolation
of immiscible sulfide liquid in olivine cumulates from komatiite flows of the Norsman-
Viluna greenstone belt in Western Australia. This is consistent with an experimental study
on the wetting behavior of minerals in sulfide–silicate systems [8]. In [3], using the CT-
approach, authors concluded that there were several generations of sulfides in olivine
cumulates: some of them originated in situ, while others were the result of percolation
and accumulation. A significant part of the cited study was focused on statistical data on
the size distribution of sulfide globules, as well as on the degree of their “sphericity”. In a
fundamental review [9], the authors discussed the results of CT studies of disseminated
sulfide mineralization from the Sunrise Dam gold mine in Eastern Australia and from the
Mount Kit Cu-Ni deposit, focusing on the “CSD” of sulfides in terms of their equivalent
sphere diameter. This parameter is useful for the statistical comparison of ensembles of
individual grains that have slightly different shapes.

Based on a petrographic and CT examination of samples from the Merensky Reef
(Bushveld Complex, South Africa), it was concluded that the lower chromitite layer of the
MR may play a crucial role as a physical barrier that prevents the sulfide liquid percolation
from above, thus leading to its accumulation [5]. The low degree of sulfide connectivity
in chromitite interlayers (in contrast to MR melanorite), and the overall distribution of
sulfide segregations within the Merensky Reef is consistent with the experimental studies
on the wetting of minerals in sulfide–chromite–silicate systems [10]. The other studies were
focused on the distribution of platinum group minerals in the Merensky Reef [9]. A number
of important observations have been made combining data on the size, shape, quantities,
and spatial association of PGMs with chromite, sulfides, and silicates. In particular, based
on the similarity of these characteristics for PGMs from the upper and lower chromitite
layers in the MR, it was concluded that the formation of two border chromitite layers
did not affect PGMs, which originated as a result of a long-standing evolution of the
original sulfide liquids, including both their crystallization history and, probably, post-
cumulus late-stage processes [6]. Other groups of researchers came to similar conclusions
after CT investigations of the low-sulfide rocks from the Platinova reef in the Skaergaard
intrusion [7,11]. In addition, the quantitative parameters which resulted from the CT studies
(see above) allow one to better understand the possible fluid dynamics of sulfide-saturated
magmas and the dynamics of the transfer of sulfide blebs through the cumulate piles.
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Thus, different shapes of the reconstructed “CSD” for sulfide globules, in combination
with computer simulations, make it possible to propose a generalized genetic scheme of
the formation and disintegration of sulfides depending on the style of magma dynamics
(laminar or turbulent) [12].

Pshenitsyn et al. [1] presented the first multi-scale results of CT examinations of a
PGE-anorthosite from the Dovyren intrusion (sample 13DV539-9). These results provided
valuable information on the contents and connectivity of the anorthositic sulfides, as well as
the distribution of high X-ray absorption phases as probable noble metals minerals. These
findings were supplemented by mineralogical studies of the two largest grains, including
a 30 µm size moncheite and 120 µm size electrum. Based on our experience, CT imaging
should precede every study of PGE mineralization associated with magmatic sulfides, if one
plans to conduct detailed petrological studies to provide conclusions regarding the origin
of the PGMs occurrences. Of particular interest is that such an approach combining the use
of scanning electron microscopy, classical optical petrography, and CT imaging allows for
the first-order estimation of the total concentration of PGE in the bulk sulfide, which can be
compared with calculations of 100% sulfide composition from the whole-rock PGE analyses.
A problem is that despite the demonstrated efficiency of the combined CT-approach, the
lack of sufficient data that would statistically link findings of PGMs with their compositions
in the paper [1] did not allow for well-argued conclusions on probable mechanisms of the
formation of the noble-metal mineralization in the low-sulfide anorthosites.

2. Geological Background
The layered Yoko-Dovyren mafic-ultramafic intrusion (hereinafter Dovyren) is hosted

in the Baikalides of Northern Transbaikalia [13–18] and has size of 26 × 3.5 × ~5 km.
It belongs to the Synnyr-Dovyren volcano–plutonic complex, with—728.4 ± 3.4 Ma for
the Dovyren intrusion and 722 ± 7 Ma for the associated rhyolites [18]. Its cumulate
succession in the thickest central and most differentiated part is composed of the near-
contact zone olivine picrodolerite, followed with plagiolherzolites and the dunite zone
(about one third of the cross section) transitioning to troctolites (with anorthositic veins
and schlieren), and the upper strata of olivine to olivine-free gabbronorites and pigeonite
gabbro [16–18]. Various types of sulfide mineralization occur in the Yoko-Dovyren massif,
including (i) massive Cu-Ni ores of the Baikal deposit, which are hosted by melanocratic
olivine gabbronorite composing underlying sills and apophyses (subparallel to the main
body), (ii) disseminated mineralization in dunites, (iii) low-sulfide and PGE mineralization
in the so-called Konnikov zone [19], as well as (iv) PGE-poor, low-copper mineralization in
gabbroids near the roof of the Dovyren intrusion.

