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Abstract: The adoption of photovoltaic solar technology for renewable energy generation
has been growing rapidly worldwide. In decarbonization processes, the use of photo-
voltaic panels has been preferred due to their reliability, safety, and efficiency. Specifically,
the use of photovoltaic panels has increased significantly in Chile, as the climatic condi-
tions are ideal for photovoltaic solar technology. The expected lifespan of a photovoltaic
panel is approximately 25 years, so the amount of photovoltaic waste is projected to rise
significantly in the coming decades. Consequently, interest has emerged in establishing
policies and processes for recycling and recovering value from photovoltaic waste. The
objective of this study is to develop a life cycle assessment (LCA) of the leaching process
of photovoltaic modules using nitric acid as a leaching agent and to employ the results
to analyze the projected scenario for the Antofagasta region in 2040. Through statistical
analysis of currently approved photovoltaic installations, projections were made to estimate
the amount of photovoltaic waste and the total value of recyclable material expected to
be available in 2040, resulting in an approximate figure of 30,676,367 discarded modules.
Simultaneously, a life cycle assessment of the leaching process for photovoltaic waste using
nitric acid was conducted using the OpenLCA software. The analysis showed that the
proposed process has a high impact on global warming potential (GWP), generating 7.07 kg
of CO2 equivalent per kilogram of photovoltaic cell waste. Finally, an environmental and
economic comparative analysis was performed, comparing nitric acid with ionic liquids
previously studied by the research group. Preliminary results concluded that nitric acid
has a significantly lower environmental impact and production cost.

Keywords: life cycle analysis; leaching; nitric acid; e-waste; solar PV

1. Introduction
Climate change is one of the world’s biggest environmental problems, being caused

mainly by greenhouse gas (GHG) emissions in the atmosphere. When present in the atmo-
sphere, GHGs can capture outgoing radiation from the planet into the Earth’s atmosphere.
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The retention of additional heat in the Earth’s atmosphere causes an increase in the planet’s
temperature, which leads to gradual changes in regional and global weather patterns that
can affect Earth’s delicate balance [1]. Although the GHG category includes several differ-
ent gasses, 71.6% of global greenhouse gas emissions are caused by emissions of carbon
dioxide (CO2) [2]. CO2 emissions are mainly a consequence of combustion processes in
the energy industry in which the combustion of oil, natural gas, coal, and other fossil fuels
are used to generate electricity and heat. Thirty-four percent of global GHG emissions are
associated with the energy industry [3]. In Chile, 75.5% of GHG emissions are associated
with CO2 emissions. In 2020, the Chilean energy sector (vastly composed of activities
associated with fossil fuel combustion) was responsible for 79,724.3 kt of CO2 eq emissions,
being the largest contributor of emissions, responsible for 76% of total GHG emissions in
the country [4].

Faced with this problem, the scientific community has sought energy generation
alternatives based on technologies that produce fewer emissions, replacing traditional
energies to reduce or mitigate GHG emissions in the energy sector. These technologies are
categorized as non-conventional renewable energies due to their capacity to generate clean
energy from virtually inexhaustible resources and without the need to use combustion
processes [5].

Among the most widely used non-conventional renewable energies worldwide, pho-
tovoltaic (PV) solar energy stands out due to its safety, low cost, and reliability [6], ranking
as the second most widely used renewable energy generation technology worldwide [7].

Photovoltaic systems can produce electricity by means of solar energy, using a semi-
conductor material. The key component in the structure of a photovoltaic solar panel is a
photovoltaic cell composed of silicon with the presence of precious materials such as silver.
The photovoltaic cell is encapsulated between two layers of ethylene vinyl acetate (EVA),
covered by glass and polyvinyl fluoride and mounted on an aluminum frame [8].

Global-installed solar capacity reached 1180 GW by the end of 2022, which corresponds
to a contribution of 6.2% of global electricity demand [9]. Global-installed solar capacity is
expected to exceed 4500 GW by the end of 2050 [10] due to factors such as the projected
growth trends in global energy demand and the decarbonization processes taking place
around the world incentivizing the creation of additional photovoltaic facilities [10].

Chile is considered one of the countries with the ideal characteristics for producing
solar energy due to the amount of solar incidence received by the northern regions of the
country. Because of this, solar PV has become an important source of energy in Chile,
contributing 33,330 MW to the installed capacity of electricity generation as of December
2023 and being responsible for 25.4% of the country’s installed capacity [11]. As of 2020,
there are 12.5 million PV panels installed in the country, and it is estimated that by 2050,
there will be between 161 million and 270 million PV panels in the country [12]. According
to the Chilean National Institute of Statistics [13], the Antofagasta region experienced a
30.4% increase in solar energy in 2023, which is expected to continue growing in the coming
years. The adoption of renewable energy sources in Chile has contributed to the reduction
in emissions in recent years, leading to a 21% decrease in GHG emissions by the beginning
of 2024 [14].

