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Abstract: There is a huge reservation of loess in the Shanxi mining area in China, which has great
potential for preparing supplementary cementitious materials. Loess was modified via mechanical
and thermal activation, and the pozzolanic activity was evaluated using an Inductively Coupled
Plasma Optical Emission Spectrometer (ICP-OES). Moreover, the workability of grouting materials
prepared using modified loess was assessed. The experimental results revealed that the number of
ultrafine particles gradually increased with the grinding time, enhancing the grouting performance.
The coordination number of Al decreased upon the breakage of the Al–O–Si bond post-calcination at
400 ◦C, 550 ◦C, 700 ◦C, and 850 ◦C. Moreover, the breaking of the Si–O covalent bond produced Si-
phases, and the pozzolanic activity of loess increased. Furthermore, the modified loess was hydrated
with different cement proportions. With increasing grinding time, the overall setting time increased
until the longest time of 14.5 h and the fluidity of the slurry decreased until the lowest fluidity of
9.7 cm. However, the fluidity and setting time decreased with increasing calcination temperature.
The lowest values were 12.03 cm and 10.05 h. With the increase in pozzolanic activity, more ettringite
was produced via hydration, which enhanced the mechanical properties. The maximum strength of
the hydrated loess after grinding for 20 min reached 16.5 MPa. The strength of the hydrated loess
calcined at 850 ◦C reached 21 MPa. These experimental findings provide theoretical support for the
practical application of loess in grouting.

Keywords: loess; mechanical activation; pozzolanic activity; supplementary cementitious materials;
thermal activation

1. Introduction

The production of Portland cement causes considerable carbon emissions, and the re-
placement of cement clinkers with materials with pozzolanic activity can effectively reduce
the environmental impact of cement-based materials. Some materials with low economic
value require physical or chemical modification because of their extremely low pozzolanic
activity. Recently, mechanical grinding has been frequently used as a physical modification
method, improving the pozzolanic activity by changing the particle size, whereas chemi-
cal modification methods improve pozzolanic activity via high-temperature calcination,
destroying the ordered structure. For example, adding natural pyrophyllite at 10%, 30%,
and 50% had diverse effects on the properties of cement paste and mortar. The mechanical
properties and hydration properties of cement paste were improved by the mechanical
activation of natural pyrophyllite [1]. Mechanical–chemical activation affected the particle
size distribution, morphology, and bulk and surface chemical structures of kaolinite and
montmorillonite clays. Mechanical activation methods are effective in increasing the poz-
zolanic activity of 2:1 clay minerals (muscovite and montmorillonite) [2]. The pozzolanic
activity of natural clay, fly ash (FA), metakaolin (MK), and quartz sand was evaluated
using the strength activity index (SAI), Frattini test, and electrical conductivity test after
mechano-chemical activation [3,4], and the pozzolanic activity and hydration properties
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of feldspar, siliceous metal tailings, and quartz improved. The activity of pozzolanic ash
increases with grinding time but reaches a limit [5–7]. The reaction kinetics, rheological
properties, setting times, compressive strength, hydration products, and microstructure of
the samples were studied by adding metakaolin with different particle sizes and dosages
to modified FA cement [8]. The effects of mechanically activated mica and talc have been
studied from the perspective of industrial applications [9]. For kaolin and white mica, with
increasing grinding time, the particle size and crystallinity decrease, whereas the specific
surface area and pozzolanic activity index increase. They can react with calcium hydroxide
to form hydrated calcium silicate—a typical characteristic of the pozzolanic reaction [10,11].
Clay can be used as a supplementary cementitious material post-milling [12,13].

Moreover, calcined clays can be used as supplements to coal-based cementitious mate-
rials, such as slag. In addition, calcination as a means of pozzolanic activity enhancement
is of great importance in the development of supplementary cementitious materials [14].
Supplementary cementitious materials were prepared using illite/chlorite (I/C) shale with
a calcination window between 900 ◦C and 1000 ◦C. The results of Frattini tests showed that
the materials exhibited pozzolanic activity 7 days post-calcination at 900 ◦C, whereas the
SAI was the highest at day 28 for the clays calcined at 1000 ◦C [15]. The pozzolanic activity
of gangue depends on the physical phase and structural changes of kaolinite during calci-
nation. The highest pozzolanic activity was achieved when calcined at 800 ◦C for 2 h [16].
The strength and other properties of illite–montmorillonite clay as a geopolymer can be im-
proved post-thermal and -alkali activation. Clays containing primarily illite were thermally
activated between 550 ◦C and 950 ◦C [17]. When calcined materials with pozzolanic activity
(marl, washed kaolin, coal kaolin, clay, and limestone) were added to silicate cement as
supplementary cementitious materials, the physico-mechanical properties or pozzolanic
activity considerably improved because of the reactive Al content and de-hydroxylated
groups [18–21]. Metakaolin was synthesized by heating kaolinite in the temperature range
of 550~950 ◦C for 6h. The metakaolin had good dehydroxylation properties. Natural
kaolinite clay was calcined at 700 ◦C and its pozzolanic activity was evaluated using XRD
and FTIR spectroscopy [22–24]. The calcined kaolin was analyzed using XRD, DTA, and
FTIR. The mineralogy, de-hydroxylation, particle size, and crystallinity were closely related
to the pozzolanic activity [25,26]. Moreover, the evolution of Si–Al in the gangue calcination
process has been studied in terms of chemical and mineralogical properties [27]. Similarly,
the mechanical properties of fired clay ceramics from 900 ◦C to 1200 ◦C at different heating
rates were investigated [28].