However, many Russian specialists focused their attention on the so-called Main
Reef [18,19], or Reef I [20–22], which has been mapped as a texturally taxitic feldspar-rich
horizon within the variable thick transition zone between typical troctolites and olivine
gabbro (see Figure 1a). Following from some indirect analogies with PGE-rich horizons
of the Bushveld Complex, the whole taxitic zone is considered by some authors as a
“Critical Zone” [21], which in its upper part includes a number of randomly distributed
schlierens and lenses of PGE-rich anorthosite, up to several meters thick (Figure 1b). These
anorthositic bodies associate with gabbro-pegmatites and are hosted by mesocratic to
leucocratic troctolites (Figure 1c). The PGE mineralization detected here was referred
to the so-called “Stillwater type” [20,21], as up to 35 PGE minerals were found, with
moncheite, kotulskite, and other bismuthtellurides being predominant, and other PGMs
such as tetraferroplatinum, potarite, zvyagintsevite, and atokite occurred. Due to the rather
uneven distribution of sulfides in the anorthosite, the total concentration of noble metals
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and PGE in the rocks varies from 0.3 to ~6 g/t, but the bulk contents of about 4–5 g/t
prevail [20–22].
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the anorthositic schlieren (white dotted line) with isolations of low-sulfide mineralization rich in 
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nests of sulfides (Sf) substituted by iron hydroxides. 

The geological forms of ore-bearing anorthosites are different: first of all, they occur 
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bronorite (Figure 1b). Along the strike, they may extend for 2–5 m, rarely 40 or more me-
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more than 20 km [22,23]. Often, they are oriented crosswise to the strike of the Dovyren 
massif and cut the stratigraphic rock sequence. 

The composition of plagioclase in anorthosites corresponds to bitownite and varies 
in the range of 82.3%–87.5% An [18,21], sometimes with rims of more calcium plagioclase 
containing 88%–90% An [1]. These rocks typically contain 1 to 5% ortho- (En 73.5–78.2) 
and clinopyroxene (En 39.6–44.3) [21] (Figure 2d–f). Both Opx and Cpx may occur as large 
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space (Figure 2d–f); however, only orthopyroxene composes the reaction rims (Figure 2f) 
around separate olivine grains. Olivine is the third by prevalence but genetically im-
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but, as a rule, do not exceed 4–5 wt.%. In places of the increased amount of sulfide, 

Figure 1. Schematic map of the Yoko-Dovyren massif, general stratigraphic succession, and ex-
amples of low-sulfide PGE-rich anorthosites: (a) modified after [1], where (1) plagioperidotite,
(2) plagiodunite and dunite, (3) troctolite, (4) olivine gabbro, (5) olivine gabbronorite, (6) quartz- and
pigeonite-bearing gabbronorite, (7) mafic to ultramafic sills and dykes, (8) high-Ti basaltic flows, and
(9) faults. The red star marks the location of the outcrop of the studied anorthosite; (b) exposure of
the anorthositic schlieren (white dotted line) with isolations of low-sulfide mineralization rich in PGE
minerals (red dotted line); and (c) poikilitic grains of clinopyroxene (Cpx) in anorthosite hosting nests
of sulfides (Sf ) substituted by iron hydroxides.

The geological forms of ore-bearing anorthosites are different: first of all, they occur as
schlieren-like and lens-shaped isolations with a thickness from the first cm to a meter and
more, varying in composition from almost pure feldspar rocks to gabbroanorthosites, less
often with the fringing of gabbro-pegmatite, taxitic troctolite, and olivine leucogabbronorite
(Figure 1b). Along the strike, they may extend for 2–5 m, rarely 40 or more meters,
forming a series of discontinuous, clumped ore occurrences that can be traced for more
than 20 km [22,23]. Often, they are oriented crosswise to the strike of the Dovyren massif
and cut the stratigraphic rock sequence.