Despite the benefits delivered by the increase in PV-based energy production sources,
there are several factors that could be detrimental to the environment and human health in
the future if they are not considered in advance. One of these factors relates to the amount
of PV panel waste that will exist in the future. The lifetime of a PV panel is estimated to be
between 25 and 30 years [15], so eventually, the PV panels currently in use will be replaced,
generating waste. The International Renewable Energy Agency (IRENA) estimated that by
the end of 2030, there will be about 8 million tons of PV panel waste and 78 million tons by
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2050 [16]. Similarly, In-Data and RIGK estimate that by the year 2046, there will be about
120 tons of PV waste in Chile [12].

In view of the above, members of the international community have implemented PV
panel waste management and recycling policies that allow for proper management, thus
favorably impacting the supply chain while minimizing the environmental impact of waste.
Among the countries that stand out are Germany, Spain, and Japan [17].

The Chilean Extended Producer Responsibility and Recycling Promotion Law (REP
Law) makes producers responsible for managing waste from priority product categories
such as lubricating oils, batteries, and electronic equipment. In Chile, solar PV panels
are currently categorized as electronic devices, and although there is currently no policy
specifically related to the valorization of PV panel waste, a future legal proposal is foreseen
to consider collection and valorization goals. Therefore, it is of national interest to evaluate
recycling and valuation technologies for these wastes to anticipate future policies.

The recycling of PV panels at the end of their life cycle can be divided into three stages:
manual dismantling of the PV panel components, chemical or mechanical separation of
the glass, and recovery of materials [18]. There are multiple technical processes for the
recovery of materials by hydrometallurgy using common leaching agents such as nitric
acid, hydrofluoric acid, and phosphoric acid to obtain a leached solution rich in valuable
metals such as silver, copper, and aluminum [19].

Life cycle analysis (LCA) is a methodology used to investigate and evaluate the en-
vironmental impact of a product or service at all stages of its existence, from product
manufacturing to recycling. This methodology is performed in accordance with interna-
tional standards ISO 14040 and ISO 14044 [18].

There are several life cycle analysis studies related to the recycling of PV panels
using life cycle analysis. For example, the environmental impacts of landfilling, upcycling,
or downcycling PV panel wastes have been evaluated through life cycle analysis [18].
Similarly, life cycle analysis has been used to compare recycling methods for c-Si and CdTe
panels with a particular emphasis on the mechanical separation and delamination stage
of PV panel waste [20]. However, the information available in the literature regarding the
life cycle analysis of PV panel waste leaching is scarce and not detailed. Therefore, it is
necessary to conduct a study that considers the proposed leaching process at a higher level
of detail.

The objective of the study is to analyze the future of PV panels installed in the Antofa-
gasta region. Through a statistical analysis of the currently approved projects in the region
as of 2024, a future estimate will be made of the amount of PV panel waste generated by
2040. A life cycle analysis is carried out to evaluate the environmental impacts of the PV
panel leaching process using nitric acid as a leaching agent. Finally, a comparison is made
with e-waste leaching processes using other leaching agents.

2. Materials/Methods
2.1. Waste Estimation

To estimate the number of photovoltaic projects in the Antofagasta region, a char-
acterization of the photovoltaic projects currently approved was carried out, identifying
the type of PV technology used, number of modules, and geographical location. The
statistical analysis was carried out based on information from the Chilean Environmental
Evaluation Service.

As of 2023, the Antofagasta region has 104 active PV projects distributed throughout
seven municipalities (Antofagasta, Mejillones, Sierra Gorda, Taltal, Calama, Maria Elena,
and Tocopilla). According to the type of technology used, PV projects were classified as
monocrystalline, polycrystalline, or thin-film photovoltaic panels. Monocrystalline and
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polycrystalline PVs can be further subclassified as monofacial or bifacial panels (Figure 1).
The data related to the projects are presented in Table 1. Most of the projects currently ap-
proved use single-facial polycrystalline (41) or single-facial monocrystalline (25) technology.
Many projects do not specify the type of specific technology used, only defining the use of
Si-C. These projects were classified in the present study as unspecified crystalline silicon. It
is worth noting that only one of the currently approved projects uses thin-film PV panels,
corresponding to less than 1% of the total projects. The PV project distribution can be
visualized in Figure 2. The distribution of PV modules is shown in Table 2. Currently, there
are 38,952,933 PV modules in the Antofagasta region, most of which are in the commune of
Maria Elena.
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Table 1. Number of projects by commune and photovoltaic technology used.