The pozzolanic activity of materials can also be improved by combining multiple acti-
vation methods, such as mechano-thermal activation [29–33]. The active calcium produced
by dissolving stone waste in a high-concentration alkaline slag solution can accelerate the
hydration reaction. Moreover, an increase in the content of slag and alkaline solutions
can improve the mechanical strength of a specimen [34]. To meet the requirements of
engineering practices, the ratio of supplementary cementitious materials to silicate cement
or other cementitious materials must be optimized based on the rheological properties
of the slurry, setting time, compressive strength, and other aspects [35–38]. Results show
that NaOH solution-cured loess depleted the quartz and feldspar in the loess, producing
spherical, cubic, and small nanoscale particles of sodium aluminosilicate hydrate (N-A-S-H)
and calcium (alumina) silicate hydrate (C-(A)-S-H) amorphous phase gels [39]. To assess
the efficacy of bio-based materials, including calcium alginate (CA), xanthan gum (XA),
cotton fibers (CO), and flax fibers (FA) in the treatment of loess, the improved soil’s strength,
disintegration, and water resistance were examined. Subsequently, an optimal amendment
approach was determined, and dry–wet cycle tests and microscopic observations were
performed [40].

Although mechanical–thermal activation improves pozzolanic activity, it has not been
verified using loess materials. Loess is widely distributed in China and worldwide and
is rich in clay content. However, the original loess is poor in activity, unstable in water,
and collapsible. No one has improved the activity of loess by modifying it to improve its
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utilization rate. The activation of loess as a supplementary cementitious material offers
good prospects for development. In this study, loess was activated using mechanical
grinding and high-temperature calcination. Particle size analysis and activity detection of
the mechanically activated loess were performed. The high-temperature-calcined loess was
detected using XRD and FTIR spectroscopy. In addition, the activated loess was mixed and
hydrated with cement in different ratios for mobility, setting time, and compressive strength
testing. Thermal analysis of the samples was performed post-hydration for 28 days, and
the strength change mechanism was studied from the microscopic viewpoint.

2. Materials and Methods
2.1. Experimental Materials

The loess used in this paper originated from the Yitang coal mine regions. Raw loess
was dried in a drying oven at 50 ◦C and then passed through a 1 mm sieve to remove large
particles. The chemical and mineral compositions of the loess were measured using X-ray
fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) measurements, respectively.
Using MDI JADE software in conjunction with the PDF database, based on the XRF results
of the raw materials, the search range for elements was restricted to analyze the mineral
composition of the raw materials. The XRD results shown in Figure 1 indicate that the main
mineral phases of loess were quartz, kaolinite, calcite, microcline, muscovite, and chlorite.
The composition of clay minerals in the loess was about 20%. Ordinary Portland cement
(OPC) was employed as the main binder, and its chemical compositions and XRD patterns
are also presented in Table 1 and Figure 1, respectively. As seen, the dominant minerals of
the OPC were C2S, C3S, and calcite, respectively. Tap water was used for preparing fresh
slurry, and deionized water was employed for the ion-leaching tests.
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Figure 1. Mineral compositions of loess (a) and OPC (b). Quartz (SiO2), kaolinite (Al2Si2O5[OH]4),
calcite (CaCO3), muscovite (KAl2(AlSi3O10)(OH)2), mullite (Al2SiO4).
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Table 1. Chemical compositions of loess and OPC (%).

Oxides OPC Loess

CaO 65.544 11.663
SiO2 18.691 58.335

Al2O3 7.399 15.555
MgO 3.037 2.454
Fe2O3 2.597 6.047
Na2O 0.296 1.211
K2O 0.576 2.887
TiO2 0.604 1.101
P2O5 0.089 0.187
SO3 3.743 0.178

MnO 0.236 0.12
SrO 0.049 0.031
Cl 0.103 0.045

ZrO2 0.024 0.05

2.2. Grinding and Calcination of Loess

The screened loess was loaded into a ball mill for grinding. The ratio of the ball to the
material was 1:1. The grinding time was varied (10, 20, 40, and 80 min). The loess with a
grinding time of 20 min was loaded into a high-temperature-resistant Al2O3 crucible for
calcination. The upper limit of the calcination temperature was set to 400 ◦C, 550 ◦C, 700 ◦C,
and 850 ◦C. The temperature was maintained for 1h after reaching the set value [30].

2.3. Sample Preparation

The modified loess was mixed with OPC to form a new grouting material. The detailed
experimental program is shown in Table 2. The ratios of loess to OPC were 0.25, 0.54, and
1.0. The water–cement ratio was 1.0. After sufficient mixing, some of the fresh slurries were
subjected to flow tests. The remaining slurries were poured into cylindrical plastic molds
(height × diameter = 100 × 50 mm2). The specimens were remolded for 1 day and stored
at 20 ◦C ± 2 ◦C and 95% ± 3% humidity.

Table 2. Experimental program used for mixing modified loess and cement in different proportions.

Sample Code Mechanical Grinding of Loess (%) Cement (%) Water/Binder

G1 20 (G0) 80 1.0
G2 20 (G10) 80 1.0
G3 20 (G20) 80 1.0
G4 20 (G40) 80 1.0
G5 20 (G80) 80 1.0
G6 35 (G0) 65 1.0
G7 35 (G10) 65 1.0
G8 35 (G20) 65 1.0
G9 35 (G40) 65 1.0
G10 35 (G80) 65 1.0
G11 50 (G0) 50 1.0
G12 50(G10) 50 1.0
G13 50 (G20) 50 1.0
G14 50 (G40) 50 1.0
G15 50 (G80) 50 1.0

Sample Code Single-Calcined Loess (%) Cement (%) Water/Binder

C1 20 (C400) 80 1.0
C2 20 (C550) 80 1.0
C3 20 (C700) 80 1.0
C4 20 (C850) 80 1.0
C5 35 (C400) 65 1.0
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Table 2. Cont.