The composition of plagioclase in anorthosites corresponds to bitownite and varies
in the range of 82.3%–87.5% An [18,21], sometimes with rims of more calcium plagioclase
containing 88%–90% An [1]. These rocks typically contain 1 to 5% ortho- (En 73.5–78.2)
and clinopyroxene (En 39.6–44.3) [21] (Figure 2d–f). Both Opx and Cpx may occur as large
poikilitic crystals observed in thin sections as pyroxenes occupying the pore (interstitial)
space (Figure 2d–f); however, only orthopyroxene composes the reaction rims (Figure 2f)
around separate olivine grains. Olivine is the third by prevalence but genetically important
mineral, occurring as individual grains up to 0.5 mm in size or clusters of the olivine
crystals, mostly containing Fo 83%–85% Fo (Figure 2c,f). Pyrrhotite, pentlandite, cubanite,
and chalcopyrite are the main base metal sulfides, which form mostly separate domains of a
net texture hosted by plagioclase crystals (Figure 2d,e). In many places, those domains look
similar to the intercumulus pyroxenes (Figure 2a,b). The average size of the disseminated
sulfide grains is about 0.5 mm, but segregations up to first millimeters may also occur
(Figure 2a). Bulk sulfide contents in the mineralized anorthosites are variable, but, as a



Minerals 2025, 15, 160 5 of 15

rule, do not exceed 4–5 wt.%. In places of the increased amount of sulfide, plagioclase is
subjected to more extensive secondary alteration, with the formation of clinozoisite and
prehnite. Correspondingly, a low temperature assemblage of clinozoisite, chlorite, albite,
prehnite, and phlogopite may develop [1,22].
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Figure 2. Images of fragments of the examined anorthositic block referred as DV653: (a–c) pol-
ished sections of the mineralized sample DV653-5, (d,e) panoramas of thin sections of DV653-
7 hosting disseminated sulfides (crossed and parallel analyzers), and (f) section of the DV653-
5 anorthosite with poikilitic clinopyroxene and olivine phenocryst with the reaction Opx rim.
Sf —sulfide, Pl—plagioclase, Ol—olivine, Opx—orthopyroxene, and Cpx—clinopyroxene.

3. Materials and Methods
We focused on investigations of the anorthositic sample DV653-5 (Figure 3) as a piece

from a large block DV653 sampled from the same outcrop as the sample 07DV146-1 and its
fragments (AA06a-1 and AA06a-2), which have been presented in [24]. In fact, DV653-5
is about 5 × 7 × 15 cm in size, being a typical low-sulfide PGE-rich anorthosite with
irregularly shaped elongated areas of sulfides, zones of poikilitic pyroxene (Figure 2d,e),
and inclusions of olivine aggregates (Figures 2a–c and 3a). Unlike the sample 13DV539-9
from another anorthositic schlieren, which has a banded distribution of disseminated
sulfides [1], DV653-5 has several irregularly shaped areas of similar mineralization (see
Figures 2a–c and 3a). X-ray computed tomography was performed in two stages using two
instrumental systems, which provided data of different informativeness and resolution.
At the first stage, the whole sample was scanned using an RKT-180 tomograph (produced
by Geologika, Novosibirsk, Russia) with a resolution of 100 µm. Then, two 10 and 15 mm
diameter cylinders were drilled out to sample areas enriched in sulfide domains (Figure 3a),
with the 15 mm core capturing the 4 mm sulfide globule detected during the previous CT
imaging. The 10 and 15 mm cores were imaged using a SkyScan-1172 scanner (Bruker,
Germany) to obtain data stacks with a resolution of about 10 µm, and, in the case of an
additional smallest core of 3 mm in diameter, with a resolution of 3 µm.
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Figure 3. Studied areas in the DV653-5 anorthosite: (a) results from the first stage of the low-resolution
scanning, where lighter clusters of olivine and disseminated sulfides are clearly distinguished in the
gray plagioclase matrix (the circle marks the location of the 10 mm core drilled across the sample),
(b,c) are 10 and 15 mm cores, respectively, the dark areas correspond to sulfide clusters in the rock,
(d) examples of several STvox “frames” from the 10 mm core data stack, and (e) an example of an
X-ray dense section of the 15 mm core with a 4 mm sulfide globule at the center, in association with
putative orthopyroxene and associated interstitial sulfides.