Location
Solar Photovoltaic Facility by Photovoltaic Technology

Monocrystalline Polycrystalline Crystalline Silicon Bifacial Thin-Film Total

Antofagasta 9 9 8 1 0 27
Mejillones 0 2 3 1 0 6

Sierra Gorda 4 0 6 1 0 11
Taltal 2 4 3 1 0 10

Calama 4 11 3 1 0 19
María Elena 6 14 5 2 1 28

Tocopilla 0 1 2 0 0 3

Antofagasta region 25 41 30 7 1 104
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Table 2. Number of approved photovoltaic modules by commune and type of technology used.

Location

Solar Photovoltaic Modules by Photovoltaic Technology

Monocrystalline Polycrystalline Crystalline
Silicon Bifacial Thin-Film Total

Antofagasta 1.98 × 106 1.46 × 106 1.46 × 106 4.01 × 105 0.00 5.30 × 106

Mejillones 0.00 2.42 × 105 8.85 × 104 1.01 × 106 0.00 1.34 × 106

Sierra Gorda 2.32 × 106 0.00 1.10 × 106 8.98 × 105 0.00 4.31 × 106

Taltal 1.13 × 106 4.82 × 105 1.01 × 106 4.87 × 105 0.00 3.11 × 106

Calama 3.43 × 105 1.15 × 106 3.69 × 105 2.04 × 105 0.00 2.07 × 106

María Elena 4.45 × 106 5.69 × 106 6.75 × 106 1.01 × 106 4.43 × 106 2.23 × 107

Tocopilla 0.00 2.70 × 104 4.55 × 105 0.00 0.00 4.82 × 105

Antofagasta
region 1.02 × 107 9.06 × 106 1.12 × 107 4.01 × 106 4.43 × 106 3.90 × 107

The technologies that contribute the largest number of modules are, in descending
order, crystalline silicon, monocrystalline, and polycrystalline. The contribution of each
type of technology can be seen in Figure 3. It is worth pointing out that the contribution
to the number of thin-film PV modules corresponds to a single PV project: the Sol del
Desierto Photovoltaic Solar Park is the only PV park in the Antofagasta region that uses
thin-film technology. Construction of the park was approved in 2015 and began operations
in 2022. There are currently no other thin-film PV projects in the planning, construction, or
operation stages, so the study assumes that the Sol del Desierto Photovoltaic Solar Park
is an outlier, and it is not expected that future PV projects will use thin-film technology.
Therefore, the study will only consider monofacial Si-C panels (both monocrystalline and
polycrystalline) for the estimations.
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Table 3 shows the yearly number and the cumulative amounts of approved PV mod-
ules. From this information, a linear regression was performed to analyze the data trends
over time. The linear fit obtained has a relationship coefficient of 0.911 (Figure 4), so it
is assumed that a linear model is sufficiently valid for the scope of this study. Using the
previously obtained model, a forecast was made of the amount of PV modules produced
per year and the cumulative amount of PV modules until 2030 (Table 4). According to the
model, there will be 45,340,694 total PV modules installed in the Antofagasta region, with
14,831,551 of these installed between 2023 and 2030.
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Table 3. Historical data on the number of approved photovoltaic modules per year.

Year Number of Yearly Photovoltaic
Modules Approved

Total Number of Approved
Photovoltaic Modules

2010 2.66 × 105 2.66 × 105

2011 4.37 × 103 2.70 × 105

2012 9.60 × 106 9.87 × 106

2013 3.59 × 106 1.35 × 107

2014 8.90 × 105 1.43 × 107

2015 6.01 × 105 1.49 × 107

2016 1.04 × 105 1.51 × 107

2017 1.74 × 106 1.68 × 107

2018 3.16 × 104 1.68 × 107

2019 1.10 × 106 1.79 × 107

2020 4.99 × 106 2.29 × 107

2021 4.93 × 106 2.71 × 107

2022 3.37 × 106 3.05 × 107

2023 0.000 3.05 × 107
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Table 4. Projected number of photovoltaic modules approved annually 2024–2030.

Year Number of Yearly Photovoltaic
Modules Approved

Total Number of Approved
Photovoltaic Modules

2024 2.14 × 106 3.26 × 107

2025 2.13 × 106 3.48 × 107

2026 2.12 × 106 3.69 × 107

2027 2.12 × 106 3.90 × 107

2028 2.11 × 106 4.11 × 107

2029 2.11 × 106 4.32 × 107

2030 2.10 × 106 4.53 × 107

To estimate the amount of waste that could be generated by 2040, some considerations
were made based on information present in the literature. Generally, the lifetime of a PV
panel is estimated to be close to 25 years. However, the work performed by Andradi et al.
mentions that high levels of solar radiation can degrade the plastic components of PV
modules at an accelerated rate, causing failures and decreasing the lifetime of PV modules
by 30% [21]. Similarly, Jordan et al. observed that PV panels have an average irreparable
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failure rate of 0.5% per year [22]. Considering this information, the cumulative amount of
waste generated by 2040 was estimated (Table 5). According to the analysis, there will be
30,676,367 units of discarded PV modules.