C6 35 (C550) 65 1.0
C7 35 (C700) 65 1.0
C8 35 (C850) 65 1.0
C9 50 (C400) 50 1.0

C10 50 (C550) 50 1.0
C11 50 (C700) 50 1.0
C12 50 (C850) 50 1.0

2.4. Methods

The modified loess samples were characterized using XRD, FTIR spectroscopy, and
pozzolanic activity experiments. XRD tests were performed with a Panaco diffractometer
(Panalytical X’pert Pro diffractometer). XRD measurements were performed from 5◦

to 50◦ (2θ) with a step interval and size of 0.02◦ and 2◦/min, respectively. A Nexus
670 Infrared Spectrometer was used to measure the infrared spectra of powder samples.
FTIR measurements were conducted in the absorption spectral range of 400–4000 cm−1 with
a sample/KBr ratio of 1/200–1/300. The raw materials were dispersed in absolute ethanol
by ultrasound, and then the particle size distribution of the raw materials was measured
by the Malvin Laser Particle Size Analyzer Mastersizer 3000. The particle size distribution
(PSD) was measured using dynamic light scattering (DLS, Malvern). The instrument was
equipped with a backscattering detector with a detection range of 0.1–11,000 nm. For
pozzolanic activity testing, 4 g of dry co-combustion mixture and 100 mL of NaOH solution
(1 mol/L) were placed into plastic test tubes and kept in a constant-temperature (20 ◦C)
water bath oscillator for 7 days. The supernatant was filtered using 0.45 µm filter paper. The
concentrations of Si4+ and Al3+ in the filtrate were determined using inductively coupled
plasma emission spectrometry (ICP-OES) [32].

The practicality of the new grouting material was evaluated by measuring its setting
time, fluidity, and strength. The Vickers apparatus used a priming needle of 50 ± 1 mm,
a final needle of 30 ± 1 mm, a truncated cone test mold with upper and lower diameters
of 65 ± 0.5 mm and 75 ± 0.5 mm, respectively, and a depth of 40 ± 0.2 mm. The setup
used for the fluidity test had an upper diameter, a lower diameter, and a height of 50, 100,
and 150 mm, respectively. Unconfined compressive strength (UCS) tests were performed
with a loading capacity of 50 kN and a loading rate of 1 mm/min. The ASTM C39/C39-18
standard was followed. The hydration process of a new type of grouting material was
studied by the thermogravimetric (TG) method with a STA409PC isothermal calorimeter
(Germany) in a high purity N2 environment at a temperature range of 30 ◦C to 1000 ◦C
and a heating rate of 15 ◦C [41]. The contents of chemically bound water (CBW), CH, and
CaCO3 contained in blended binders with different hydration times could be obtained, and
the calculation formula can be expressed as follows:

CBW =
M50 − M550

M550
·100% (1)

CH =
M400 − M550

M550
·100%·74

18
(2)

CH =
M900 − M550

M900
·100%·100

44
(3)

3. Results and Discussion
3.1. Grinding Modification
3.1.1. Particle Size Analysis

D10, D30, D50, D60, and D90 represent the corresponding grain sizes when the cumu-
lative loess volume fraction reached 10%, 30%, 50%, 60%, and 90%, respectively (Table 3,
Figure 2). The particle size of the loess decreased with increasing grinding time, and the
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proportion of ultrafine particles increased. The particle size D50 of the loess ground for
40 min was larger than that of the loess ground for 20 min owing to the agglomeration of
ultrafine particles, resulting in an error in the test. Cu is the coefficient of inhomogeneity
that reacted with the range of distribution of soil particles on the grain size distribution
curve. If the coefficient of inhomogeneity was >5, this indicated that the soil had enough
fine particles to fill the gap between coarse particles and make the soil dense. Cc is the
curvature coefficient, which describes the smoothness of the gradation curve. When the
curvature coefficient was 1–3, the gradation was considered sufficient. The calculation of
the particle characteristics of loess with different grinding times showed that the ground
loess had a good PSD, indicating that it was suitable as an aggregate or admixture for the
preparation of grouting materials [42,43].

Table 3. Characteristic parameters of the particle size of fine loess.

Parameterization G0 G10 G20 G40 G80

D10 (µm) 15.89 2.24 1.78 1.59 1.42
D30 (µm) 35.57 10.02 7.96 7.10 4.48
D50 (µm) 50.24 22.44 17.83 20.00 12.62
D60 (µm) 56.37 28.25 25.18 28.25 17.83
D90 (µm) 112.47 63.25 56.37 70.96 44.77

Cu = D60/D10 3.55 12.59 14.13 17.78 12.59
Cc = D30

2/D60 × D10 1.41 1.58 1.41 1.12 0.79
Ug = (D90 − D60)/D50 1.12 1.56 1.75 2.14 2.14
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Figure 2. Particle size distribution of finely ground loess.