Microprobe studies of mineral compositions were carried out in the Laboratory of Lo-
cal Methods of Studying Matter (the Faculty of Geology, Lomonosov MSU, Moscow, Russia)
using a JSM-6480LV electron microscope with a tungsten thermionic cathode equipped with
an X-Max-N50 energy dispersive spectrometer (Oxford Instruments, Abingdon, UK). The
standards and samples were measured in the focused probe mode at an accelerating voltage
of 20 kV and a probe current of 10 nA. In this case, the standards for metals, stoichiometric
oxides, and sulfides were used. The INCA shell (Oxford Instruments, version 21b) was
used to process the measurement results by the XPP-correction algorithm, which ensured
the accuracy of the content estimation for the main elements in the range of 0.5–2 oct.%.

The petrographic description and microphotographs were taken using the Altami
MET 1C (Altami, Saint Petersburg, Russia) and CARL ZEISS AXIOLAB.A1 (ZEISS Russia
& CIS, Moscow, Russia) optical microscope at the Faculty of Geology (Lomonosov MSU,
Moscow, Russia).
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4. Results
4.1. X-Ray Computed Tomography

The specification of X-ray contrast phases in the 15 mm core demonstrated that silicate
minerals (plagioclase and pyroxenes) make up 98.86% of the rock volume. Sulfides occupy
practically the whole rest of the volume, and the volume concentration of potential PGMs
(hereinafter referred to as “p.PGM”) is not higher than 0.001% (Table 1). At the same time,
due to the presence of one relatively large sulfide globule, in which most of the sulfides are
concentrated (Figure 4), their bulk connectivity in the sample reaches as much as 70%. Note
that the term “connectivity” in CT studies is attributed to a fraction of the largest coherent
object in the overall volume of a given phase. The CT data for the 10 mm core display a
more uniform distribution of sulfides over the plagioclase–pyroxene matrix. In addition,
in Table 1, data for two parts of the 15 mm core are given, which represent two virtual
sections, including (i) the globule separately (Figure 4b, 15 mm (A)) and (ii) the adjacent
associated domain of sulfides anomalously enriched in p.PGMs (Figure 4c,d, (15 mm (B)).

Table 1. Content of X-ray contrast phases in the volume of 15 and 10 mm cylinders, as well as
individual sections of the 15 mm cylinder (15 mm (A)—globule; 15 mm (B)—p.PGM enriched nest).

Sample

Silicates Sulfides p.PGMs p.PGM

Content, vol.% Content, vol.% Connectivity, % Numbers
(vol, %)

Maximum
Linear Diameter

(µm)

DV653-5

653-5—10 mm 97.56 2.44 25 65 (0.001) 60
653-5—15 mm 98.86 1.14 70 71 (0.001) 450

15 mm (A) 95.79 4.21 100 18 (0.0001) 35
15 mm (B) 99.32 0.68 19 45 (0.01) 450

A detailed examination of the three-dimensional reconstructions of the sample
(Figure 4a) shows that a sphere-like globule with a diameter of about 4 mm (Figure 4b) is
clearly distinguished among a cloud of finely disseminated sulfides, which contain only a
few grains of p.PGMs. At the same time, it is associated with a domain of sulfides anoma-
lously enriched in p.PGMs (Figure 4c,d), at a distance of few mm from the globule. Note
that a much larger volume of disseminated sulfides (5.7-fold with respect to the enriched
nest) is observed in the vicinity and above the globule (see Figure 4a), with only a few very
small grains of p.PGMs (Figure 4a).

The strategy of the following studies included two main stages: (1) the discovered
globule was cut on several microslides considered as reflecting its different “hypsometric
levels” to be used for further petrological and mineralogical investigations, including the
assessment of its “average sulfide composition”, and (2) the second stage included the
stepwise sawing off the area of the p.PGM-rich sulfide nest, with the purpose to uncover
and to study as many p.PGM grains as possible. One can visualize this as an anti-3D printer.

Such an invasive method was chosen as a large number of objects of interest were
found in the very small volume, so that the preparation of checkers or slides would allow
us to obtain only a couple of thin sections to study. This approach allowed for evaluating
a representative number of PGM compositions, favoring calculations of the “average
sulfide composition” in the unusual sulfide domain. In addition, direct comparisons and
correlations of the morphological features of PGMs obtained by the CT-approach with the
results of SEM microscopy became possible.
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Figure 4. Results of microCT studies of the DV653-5 mineralized anorthosite: (a) volumetric recon-
structions for a part of the 15 mm core, where sulfides (Sf ) are shown in gray, the host silicate matrix
is consistent with a transparent color, and p.PGMs are shown in red for clarity. The sulfide globule
is shown opaque in this figure among other interstitial sulfides, including small grains of p.PGMs
within a nest of scattered sulfides below the globule; (b) the spherical globule separately (here shown
translucent); note that all p.PGMs are located at its surface as the silicate–sulfide boundary; and
(c,d) sulfide nest anomalously enriched in p.PGMs in the opaque and translucent sulfide mode,
respectively, indicating that all p.PGMs are located inside the sulfide. Video reconstructions are
available at ref. 1 (https://www.youtube.com/watch?v=VVB16o5yfAk (accessed on 1 April 2024))
and ref. 2 (https://www.youtube.com/watch?v=3o08UnBMUlQ (accessed on 19 December 2024)).