Table 5. Projected annual disposed PV modules through 2040.

Year Number of Yearly Discarded
Photovoltaic Module

Total Number of Discarded
Photovoltaic Modules

2010 1.33 × 102 1.33 × 102

2011 1.35 × 102 2.68 × 102

2012 4.93 × 103 5.20 × 103

2013 6.73 × 103 1.19 × 104

2014 7.17 × 103 1.91 × 104

2015 7.47 × 103 2.66 × 104

2016 7.53 × 103 3.41 × 104

2017 8.40 × 103 4.25 × 104

2018 8.41 × 103 5.09 × 104

2019 8.96 × 103 5.99 × 104

2020 1.11 × 104 7.10 × 104

2021 1.36 × 104 8.46 × 104

2022 1.53 × 104 9.98 × 104

2023 1.53 × 104 1.15 × 105

2024 1.63 × 104 1.31 × 105

2025 1.74 × 104 1.49 × 105

2026 1.85 × 104 1.67 × 105

2027 2.66 × 105 4.33 × 105

2028 4.37 × 103 4.38 × 105

2029 9.60 × 106 1.00 × 107

2030 3.59 × 106 1.36 × 107

2031 8.90 × 105 1.45 × 107

2032 6.01 × 105 1.51 × 107

2033 1.04 × 105 1.52 × 107

2034 1.74 × 106 1.70 × 107

2035 3.16 × 104 1.70 × 107

2036 1.10 × 106 1.81 × 107

2037 4.29 × 106 2.24 × 107

2038 4.93 × 106 2.73 × 107

2039 3.37 × 106 3.07 × 107

2040 0.00 3.07 × 107

The work of Maani et al. reviewed the mass composition of a Si-C technology PV
panel and the percentage recovery of each material [20]. Considering an average PV panel
weight of 18 kg and using reference values for each material, the projected cumulative
amount of PV panel waste was calculated. In total, the potentially recyclable material is
estimated to have a value of $760,531,033.630 USD. This is presented in more detail in
(Table 6).

To extract the composition of the photovoltaic modules, it is necessary to apply 3
recycling techniques: dismantling (removal of frame and wiring), delamination (removal
of glass), and leaching (stage discussed in detail in Section Leaching Process).
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Table 6. Valorization of recyclable materials from discarded photovoltaic modules.

Material Mass
Composition (%)

Recycling Yield
(%)

Total Recyclable
Mass (kg) Value ($/kg) Total Value ($)

Silver 0.08% 95% 4.20 × 105 $1016.661 $426,644,506.243
Aluminum 16.90% 100% 9.33 × 107 $0.508 $47,442,766.548

Copper 0.77% 100% 4.25 × 106 $2.078 $8,834,139.559
Magnesium 0.58% 37% 1.18 × 106 $3.175 $3,762,690.526

Silica 6.27% 100% 3.46 × 107 $7.768 $268,945,673.304
Tin 0.07% 32% 1.24 × 105 $6.831 $844,919.939

Nickel 0.00% 41% 2.72 × 103 $4.143 $11,254.228
Lead 0.01% 96% 2.81 × 104 $0.447 $12,558.463

Titanium 0.00% 52% 1.70 × 101 $2.914 $48.522
Zinc 0.00% 27% 1.30 × 101 $0.585 $7.673
EVA 6.37% 0% - - -
Glass 67.80% 100% 3.74 × 108 $0.011 $4,032,468.623

Total 5.08 × 108 $760,531,033.630

2.2. Life Cycle Analysis

Life cycle analysis is a methodology used to study the life cycle of a product or process
to assess the potential impact on the environment by identifying and quantifying the inputs
and outputs involved in the evaluated product or process. The methodology is based on
the international standard ISO 14040 and considers four steps: scope definition, inventory
analysis, impact assessment, and interpretation.