3.1.2. Pozzolanic Activity Analysis

The relationship between silicon and aluminum dissolution and the activity of acti-
vated loess was studied by the alkali dissolution method. There was a good correlation
between the amount of Si4+ and Al3+ dissolved in various activated loess samples and
their pozzolanic activity [44]. The ionic leaching concentration data for Si and Al in loess
mixed in 1 mol/L NaOH solution at different grinding times are shown in Figure 3. The
leachability of Si and Al increased with increasing grinding time. For example, the leaching
concentrations of Si and Al in the loess material were 1.91 and 1.04 mg/L, respectively. As
the grinding time increased from 10 to 80 min, the leaching concentrations of Si and Al
increased from 2.63 to 4.55 mg/L and 1.29 to 2.04 mg/L, respectively. The effect of fine
grinding was mainly emphasized in two aspects. First, grinding increased the specific
surface area of the loess. When solid particles were dispersed in the NaOH solution, the
contact points of Na+ and OH− with solid particles increased. Thus, the probability of the
breakage of Si–O and Al–O covalent bonds and subsequently the leachability of Si and Al
increased. Second, the physico-mechanical action destroyed the internal structure of highly
crystalline loess and increased the contact points of the alkaline reaction and the degree
of disorder of Si and Al, thereby increasing the leachability of Si and Al. The trends of Si
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and Al leaching concentrations and grinding times showed that the mechanical activation
efficiency decreased with increasing grinding time [17,45].
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3.2. Calcination Modification
3.2.1. Mineral Phase Analysis

From the XRD phase analysis of the raw loess material, the loess mainly contained
quartz, kaolinite, calcite, microline, and muscovite. After high-temperature calcination, the
XRD phases considerably changed (Figure 4) [18].
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Figure 4. XRD phases of loess after single calcination at different temperatures.

When the calcination temperature was 400 ◦C, the peak intensity of kaolinite and
other clay minerals was obvious. This stage was primarily the free water emanation
stage with weak mineral binding. When the calcination temperature was increased to
550 ◦C, a slight attenuation was observed for the peak intensity of kaolinite and other
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clay minerals, indicating that some poorly crystallized clay minerals lost interlayer water
(hydroxyl) and that initial mineral morphology transformation occurred. When the
calcination temperature was increased to 700 ◦C, the diffraction peaks of the kaolinite
almost disappeared, indicating that the hydroxyl groups of the kaolinite were almost
completely destroyed at this calcination temperature. During this time, the diffraction
peak intensities of calcite and muscovite weakened. When the calcination temperature
was increased to 850 ◦C, the peak intensities of muscovite and chlorite considerably
decreased. When the calcination temperature increased from 400 ◦C to 850 ◦C, the
relative peak intensity of quartz increased because of the dense crystalline structure and
there was almost no phase transition [46].

3.2.2. Pozzolanic Activity Analysis

From the ionic leaching concentration data of Si and Al in a 1 mol/L NaOH solution
of a single thermally activated loess sample (Figure 5), the leachability of Si and Al was
remarkably enhanced post-calcination. For example, the leaching concentrations of Si and
Al in the calcined raw loess materials were 3.96 and 1.75 mg/L, respectively. The leaching
concentration of Si increased from 4.23 mg/L to 11.24 mg/L and that of Al from 1.91 mg/L
to 7.91 mg/L when the calcination temperature increased to 400 ◦C–850 ◦C. The highest
leaching concentrations of Si and Al were obtained at approximately 700 ◦C. During this
time, clay minerals such as kaolinite lost their hydroxyl groups to produce amorphous Si
and Al and released more Si and Al under the action of Na+ and OH−. The change in Al
leachability decreased when the calcination temperature increased from 700 ◦C to 850 ◦C
owing to the re-crystallization of Al-containing minerals [14,47].

Minerals 2024, 14, x FOR PEER REVIEW 8 of 24 
 

temperature increased from 400 °C to 850 °C, the relative peak intensity of quartz in-

creased because of the dense crystalline structure and there was almost no phase transi-

tion. [46]. 

 

Figure 4. XRD phases of loess after single calcination at different temperatures. 

3.2.2. Pozzolanic Activity Analysis 

From the ionic leaching concentration data of Si and Al in a 1 mol/L NaOH solution 

of a single thermally activated loess sample (Figure 5), the leachability of Si and Al was 

remarkably enhanced post-calcination. For example, the leaching concentrations of Si and 

Al in the calcined raw loess materials were 3.96 and 1.75 mg/L, respectively. The leaching 

concentration of Si increased from 4.23 mg/L to 11.24 mg/L and that of Al from 1.91 mg/L 

to 7.91 mg/L when the calcination temperature increased to 400 °C–850 °C. The highest 

leaching concentrations of Si and Al were obtained at approximately 700 °C. During this 

time, clay minerals such as kaolinite lost their hydroxyl groups to produce amorphous Si 

and Al and released more Si and Al under the action of Na+ and OH−. The change in Al 

leachability decreased when the calcination temperature increased from 700 °C to 850 °C 

owing to the re-crystallization of Al-containing minerals [14,47]. 

  

Figure 5. Dissolution characteristics of Si4+ and Al3+ ions in single-calcined loess at different tem-

peratures. 

0 10 20 30 40 50 60 70

▼

▼: Chlorite

♦

♦: Anorthite♣

2q

◙

☼

 850℃

 700℃

 550℃

 400℃

◙

※

※

※

♣

♠

☼

※

※

◙ : Muscovite

♣: Microcline

♠: Calcite

☼: Kaolinite

※: Quartz

0

3

6

9

12

15

C
o
n
ce

n
tr

at
io

n
 o

f 
S

i(
m

g
/L

)

C0 C400 C550 C700 C850

0

3

6

9

12

15

C
o

n
ce

n
tr

at
io

n
 o

f 
 A

l(
m

g
/L

)

C0 C400 C550 C700 C850

Figure 5. Dissolution characteristics of Si4+ and Al3+ ions in single-calcined loess at different temperatures.