As a result, it was concluded that potential PGMs (as the most X-ray contrast phases)
in the volume of the 15 mm core are distributed unevenly; rare and relatively small
(max. 35 µm, see Table 1) p.PGMs are found in the sulfides within the globule and on its
periphery (see Figure 4b), with no signatures of any systematics. On the other hand, in the
enriched sulfide nest, in which more than 90% (by volume) of all p.PGMs are concentrated,
these grains can be divided according to two major criteria (see the captions to Figure 5),
characterizing the following:

(1) Space relations between sulfides and rock-forming minerals attributed to (i) the
tops of sulfide edges at the sulfide–silicate boundary, (ii) the triangular corners of interstices
and segregations at the sulfide edges, (iii) a bridging in narrowing sulfide interstices, and
(iv) rare grains within the sulfide that do not gravitate to the edges and corners;

(2) The p.PGM grain morphology visible as: (i) rounded, similar to a ball grain with
a high sphericity coefficient (Spc) 0.85–0.96, usually relatively small in size (Figure 5f–l,
small ones), (ii) flattened, sometimes slightly curved (Figure 5a,b) or elongated grains
(Figure 5d–f,i,j) with Spc < 0.7, (iii) peanut-shaped paired aggregations of rounded or
elongated grains, which can be small or quite large, up to 60–70 µm in size, and are
the most common grains in the enriched nest (Figure 5i–l), and (iv) slightly elongated,
egg-shaped, or oval p.PGM grains with Spc 0.72–0.85 (Figure 5c,g,h).

https://www.youtube.com/watch?v=VVB16o5yfAk
https://www.youtube.com/watch?v=3o08UnBMUlQ
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Table 2. Compositions of base metal sulfides from 15 mm core (two analyses of each mineral are 
listed to show their insignificant range). 

Mineral S (wt.%) Fe Co Ni Cu Pt  Pd Total Formulae 
Po (Tr) 36.22 62.98 0.21 bdl 1 bdl bdl bdl 99.41 Fe1.00Co0.01S 
Po (Tr) 36.23 63.55 0.33 bdl bdl bdl bdl 100.11 Fe1.01Co0.01S 
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Figure 5. Examples of different morphology of the p.PGMs: (a–l) separate grains observed:
(d,e,g,h,j,k) at the tops of sulfide edges at the sulfide–silicate boundary, (a,b,g,h,l) in triangular
corners of interstices and segregations at sulfide edges, ((f) (coarse) and (i)) as sulfide bridging in
tapering interstices, ((c,g), and (f) (fine)) inside sulfide, not gravitating to the edges and corners, and
(m) general view of the p.PGM-enriched sulfide nest, including the largest elongated grain on the
bottom left, which is of 450 µm in size. The scale in these figures is not given intentionally in order
not to confuse the reader by projections of three-dimensional models on the screen plane.

4.2. The Average Sulfide Compositions

For microscopic studies of the sulfide globule, six tiny sections across its body were
prepared. When calculating the “average sulfide”, we used the same methodology as
presented in [25]. Since the reflectivity of the main sulfide minerals is quite close to each
other [26], each mineral phase was separated manually in the Paint. Net program. Then,
for each processed panorama, the relative proportions of pyrrhotite (Po), pentlandite (Pn),
cubanite (Cub), and chalcopyrite (Ccp) were calculated using the Adobe Photoshop CS2
program. As a result, the average for all the images corresponds to the following values:
39% Po, 21% Pn, 34% Cub, and 6% Ccp. This is consistent with approximately 35.2 wt.% S,
48.2% Fe, 6.4% Ni, 9.9% Cu, and 0.4% Co (Figure 6). The conversion to the average chemical
composition was performed using average microprobe analyses for each sulfide mineral
(Table 2).