2.2.1. Scope Definition

The present study aims to evaluate the “cradle to gate” environmental impacts on the
recovery of silver and other valuable materials from crystalline silicon photovoltaic cell
wastes by means of a leaching process using nitric acid as a leaching agent. According to
studies, the most commonly used acid for leaching non-ferrous metals present in photo-
voltaic cells is nitric acid, especially due to its effectiveness in silver recovery. According to
Li, W. et al. [23], in the silver recovery process, it is possible to use more than one acid to
achieve a complete extraction of the organic matter. In this case, nitric acid, sulfuric acid,
and hydrofluoric acid are used to obtain the best results [23]. An input stream of 1 kg of PV
cell waste will be considered for the analysis. The system boundaries will include upstream
processes such as chemical production, electricity, and heat.

2.2.2. Inventory Modeling

The inventory analysis is responsible for determining all inputs (resource consumption)
and outputs (emissions generated) involved in the processes of each raw material and unit
process. For the processes of each raw material, the Needs and EcoInvent databases were
used, which include information regarding electricity and metals present in the different
stages of the study. The nitric acid production process was modeled with the OpenLCA
program based on information present in the literature. In relation to solar cell wastes, the
use of crystalline silicon cells was considered, modeling the process in OpenLCA.

Leaching Process

For the life cycle analysis, the leaching unit process considered 1 kg of solar cell waste
as an input for silver recovery, using 50% nitric acid as a leaching agent with room tem-
perature conditions, which estimates a silver recovery rate of 55% [20]. The leaching agent
use of 50% is assumed instead of the 70% established in the literature due to limitations of
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the software used. The input and output flows considered in the modeling of the leaching
process described are shown in Table 7. The leaching process consists of the input of 1 kg
of solar cell waste and a nitric acid leaching solution in a rotary agitator for twelve hours,
obtaining an output flow of 11,882 kg of leached solution (PLS).

Table 7. Input and output flows of the photovoltaic cell leaching process with nitric acid.

Flow
Amount Unit

Input Output

Electricity, mix production 4.80 × 102 Wh
Nitric acid (50%) 1.26 kg

Photovoltaic Si-C cells 1.00 kg
Water, non-specified origin 1.00 × 101 kg

PLS 1.19 × 101 kg
Waste,

non-specified 3.78 × 10−1 kg

Solar Cell Precursors

For solar cell residues entering the leaching process, the life cycle analysis considered
both the valuable metals and the corresponding energy consumption. Due to the absence of
information in the databases corresponding to the quality of crystalline silicon used in the
production of solar cells, the data used in the study worked under the assumption of using
metallurgical-grade silicon. The material input flows are based on the PV composition
presented in Table 7 and represent the quantities of materials in 1 kg of solar cells. The
energy consumption for solar cell production was obtained from the PV system life cycle
inventory report in Frischknecht et al. [24]. The input and output flows considered for
modeling the solar cell precursors are presented in Table 8.

Table 8. Input and output flows of solar cell modeling process.

Flow
Amount Unit

Input Output

Electricity, low voltage, UCTE at grid 1.77 × 101 kWh
Silver (Ag) 1.03 × 10−2 kg

Copper (Cu) 9.90 × 10−2 kg
Magnesium (Mg) 7.46 × 10−2 kg
Magnesium-silica 8.06 × 10−1 kg

Tin (Sn) 9.00 × 10−3 kg
Nickel (Ni) 1.54 × 10−4 kg
Lead (Pb) 6.82 × 10−4 kg

Titanium (Ti) 7.46 × 10−7 kg
Zinc (Zn) 1.13 × 10−6 kg

Photovoltaic
Si-C cells 1.00 × 10 kg

Nitric Acid Production

For the life cycle analysis of the nitric acid production process, the life cycle inventories
of chemical products obtained by Ecoinvent [25] were used. The report describes a weak
nitric acid production process based on the Ostwald method (Figure 5), which consists of
three main reactions:

• Oxidation of ammonia in the presence of a platinum-rhodium catalyst.
• Oxidation of nitric oxide obtained through cooling.
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• Absorption of nitrogen dioxide, producing nitric acid.
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Figure 5. Nitric acid production process based on the Ostwald method.

The electricity applied in the software, unlike that presented in the Ecoinvent report,
was low voltage, UCTE production, at grid, due to the lack of information available in
the databases used. The input and output flows considered for this stage are presented in
Table 9.

Table 9. Input and output flows of the nitric acid production modeling process.