3.2.3. FTIR Analysis

The vibrations of free water hydroxyl groups and mineral hydroxyl groups were
distributed around 3400 cm−1 and 3600 cm−1 (Figure 6). The peak strength of the absorption
band at 400 ◦C and 550 ◦C was larger than that at 700 ◦C and 850 ◦C. This indicated that
there was still a large amount of chemically bound water in the calcined loess. The peak
of the absorption bands became flat when the calcination temperature reached 700 ◦C.
However, the absorption bands tended to flatten out when the calcination temperature
reached 850 ◦C, indicating that at 700 ◦C, kaolinite minerals shed internal and external
hydroxyl groups to transform into metakaolinite. The intensity of the hydroxyl absorption
bands was greatly weakened. This was consistent with the results of the XRD experiments
shown in Figure 4 [48].
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Figure 6. FTIR spectra of single-calcined loess at different temperatures.

The vibration at ~500 cm−1 in the spectra corresponded to the stretching vibration
of the Al–O–Si chemical bond. The intensity of the spectral absorption bands gradually
decreased as the calcination temperature increased from 400 ◦C to 550 ◦C. The absorption
bands disappeared at 700 ◦C, indicating the destruction of the Al–O–Si chemical bond.
During this time, Si atoms substituted for the Al atoms in the octahedron to form an unstable
structure. Consequently, the ligand number of Al decreased and the pozzolanic activity
increased. When the calcination temperature reached 850 ◦C, there was no further change in
the spectra of the Al–O–Si absorption bands, indicating that the coordination of Al reached
a stable state. The spectral bands in the range of 400–500 cm−1 were the rocking vibrations
of the Si–O bonds in the SiO4 tetrahedra, where the sharpness of the peaks decreased
and the peak shoulders gradually widened. This indicated that the destruction of the
covalent bonding of Si–O at high temperatures generated pozzolanic activity. The spectral
bands at ~800 cm−1 and ~1200 cm−1 originated from the symmetric stretching vibrations
of the Si–O–Si bonds, and their shapes barely changed. This implied that the quartz
mineral phases remained unchanged upon calcination below 850 ◦C. This experimental
phenomenon was consistent with the XRD results. The spectral bands at ~900 cm−1 and
~1400 cm−1 corresponded to all the anion vibrations in CO3

2−. The intensities of the
spectral bands slightly changed when the calcination temperature increased from 400 ◦C to
700 ◦C. However, they decreased sharply at 850 ◦C, suggesting that carbonate decomposed
to a certain degree at 850 ◦C. The peak at ~1000 cm−1 was caused by the asymmetric
stretching vibration of Si–O–NBO (non-bridging oxygen) and Si–O–Si/Al. The sharp
decrease in the spectral band peaks and the gradual broadening of the two shoulders of
the peaks indicated a complex change in the physical phase, which primarily included the
substitution of positive ions, such as Na+, K+, and Ca2+, to form a non-bridging oxygen
structure for Si–O [19,49].

3.3. Workability of Novel Grouting Materials
3.3.1. Setting Time

Figure 7 shows the initial and final setting times of the grout prepared from loess with
different mechanical activation times. When the dosage of the mechanically ground loess
was 20%, the initial and final setting times appeared to first decrease and then increase.
Post-grinding, the hydration activity of loess increased. The initial hydration rate was
accelerated compared with that of the raw loess, and the setting time was reduced. With
increasing grinding time, the ultra-fine particles in the loess increased. The hydration



Minerals 2024, 14, 490 10 of 22

reaction did not occur, and suspending the state existing in the pore solution was easy.
Consequently, the removal of pore water was slowed and the setting time was increased.
When the dosage of the mechanically ground loess was 35% and 50%, the initial and final
setting times increased. For example, for a G0–G80 dosage of 35%, the initial coagulation
time of the slurry increased from 9.24 h to 11.13 h. The final coagulation time increased
from 11.20 h to 13.25 h. When the dosage of the mechanically milled loess was increased to
35% and 50%, the gain effect of the activity enhancement to accelerate the coagulation of the
slurry was less than that of the increase in ultrafine particles to prevent free water exclusion,
resulting in the slowed coagulation effect. Thus, the coagulation time was prolonged [50,51].
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Figure 7. Setting times of mechanically activated loess-prepared grouting fluids.
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The initial and final setting times of the slurry prepared using different dosages of single
heat-activated loess are shown in Figure 8. Regardless of the dosage of the single heat-activated
loess, the initial and final setting times of the slurry decreased with increasing calcination
temperature. For example, with 20% C1–C4 doping, the initial and final setting times of the
slurry were shortened from 9.37 h to 8.26 h and from 11.19 h to 10.05 h, respectively. After the
calcination of loess, the hydration activity was partially improved. Increasing the temperature
further improved the pozzolanic activity, accelerated the initial hydration rate, and reduced
the setting time. When the content of loess increased, the setting time increased because
the activity of single-calcined loess was lower than that of the cement, slowing down the
hydration of the cementitious system and increasing the setting time [52,53].
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3.3.2. Fluidity Behavior