We also calculated the average sulfide composition for the p.PGM-enriched sulfide
nest (Figure 4c,d). This domain was studied on a separate sample, which, unlike the globule,
was examined by the destructive method of the layer-by-layer sawing of the sample with
step-by-step SEM and petrographic analysis for each polished section. A total of 10 saw
cuts were made, primarily to study the compositions of p.PGMs. For each of the cuts, a
corresponding panorama was visualized in the reflected light and processed according to
the above-described actions. Thus, the following mean estimates (in vol.%) were obtained
for the examined nest: Po—34, Pn—15, Ccp—23, and Cub—28, which are consistent with
wt.% S—35.2, Fe—45.8, Ni—4.6, Cu—14.2, and Co—0.3 (Figure 6).

Thus, it was found that the PGM-enriched nest associated with the sulfide globule
evidences a more Cu-rich bulk composition (14% vs. 10% Cu), relative to the globule
(Figure 6), with the proportion of chalcopyrite increasing from 6% to 23%, so that the
Ccp/Cub ratio increases from 0.17 to 0.82.
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Figure 6. The mineral and chemical compositions of studied sulfide occurrences, including ratios
of base metal sulfides and element concentrations: (a,c) in the globule, and (b,d) in the p.PGM-
enriched nest.

Table 2. Compositions of base metal sulfides from 15 mm core (two analyses of each mineral are
listed to show their insignificant range).

Mineral S (wt.%) Fe Co Ni Cu Pt Pd Total Formulae

Po (Tr) 36.22 62.98 0.21 bdl 1 bdl bdl bdl 99.41 Fe1.00Co0.01S
Po (Tr) 36.23 63.55 0.33 bdl bdl bdl bdl 100.11 Fe1.01Co0.01S

Cub 35.15 40.95 0.14 bdl 22.75 bdl bdl 98.99 Cu0.98Fe2.01Co0.01S3
Cub 35.39 41.22 0.24 bdl 23.19 bdl bdl 100.04 Cu0.99Fe2.01Co0.01S3
Ccp 34.66 30.97 0.12 bdl 34.36 bdl bdl 100.11 Cu1.00Fe1.03Co0.01S2
Ccp 34.38 30.73 0.15 bdl 33.61 bdl bdl 98.87 Cu0.99Fe1.03Co0.01S2

Pn (glob) 32.99 35.3 0.79 29.87 bdl 0.18 bdl 99.13 (Ni3.96Fe4.92Co0.10)S8
Pn (glob) 32.92 35.56 1.09 29.81 bdl 0.23 bdl 99.61 (Ni3.96Fe4.96Co0.14)S8
Pn (nest) 32.8 35.15 0.87 30.13 bdl bdl 1.23 100.18 (Ni4.00Fe4.95Co0.12)S8
Pn (nest) 33.02 35.12 0.94 30.23 bdl bdl 0.89 100.2 (Ni4.00Fe4.89Co0.12)S8

1 below detection limit.

4.3. SEM Studies and Mineralogy

As it was shown in the subchapter 4.2, the main globule is composed mainly of
pyrrhotite/troilite, with the ratio of sulfur to iron being almost 1:1. All the troilite in the
globule is cobalt-bearing (0.21–0.33 wt.%; average 0.28 wt.%). Cubanite, chalcopyrite,
and pentlandite also contain noticeable amounts of Co: Cub 0.14–0.24 wt.% (on average
0.18 wt.%), Ccp 0.12–0.15 wt.% (0.13 wt.%), and Pn 0.79–1.09 wt.% (0.92 wt.%). Pentlandite
from the globule also contains 0.22 wt.% Pt (on average, Table 2). Due to relatively high
Co in all sulfide minerals, the “average sulfide” composition has a pretty high bulk Co
concentration (0.4 wt.%, see 4.2). A similar pattern of Co distribution was observed in the
PGM-enriched nest (Table 2), where the compositions of sulfide minerals do not differ from
those determined for the globule. Only pentlandite contains an average of 1 wt.% Pd with
no Pt (Table 2).