Flow
Amount Unit

Input Output

Electricity, low voltage, and
UCTE at grid 9.00 × 10−3 kWh

Ammonia 2.94 × 10−1 kg
Water, non-specified origin 2.00 × 10−3 m3

Transport, 40t truck 2.35 × 10−2 tkm
Nitric acid (50%) 1.00 kg

Nitrogen 1.32 × 10−4 kg
Nitric Oxide 4.71 × 10−3 kg

Nitrous Oxide 8.39 × 10−3 kg
Ammonia 2.50 × 10−3 kg
Heat loss 2.28 MJ
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2.2.3. Impact Assessment

The impact assessment was performed by applying the CML2001-jan 2016 method us-
ing OpenLCA software with the objective of quantifying the data previously considered in
the inventory. The following categories are considered to assess the environmental impact:

• Abiotic depletion potential (ADP)
• Acidification potential (AP)
• Eutrophication potential (EP)
• Freshwater Aquatic Ecotoxicity Potential (FAETP)
• 100-year Global Warming Potential (GWP)
• Human toxicity potential (HTP)
• Marine Aquatic Ecotoxicity Potential (MAEP)
• Photochemical ozone creation potential (POCP)
• Terrestrial Eco-Toxicity Potential (TETP)

Ozone Depletion Potential (ODP) was not included because the program considers that
the impacts of the inventory do not include the characterization factors that the CML2001
database has.

3. Results and Discussion
3.1. Environmental Impact Analysis of Leaching Process

The results of the impact categories obtained for the stages analyzed in the study
of nitric acid generation, photovoltaic cell precursors, and leaching with nitric acid are
presented in Table 10. The graph in Figure 6 shows the impact categories for the three
processes described, where it is established that in all cases, the greatest environmental
impact is global warming potential, equivalent to the release of kilograms of CO2 into the
atmosphere. The large impact in the global warming potential category can be preliminarily
associated with the formation of nitrous oxide during nitric acid production and subsequent
leaching of the waste [26]. Nitrous oxide has a global warming potential 265 times that of
carbon dioxide.

Table 10. Comparison of impact categories for each stage of the proposed process.

Impact Category Nitric Acid Leaching Nitric Acid
Production

Photovoltaic Si-C
Cell Precursors Reference Unit

Abiotic Depletion Potential
(ADP) 3.28 × 10−2 0.0 3.30 × 10−2 kg Sb eq.

Acidification Potential (AP) 2.65 × 10−2 2.35 × 10−2 2.97 × 10−2 kg SO2 eq.
Eutrophication Potential

(EP) 3.61 × 10−3 1.49 × 10−3 2.09 × 10−3 kg PO4
−3 eq.

Freshwater Aquatic
Ecotoxicity Potential

(FAETP)
4.71 × 10−2 0.0 3.84 × 10−1 kg DCB eq.

100-year Global Warming
Potential (GWP) 7.07 2.48 3.98 kg CO2 eq.

Human Toxicity Potential
(HTP) 3.82 × 10−1 5.65 × 10−3 2.33 kg DCB eq.

Marine Aquatic Ecotoxicity
Potential (MAEP) 2.90 × 10−1 0.0 1.97 kg DCB eq.

Photochemical Ozone
Creation Potential (POCP) 2.09 × 10−3 0.0 2.29 × 10−3 kg Etano eq.

Terrestrial Eco-Toxicity
Potential (TETP) 1.70 × 10−4 0.0 4.80 × 10−4 kg DCB eq.
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Figure 6. Impact categories for the leaching process.

Figure 7 shows the percentage contribution of the impact categories for the three
cases, establishing as 100% the total impacts generated in each stage. With respect to
the impacts generated from PV precursors, the following categories stand out: Global
Warming Potential (46%), Marine Aquatic Ecotoxicity Potential (23%), Human Toxicity
Potential (4%), and Freshwater Aquatic Ecotoxicity Potential (4%). For the generation of
nitric acid, the greatest impact was identified as Global Warming Potential, equivalent to
99% of the impacts present in the process. The greatest environmental impacts produced in
the leaching process are Global Warming Potential (90%), Human Toxicity Potential (5%),
and Marine Aquatic Ecotoxicity Potential (4%).
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3.2. Environmental Impact Analysis in Antofagasta Region, 2040

Considering the mass balance corresponding to the projection of accumulated PV
waste in the Antofagasta region for the year 2040, an estimate of the impact categories
was made. For the year 2040, a mass of PV equivalent to 42,939,939 kg was estimated,
which required a quantity of 54,104,323 kg of nitric acid for leaching. Table 11 details the
projected impact categories for the year 2040, and Figure 8 illustrates the comparison of
the categories.
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Table 11. Impact categories for each sub-process caused by projected amount of photovoltaic waste.

Impact Category Nitric Acid Leaching Nitric Acid
Production

Photovoltaic Si-C
Cell Precursors Reference Unit

Abiotic depletion
potential (ADP) 1.41 × 106 0.00 1.42 × 106 kg Sb eq.

Acidification potential
(AP) 1.14 × 106 1.27 × 106 1.28 × 106 kg SO2 eq.

Eutrophication potential
(EP) 1.55 × 105 8.06 × 104 8.97 × 104 kg PO4

−3 eq.