The change in slurry fluidity when different dosages of mechanically activated loess
were prepared for the cement injection slurry is shown in Figure 9. When the dosage of
mechanically activated loess was 20%, the fluidity values of the slurry first decreased, then
increased, and, finally, decreased again. With increasing grinding time, loess particle size
became smaller. The proportion of ultrafine particles increased. When mixed with cement
to prepare the slurry, more free water was used to wrap the solid particles. Thus, the
interlayer water decreased, and the chances of a solid particle collision increased. The flow
resistance increased and the fluidity decreased. When the dosage of mechanically activated
loess was 35% or 50%, the fluidity of the slurry rapidly declined and then remained stable
or slowly declined. For example, when the dosage reached 35%, due to the grain size of G0
and G10 loess being coarse, the packing density of the slurry packing system decreased
with the increase in the adding ratio. The specific surface area of the material was reduced.
The number of solid particles in the interlayer water increased. The resistance to flow
decreased. The fluidity was elevated. The flow degrees of G0 and G10 were 17.5 cm and
15.53 cm, respectively. However, the particle sizes of G20, G40, and G80 were smaller.
Increasing the addition ratio increased the proportion of ultrafine particles, reducing the
flow degree [54–56].
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The change in the fluidity of the slurry when cement injection slurry was prepared
using different dosages of the single heat-activated loess is shown in Figure 10. Regardless
of the dosage of the single heat-activated loess, the fluidity of the injection slurry decreased
with increasing dosage. For example, when the C400, C550, C700, and C850 dopings
reached 20%, the fluidity value of the slurry decreased from 15.01 cm to 13.28 cm. Single
heat activated loess has the same raw material grinding time and particle size distribution.
The internal structure changes after high temperature calcination. The ultra-fine particles
produced upon calcination reduced the fluidity of the slurry. Calcination increased the
pozzolanic activity and accelerated the initial hydration, partially affecting the fluidity of
the slurry [57–59].
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3.3.3. UCS and TG Analyses

This section discusses the strengths of hardened grouted materials with the modified
loess at different dosages after 3 and 28 days of hydration. The mechanical properties of
the hardened materials decreased with cement replacement from 20% to 50% for milled
and calcined loess. For example, the UCS value after 28 days of hydration decreased from
16.5 MPa to 8.7 MPa when the admixture of 20 min milled loess increased from 20% to
50%. The UCS value after 28 days of hydration decreased from 21 MPa to 12 MPa when
the admixture of the loess calcined at 850 ◦C increased from 20% to 50%. The other milling
times and calcination temperatures studied followed the same pattern [60].
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The post-hydration strength first increased and then decreased with increasing grind-
ing time (Figure 11). For example, the highest strength was obtained after the hydration of
the loess mixed with cement by grinding for 20 min at a 20% dose. The strength reached
16.5 MPa after 28 days due to the higher specific surface area, which enhanced the filler
effect and the pozzolanic reaction and increased hydrate nucleation sites. Grinding acti-
vation led to particle pulverization and an increase in the specific surface area until the
maximum fineness was obtained. Further grinding did not lead to additional particle refine-
ment. Instead, the agglomeration of submicron particles into porous spherical aggregates
occurred. The specific surface area decreased steadily. The agglomeration process was
parallel to the extensive decomposition (amorphization) of the kaolinite crystal structure
and the recombination of bound water into poorly bound hydroxyl groups. The long-term
grinding of environmental conditions led to the adsorption and incorporation of additional
atmospheric water [61,62].

Minerals 2024, 14, x FOR PEER REVIEW 16 of 24 
 

  

  

  

Figure 11. Strength of hardened loess mixed with cement in different proportions for different 

grinding times. 

The strength of the hydrated solidus increased with increasing calcination tempera-

ture at 400 °C–850 °C (Figure 12). For example, the USC values after 3 and 28 days of 

hydration were 8.5 MPa and 21 MPa, respectively, when the content of loess was 20% at 

850 °C. This was primarily because of the increase in the calcination temperature. As the 

activity of Si and Al increased, the pozzolanic activity of loess also increased (Figure 5). 

The Si-Al phase underwent a pozzolanic reaction with calcium hydroxide during cement 

hydration. Parallelly, loess with a higher calcination temperature had a higher degree of 

0

2

4

6

8

10

12

14

16

18

G5G4G3G2

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G1

3d

0

2

4

6

8

10

12

14

16

18

G5G4G3G2

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G1

28d

0

2

4

6

8

10

12

14

16

18

G10G9G8G7

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G6

3d

0

2

4

6

8

10

12

14

16

18

G10G9G8G7

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G6

28d

0

2

4

6

8

10

12

14

16

18

G15G14G13G12

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G11

3d

0

2

4

6

8

10

12

14

16

18

G15G14G13G12

U
n

co
n

fi
n

ed
 c

o
m

p
re

ss
iv

e 
st

re
n

g
th

 (
M

P
a)

G11

28d

Figure 11. Strength of hardened loess mixed with cement in different proportions for different
grinding times.
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When the temperature was lower, most clay minerals still existed. The lattice adsorbed
a certain amount of water, which reduced the contact between gelatinous matter and water.
It affected the continuous hydration of the cementitious system and reduced its strength.

The strength of the hydrated solidus increased with increasing calcination temperature
at 400 ◦C–850 ◦C (Figure 12). For example, the USC values after 3 and 28 days of hydration
were 8.5 MPa and 21 MPa, respectively, when the content of loess was 20% at 850 ◦C.
This was primarily because of the increase in the calcination temperature. As the activity
of Si and Al increased, the pozzolanic activity of loess also increased (Figure 5). The
Si-Al phase underwent a pozzolanic reaction with calcium hydroxide during cement
hydration. Parallelly, loess with a higher calcination temperature had a higher degree of
de-hydroxylation and a larger specific surface area, explaining why it exhibited higher
pozzolanic activity, resulting in greater compressive strength [46,63].
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Figure 12. Strength at different calcination temperatures of loess mixed with cement in different
proportions after hardening.
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The heat absorption peak of adsorbed water dehydration broadened as the milling
time increased (Figure 13). This water was produced by the mechanical de-hydroxylation
of kaolinite and then connected to the newly formed active surface. Owing to the increased
defects in the octahedral structure, the endothermic peak of kaolinite de-hydroxylation was
obtained at a lower temperature. The decrease in particle size and the disordered structure
of kaolinite resulted in the weakening of the binding of OH groups, which controlled the
shape and range of de-hydroxylation peaks. For the samples prepared using mechano-
chemically treated minerals, a reduction in portlandite (CH) was observed, mainly due to
dilution effects [64,65].
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Figure 13. Hydration products of loess mixed with cement in different proportions for different
grinding times.