In the case of the sulfide globule, several PGM grains (up to the first tens of microns)
were found at the sulfide–plagioclase boundary surface (Figure 7d,e): these are moncheite
and tetraferroplatinum, as well as a phase of the composition Pt2Pd2Sn (Table 3), which
has been described in [21] as “unnamed Pt2Pd2Sn”. In contrast, in the PGM-enriched nest
(Figure 7c,f), which was opened by 10 layer-by-layer polishing, about 45 PGM grains were
discovered and analyzed: 30 of them are tetraferroplatinum (PtFe), 8 are grains of potarite
(PdHg), and 7 are grains of zvyagintsevite (Pd3Pb) (Table 3).
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Figure 7. Mineralogical features of sulfide assemblages in the globule and associated PGM-enriched
sulfide nest: (a) troilite (Tr), cubanite (Cub) (with micro-inclusion of moncheite—Mon), and pentlandite
(Pn) in the sulfide globule; (b) pentlandite in cubanite at the boundary with troilite (in globule);
(c) large sponge-like tetraferroplatinum grain in cubanite (on the Sf -Pl boundary, in close spatial
association with chlorite in the PGM-enriched sulfide nest); (d) 25 µm moncheite grain in cubanite
on the Sf-Pl boundary (globule); (e) 15 µm moncheite–tetraferroplatinum splicing in cubanite on the
Sf-Pl boundary (globule); and (f) large grains of tetraferroplatinum and potarite in cubanite on the
Sf-Pl boundary (PGM-enriched sulfide nest).

Table 3. Compositions of the PGMs encountered in the globule and in the enriched nest (2–3 analyses
for each mineral are listed to show their extreme compositional scatter).

Mineral Pd
(wt.%) Sn Te Pt Bi Hg Fe Ni Cu Pb Total

Moncheite bdl 1 bdl 49.91 41.56 7.74 bdl bdl bdl bdl bdl 99.21
Moncheite bdl bdl 51.21 40.98 6.33 bdl bdl bdl bdl bdl 98.52
Moncheite bdl bdl 50.91 41.76 5.91 bdl bdl bdl bdl bdl 98.58

Unnamed Pt2Pd2Sn 28.43 21.8 bdl 48.93 bdl bdl bdl bdl bdl bdl 99.16
Unnamed Pt2Pd2Sn 25.69 21.56 bdl 51.58 bdl bdl bdl bdl bdl bdl 98.83
Tetraferroplatinum 4.05 bdl bdl 82.65 bdl bdl 11.59 0.48 1.27 bdl 100.04
Tetraferroplatinum 1.57 bdl bdl 83.85 bdl bdl 11.79 0.66 2.02 bdl 99.89
Tetraferroplatinum 1.31 bdl bdl 74.66 bdl bdl 14.58 0.94 7.5 bdl 98.99

Potarite 35.47 bdl bdl bdl bdl 61.3 1.56 bdl bdl bdl 98.33
Potarite 33.42 bdl bdl bdl bdl 62.56 0.51 bdl 0.67 bdl 97.16

Zvyagintsevite 57.08 bdl bdl 1.18 bdl 1.55 0.49 bdl 0.54 35.66 96.5
Zvyagintsevite 58.04 bdl bdl 1.04 bdl 2.64 0.24 bdl bdl 35.44 97.4

1 below detection limit.

Note that while tetraferroplatinum in the nest was found in 66% of the cases, it
is presented mostly by large grains, and thus, by volume, constitutes about 90% of all
the PGMs in the unusual domain. As can be seen in Figure 7c,f, the large grains of
tetraferroplatinum (in contrast to the solid grains of the CT reconstructions, Figure 5),
actually have a bunch-like, spongy structure. In this regard, it is quite difficult to correlate
the morphology of PGMs with their composition, since the real details of PGMs morphology
are not visualized on CT scans of the used resolution. The SEM studies also revealed a close
association of the sulfide globule with large grains of orthopyroxene, as well as ilmenite and
apatite. Apatite and ilmenite also occur in the PGM-enriched sulfide nest, and it contains
1–1.6 wt.% F and 2.4–2.6 wt.% Cl.
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5. Discussion
The extremely heterogeneous pattern of the distribution of PGMs vs. sulfide material

in the Dovyren Main Reef anorthosites was found for the first time. Its uniqueness is
determined by three factors:

1. The first finding of a relatively large sulfide globule in the low-sulfide PGE-rich
anorthosite. Despite the fact that smaller globules as much as 0.8–0.9 mm size are present
in the 10-mm core (Figure 3), so far, globules larger than 1 mm have not been discovered in
previous studies of the “reef” rocks. It is doubtful that their formation, to all occurrences,
could be a result of a through pore migration of such a globule or smaller droplets of
sulfides in the solidifying anorthositic matrix, which is difficult to imagine due to a very
low permeability of the almost completely crystallized assemblage of the plagioclase grains.
Instead, we suggest that the globule was formed in situ by the agglomeration of liquid
sulfide microglobules disseminated in the intercumulus silicate melt, filling a large residual
pore between the plagioclase crystals [3,8]. This is evidenced by the close association of
this globule with a large orthopyroxene poikilitic crystal (see Figure 3e), occurring in the
same space within the plagioclase matrix;

2. The Discovery of a localized domain, which looks like a nest of interstitial sulfides,
in which the amount of PGMs in 100% sulfide volume exceeds 1.5 vol.%, whereas, in other
sulfide occurrences, this concentration does not exceed 0.01 vol.%;

3. The combination of factors 1 and 2 suggests a non-random character of the co-
existence of the relatively large but PGMs-poor sulfide spheroid and much smaller but
anomalously enriched in PGM sulfide nest.