Freshwater Aquatic
Ecotoxicity Potential

(FAETP)
2.02 × 106 0.00 1.65 × 107 kg DCB eq.

100-year Global
Warming Potential

(GWP)
3.04 × 108 1.34 × 108 1.71 × 108 kg CO2 eq.

Human toxicity
potential (HTP) 1.64 × 107 3.06 × 105 1.00 × 108 kg DCB eq.

Marine Aquatic
Ecotoxicity Potential

(MAEP)
1.25 × 107 0.00 8.45 × 107 kg DCB eq.

Photochemical ozone
creation potential

(POCP)
8.97 × 104 0.00 9.83 × 104 kg Etano eq.

Terrestrial Eco-Toxicity
Potential (TETP) 7.30 × 103 0.00 2.06 × 104 kg DCB eq.Minerals 2025, 15, x FOR PEER REVIEW 14 of 18 
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3.3. Comparative Impact Analysis Assessment for the Leaching Process

In the absence of studies that would allow discussion of the results, the data obtained
by Vallejos-Michea et al. were considered [27]. In the previous study, two main alternatives
for the leaching process were studied: the application of sulfuric acid with and without
ionic liquids. The ionic liquids used are 1-methylimidazolium hydrogen sulfate (Hmim
HSO4), 1-butyl-3-methylimidazolium chloride (Bmim Cl), 1-butyl-3-methylimidazolium
bromide (Bmim Br), and 1-butyl-3-methylimidazolium hydrogen sulfate (Bmim HSO4).
Table 12 and Figure 9 present a comparison of the environmental impacts generated in the
production of nitric acid together with the impacts generated by the production of leaching
agents evaluated in the previous study.
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Table 12. Comparison of impact categories generated in the production of 1 kg of different leaching
agents.

Impact
Category Hmim HSO4 Bmim Cl Bmim Br Bmim HSO4 H2SO4 HNO3

Abiotic
Depletion

Potential (ADP)
3.35 × 10−5 5.73 × 10−6 1.60 × 10−3 2.98 × 10−5 6.15 × 10−5 0.0

Acidification
Potential (AP) 4.50 × 10−3 4.29 × 10−4 5.85 × 10−4 3.43 × 10−3 7.51 × 10−3 2.35 × 10−2

Eutrophication
Potential (EP) 6.45 × 10−4 6.16 × 10−4 5.78 × 10−4 9.09 × 10−4 6.35 × 10−5 1.49 × 10−3

Freshwater
Aquatic

Ecotoxicity
Potential
(FAETP)

1.17 × 10−1 1.20 × 10−1 9.61 × 10−2 8.90 × 10−2 0.0 0.0

100-year Global
Warming
Potential
(GWP)

6.25 × 10−4 5.56 × 10−5 4.43 × 10−5 4.77 × 10−4 1.05 × 10−3 2.48

Human Toxicity
Potential (HTP) 1.24 × 10−2 1.21 × 10−2 9.69 × 10−3 9.45 × 10−3 1.15 × 10−3 5.65 × 10−3

Marine Aquatic
Ecotoxicity
Potential
(MAEP)

2.31 × 10−2 2.38 × 10−2 1.90 × 10−2 1.76 × 10−2 0.0 0.0

Photochemical
Ozone Creation

Potential
(POCP)

7.79 × 10−3 8.40 × 10−3 6.60 × 10−3 6.34 × 10−3 2.97 × 10−4 0.0

Terrestrial
Eco-Toxicity

Potential
(TETP)

1.33 × 10−2 1.37 × 10−2 1.09 × 10−2 1.01 × 10−2 0.0 0.0Minerals 2025, 15, x FOR PEER REVIEW 15 of 18 
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Table 13 shows the comparison between the environmental impacts produced by
generating 11,882 kg of leachate product. It should be noted that the composition of the
leached waste contemplated in the previous study differs from the composition of the
solar cells evaluated in this study. However, this comparison is still appropriate because
both types of waste are considered e-waste. Also, Table S1 shows inputs/outputs for
e-waste leaching process with ionic liquids, for 1 kg of leach solution, and Table S2 shows
inputs/outputs for e-waste leaching process with ionic liquids, for 11.8820 kg of leached.

Table 13. Comparison of impact categories generated by the leaching of 1 kg of different types of
electronic waste [27].