The amounts of chemically bound water (CBW), CH, and calcite were calculated using
the TG method to study the hydration process of the grouted material hardened in 28 days
(Figure 14). The amount of CBW increased as the calcination temperature increased. Due
to the higher calcination temperatures, loess has higher pozzolanic activity and could form
more C–S–H gels, ettringite, HC, and MC, leading to the high strengths of the hardened
samples with high calcination temperatures. As the pozzolanic reaction proceeded, the
higher temperature produced less CH [66,67].
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Figure 14. Hydration products of loess mixed with cement in different proportions at different
calcination temperatures.

The mineral phase of the hydrated binder of calcined loess was analyzed using XRD,
and the experimental results are shown in Figure 15. The hydration products of the mixture
of calcined loess and cement were primarily CH, ettringite (AFt), calcium silicate hydrate (C–
S–H), mono-carboaluminate (Mc), and calcite. Additionally, inert quartz could be observed.
The peak value near 2θ = 18.1◦ was reduced post-calcination, which belonged to CH.
After heat treatment, the reactivity of loess was significantly enhanced and more CH was
consumed in the hydration process of the composites. Consistent with the thermal analysis
results shown in Figure 14, this effect increased with increasing calcination temperature.
With increasing calcination temperature and cement addition ratio, the amount of ettringite
and hydrated calcium silicate also increased. During the initial hydration process, sufficient
calcite was helpful for Mc formation [68,69].
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Figure 15. XRD patterns of the blended binders hydrated for 28 days (E, Ettringite; Mc, Mono-
carboaluminate; CH, Portlandite; Q, quartz; C, calcite; F, Feldspars).

4. Conclusions

Supplementary cementitious materials (SCMs) were prepared using the mechano-
thermal activation of loess. The activated loess was investigated using XRD, FTIR spec-
troscopy, and ICP-OES. The grouting materials were also prepared using different cement
ratios to investigate their flow, mechanical properties, and hydration evolution. Based on
the experimental results, the following conclusions can be drawn:

(1) Loess decreases in particle size and increases in ultrafine particles with increas-
ing grinding time, which destroys the internal structure of the highly crystalline
loess and increases the contact points of the alkaline reaction and the degree of
disorder in Si and Al, thereby improving the pozzolanic activity. The increase in
ultrafine particles after further grinding leads to agglomeration, forming porous
spherical aggregates.

(2) The pozzolanic activity of modified loess increases with the increase in calcination
temperature. At 550 ◦C, the free and bound water of loess was lost. At 850 ◦C,
anorthite and muscovite decomposed and their peak intensities decreased. The
vibrations in the 400–500 cm−1 spectral band indicated that the destruction of the
Si–O covalent bond at high temperatures produced Si-phases. The spectral bands of
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~900 cm−1 and ~1400 cm−1 corresponded to the vibrations of the C–O bond in CO3
2−,

indicating that carbonate partially decomposed at 850 ◦C.
(3) Increasing the grinding time reduces the fluidity and increases the setting time of

loess. As an auxiliary cementitious material, this can improve the uniaxial compres-
sive strength. As the calcination temperature increases, the fluidity and setting time
decrease. Simultaneously, the pozzolanic activity is improved, which promotes the
formation of C–S–H gel and ettringite and increases the compressive strength.

The loess was modified by mechanical grinding and high-temperature calcination
respectively by physical and chemical activation. In the future, it can be modified by
adding an alkaline activator, increasing the calcium content, and calcining to stimulate its
pozzolanic activity. It is also necessary to carry out grouting reinforcement experiments
in a coal mine in Shanxi Province to evaluate its applicability. The difference in loess
composition in different sedimentary environments and its influence on loess grouting
materials should also be studied or a model should be developed to guide the evaluation
of loess sources to obtain appropriate mixtures.
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32. Ilić, B.; Radonjanin, V.; Malešev, M.; Zdujić, M.; Mitrović, A. Effects of mechanical and thermal activation on pozzolanic activity
of kaolin containing mica. Appl. Clay Sci. 2016, 123, 173–181. [CrossRef]

33. Souri, A.; Kazemi-Kamyab, H.; Snellings, R.; Naghizadeh, R.; Golestani-Fard, F.; Scrivener, K. Pozzolanic activity of mechanochem-
ically and thermally activated kaolins in cement. Cem. Concr. Res. 2015, 77, 47–59. [CrossRef]

34. Zhang, S.; Ren, F.; Zhao, Y.; Qiu, J.; Guo, Z. The effect of stone waste on the properties of cemented paste backfill using
alkali-activated slag as binder. Constr. Build. Mater. 2021, 283, 122686. [CrossRef]

35. Sonebi, M.; Lachemi, M.; Hossain, K.M.A. Optimisation of rheological parameters and mechanical properties of superplasticised
cement grouts containing metakaolin and viscosity modifying admixture. Constr. Build. Mater. 2013, 38, 126–138. [CrossRef]

36. Singh, M.; Garg, M. Reactive pozzolana from Indian clays—Their use in cement mortars. Cem. Concr. Res. 2006, 36, 1903–1907.
[CrossRef]

37. Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. Effect of metakaolin dispersion on the fresh and hardened state properties of
concrete. Cem. Concr. Res. 2012, 42, 607–612. [CrossRef]

38. Cassagnabère, F.; Diederich, P.; Mouret, M.; Escadeillas, G.; Lachemi, M. Impact of metakaolin characteristics on the rheological
properties of mortar in the fresh state. Cem. Concr. Compos. 2013, 37, 95–107. [CrossRef]