To better understand the contrast between the main sulfide globule and the sulfide-
PGM nest, Table 1 displays data for two separate portions of the 15 mm core, which were
divided virtually into two images—the globule alone (Figure 4b) (15 mm (A)) and the
nest (Figure 4c,d) (15 mm (B)). The latter is only about 6 vol.% of the sulfides in the whole
globule, but in terms of the 100% sulfide volume, the nest is 112 times more enriched
in PGE!

So, the extreme enrichment of the sulfide nest in PGE-minerals is correlated to a
marked shift in its average base metal composition towards a more Cu-rich sulfide material.
Similar relations have been described in Ol-gabbronorite from an apophysis of the Dovyren
intrusion, which contained even larger sulfide globules [25]. In the cited work, it was
concluded that the occurrences of relatively Cu-rich and Cu-depleted sulfides in the same
rock may be considered as a result of the differentiation of a protosulfide liquid, due to a
late-stage migration of Cu-rich (post-MSS) sulfide residuals from the external boundary
of the parental sulfide globule. We believe that similar processes of separation of residual
sulfides could take place during the crystallization of an immiscible sulfide liquid initially
originated within or close to the anorthositic agglomerations.

Considering probable mechanisms of such separation, one should take into account
the high proportion of mercury in the studied PGMs (see Table 3), the close association
of tetraferroplatinum grains with late hydrous minerals, such as chlorite (Figure 7e), as
well as the presence of apatite in this sulfide domain, which manifest the probable role
of late aqueous fluids in the formation of the finally observed noble-metal mineralization.
Mass-balance calculations produce a very high Pt/Pd ratio in the PGE-rich sulfide nest of
about 6, indicating an efficient fractionation between initial sulfide-controlled Pt and Pd.
This separation may have occurred at the final stages of mineral-forming processes, charac-
terized by the maximum role of late residual fluids. The mechanism of this fractionation,
which led to a sharp increase in the Pt/Pd ratio in the enriched nest, may be attributed to a
significant difference in the stability of the main aqueous hydrosulfide (Pd(HS)2, Pt(HS)2)
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and chloride (PdCl42− and PtCl42−) complexes, providing a much more efficient transfer
of Pt from sulfides to the fluid phase as compared to Pd [27–29].

6. Conclusions
1. For the first time, a relatively large sulfide globule was found in the Main PGE-Reef

of the Yoko-Dovyren massif. It has been established that the nest of disseminated sulfides
associated with the globule is anomalously enriched in PGMs, with 90% of which being
presented by tetraferroplatinum. As compared to 100% sulfide from the globule, this
enrichment is 112-fold;

2. The average sulfide of the PGM-enriched nest is enriched in cuprous minerals,
containing 28% Cub and 23% Ccp, while the main globule contained 34% and 6%, respec-
tively. Accounting for the relative enrichment in PGMs, this may evidence a crystallization
fractionation of a common sulfide precursor due to a mm-scale migration of the late Cu-
enriched and probably PGE-rich sulfide residuals from the parental liquid to produce
two observed types of sulfide material. This is supported by the difference in the PGE-
mineralogy in the globule and in the nest: the former contains a few more high-temperature
PGMs, such as moncheite, while the nest contains many low-temperature PGMs, including
Pb- and Hg-bearing minerals, such as zvyagintsevite and potarite;

3. Despite the probable source of PGE being an immiscible sulfide liquid (primarily
from the volume of the sulfide globule), late-stage water-bearing fluids could promote the
redistribution of PGE during the separation of its crystallization products, being responsible
for the extremely high Pt/Pd ratio of about 6 in the averaged sulfide nest. This is supported
by the observed mineral association of tetraferroplatinum PtFe and Pb-Hg containing
PGMs with chlorite and amphiboles in the presence of apatite. Experimental data on the
differing stability of hydrosulfide and chloride complexes for Pt and Pd are consistent with
this hypothesis [27–29].
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