Impact Category
Electronic Waste Leaching Photovoltaic

Waste Leaching

Hmim Bmim Cl Bmim Br Bmim HSO4 H2SO4 HNO3

Abiotic Depletion Potential
(ADP) 2.84 × 10−4 8.61 × 10−5 1.15 × 10−2 2.58 × 10−4 4.53 × 10−5 3.28 × 10−2

Acidification Potential (AP) 3.77 × 10−2 8.59 × 10−3 9.70 × 10−3 2.99 × 10−2 5.53 × 10−3 2.65 × 10−2

Eutrophication Potential
(EP) 4.65 × 10−3 4.44 × 10−3 4.17 × 10−3 6.52 × 10−3 4.68 × 10−5 3.61 × 10−3

Freshwater Aquatic
Ecotoxicity Potential

(FAETP)
8.33 × 10−1 8.59 × 10−1 6.84 × 10−1 6.34 × 10−1 0.0 4.71 × 10−2

100-year Global Warming
Potential (GWP) 5.23 × 10−3 1.17 × 10−3 1.09 × 10−3 4.17 × 10−3 7.74 × 10−4 7.07

Human Toxicity Potential
(HTP) 8.94 × 10−2 8.75 × 10−2 6.99 × 10−2 6.82 × 10−2 8.48 × 10−4 3.82 × 10−1

Marine Aquatic Ecotoxicity
Potential (MAEP) 1.65 × 10−1 1.70 × 10−1 1.35 × 10−1 1.26 × 10−1 0.0 2.90 × 10−1

Photochemical Ozone
Creation Potential (POCP) 5.57 × 10−2 6.01 × 10−2 4.73 × 10−2 4.54 × 10−2 2.19 × 10−4 2.09 × 10−3

Terrestrial Eco-Toxicity
Potential (TETP) 9.48 × 10−2 9.77 × 10−2 7.79 × 10−2 7.22 × 10−2 0.0 1.70 × 10−4

A preliminary comparison of the cost of each reagent was made, evaluating the cost
to obtain 11,882 kg of leachate product. The reference values were obtained from Sigma
Aldrich. Table 14 presents the reagent values and Table S3 the valorization of 1 kg of
reagents, more details about the calculation are presented in supplementary material.

Table 14. Valorization of reagents to obtain 11,882 kg of leached product.

Leaching Agent Total Cost

H2SO4 with Hmim HSO4 $7104.94
H2SO4 with Bmim Cl $13,347.99
H2SO4 with Bmim Br $17,556.09

H2SO4 with Bmim HSO4 $7673.19
H2SO4 $47.93
HNO3 $79.80

4. Conclusions
In the present study, an evaluation of the solar cell leaching process was carried out.

The Antofagasta region of Chile was used as a case study due to its ideal conditions for the
development of solar energy projects.

It is estimated that by 2030, there will be 45,340,694 photovoltaic panel units in the
region, composed mainly of monofacial and bifacial Si-C modules. Considering factors
such as the annual irreparable failure rate and the reduction in the expected life cycle due
to environmental conditions, it is estimated that by 2040, there will be a cumulative amount
of 30,676,367 PV panel waste units, which is equivalent to approximately 508,324 tons of
PV residue. It was determined that the material cost that can be valued from this waste is
equivalent to $760,531,033,630 USD.

The life cycle analysis performed considered the stages of nitric acid production, the
precursors of 1 kg of solar cells, and the process of leaching valuable metals from 1 kg of
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solar cells. When comparing the environmental impacts of these stages, it is observed that
the eutrophication potential, freshwater aquatic ecotoxicity potential, and global warming
potential impact categories are higher in the nitric acid leaching process. On the other
hand, solar cell processing has a greater impact on abiotic resource depletion, acidification
potential, human toxicity potential, marine aquatic ecotoxicity potential, photochemical
ozone creation potential, and terrestrial ecotoxicity potential categories. In general, the
category with the greatest impact for the three stages studied is global warming potential,
generating an impact equivalent to the release of more than 7 kg of CO2.

Based on the analysis carried out, it is estimated that by the year 2040, the nitric
acid leaching process used to leach solar cell waste will generate an impact equivalent to
303,748,972 kg of CO2 in the global warming potential category, 16,400,480 kg of DCB in
human toxicity levels and 12,468,900 kg of DCB corresponding to marine aquatic ecotoxic-
ity potential.

When comparing with similar e-waste leaching processes that propose using sulfuric
acid and ionic liquids, it is observed that nitric acid has a higher impact on abiotic resource
depletion, global warming potential, human toxicity potential, and marine aquatic ecotoxic-
ity potential, being lower in all other categories. When comparing costs, it is concluded that
the nitric acid leaching process is more economical than processes involving ionic liquids
but more expensive than sulfuric acid leaching.

It is concluded that the use of nitric acid for the solar cell leaching process is cost-
effective; however, high levels of contamination linked to global warming and human
toxicity are produced.
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process with ionic liquids, for 11.8820 kg of leached. Table S3: Valorization of 1 kg of reagents.
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