39. Xu, J.; Zhang, L.; Li, Y.; Li, Z.; Zhao, Y. Mechanical, mineralogical, and microstructural characterization of collapsible loess cured
by NaOH solution. Constr. Build. Mater. 2024, 421, 135678. [CrossRef]

40. Liu, Y.; Tang, C.; Wen, J.; Guo, H.; Fan, H. Mechanical characterization and water stability of loess improved by bio-based
materials: An eco-friendly approach. Sci. Total Environ. 2024, 921, 171111. [CrossRef]

41. Zhang, Y.; Liu, B.; Gu, X.; Nehdi, M.L.; Zhang, L.V. Mechanochemical activation of iron ore tailing-based ternary supplementary
cementitious materials. Constr. Build. Mater. 2022, 346, 128420. [CrossRef]

https://doi.org/10.1016/j.clay.2019.105168
https://doi.org/10.1016/j.clay.2019.105143
https://doi.org/10.1016/j.clay.2022.106508
https://doi.org/10.1016/j.clay.2009.08.026
https://doi.org/10.1016/j.jobe.2017.03.007
https://doi.org/10.1016/j.conbuildmat.2019.117092
https://doi.org/10.1016/j.conbuildmat.2018.03.117
https://doi.org/10.1016/j.cemconres.2017.08.017
https://doi.org/10.1016/j.jnoncrysol.2017.01.024
https://doi.org/10.1016/j.conbuildmat.2011.08.064
https://doi.org/10.1016/j.clay.2015.05.031
https://doi.org/10.1016/j.clay.2017.03.038
https://doi.org/10.1016/j.clay.2015.07.031
https://doi.org/10.1617/s11527-014-0353-0
https://doi.org/10.1016/j.msea.2007.07.068
https://doi.org/10.1016/j.conbuildmat.2021.123972
https://doi.org/10.1016/j.clay.2009.09.008
https://doi.org/10.1007/s11595-009-2326-7
https://doi.org/10.1016/j.clay.2016.01.029
https://doi.org/10.1016/j.cemconres.2015.04.017
https://doi.org/10.1016/j.conbuildmat.2021.122686
https://doi.org/10.1016/j.conbuildmat.2012.07.102
https://doi.org/10.1016/j.cemconres.2004.12.002
https://doi.org/10.1016/j.cemconres.2012.01.005
https://doi.org/10.1016/j.cemconcomp.2012.12.001
https://doi.org/10.1016/j.conbuildmat.2024.135678
https://doi.org/10.1016/j.scitotenv.2024.171111
https://doi.org/10.1016/j.conbuildmat.2022.128420


Minerals 2024, 14, 490 21 of 22

42. Chen, B.; Pang, L.; Zhou, Z.; Chang, Q.; Fu, P. Study on the activation mechanism and hydration properties of gold tailings
activated by mechanical-chemical-thermal coupling. J. Build. Eng. 2022, 48, 104014. [CrossRef]

43. Li, Z.; Gao, Y.; Zhang, J.; Zhang, C.; Chen, J.; Liu, C. Effect of particle size and thermal activation on the coal gangue based
geopolymer. Mater. Chem. Phys. 2021, 267, 124657. [CrossRef]

44. Wang, H.; Liu, X.; Zhang, Z. Pozzolanic activity evaluation methods of solid waste: A review. J. Clean. Prod. 2023, 402, 136783.
[CrossRef]

45. Zhao, Y.; Qiu, J.; Guo, Z.; Zhang, S.; Wu, P.; Sun, X. Activation the hydration properties of illite-containing tailings to prepare a
binder for cemented paste backfill. Constr. Build. Mater. 2022, 318, 125989. [CrossRef]

46. Qiu, Z.; Bao, S.; Zhang, Y.; Huang, M.; Lin, C.; Huang, X.; Chen, Y.; Ping, Y. Effect of Portland cement on the properties of
geopolymers prepared from granite powder and fly ash by alkali-thermal activation. J. Build. Eng. 2023, 76, 107363. [CrossRef]

47. Yanguatin, H.; Ramírez, J.H.; Tironi, A.; Tobón, J.I. Effect of thermal treatment on pozzolanic activity of excavated waste clays.
Constr. Build. Mater. 2019, 211, 814–823. [CrossRef]

48. Derouiche, R.; Baklouti, S. Phosphoric acid based geopolymerization: Effect of the mechanochemical and the thermal activation
of the kaolin. Ceram. Int. 2021, 47, 13446–13456. [CrossRef]

49. d’Azevedo, C.A.; de Assis, T.C.; Silva, F.A.N.G.; Siqueira, J.M.; Garrido, F.M.S.; Medeiros, M.E. Preparation of α-cordierite
through mechanochemical activation of MgO–Al2O3–SiO2 ternary system. Ceram. Int. 2022, 48, 18658–18666. [CrossRef]

50. Jin, Z.; Wang, L.; Su, Y.; He, X.; Ma, B.; Wang, Y.; Li, Y.; Qi, H.; Wang, B. Effect of different retarders on setting time and
mechanical properties of hemihydrate phosphogypsum-calcium sulfoaluminate cement composite binder. Constr. Build. Mater.
2024, 411, 134339. [CrossRef]

51. Ng, Y.L.; Aldahdooh, M.A.A.; Alazaiza, M.Y.D.; Bashir, M.J.K.; Chok, V.S.; Ng, C.A. Influence of alum sludge ash and ground
granulated blast furnace slag on properties of cement mortar. Clean. Eng. Technol. 2022, 6, 100376. [CrossRef]
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