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Abstract: The gold deposit offshore of Northern Sanshandao is an ultra-large-scale gold deposit dis-
covered in the Jiaodong ore area in recent years. This deposit is a fractured-zone altered-rock-type gold
deposit; however, its ore genesis and precise mineralization processes are still highly controversial.
Based on petrographical observation, the trace elements, sulfur isotopes, and rubidium–strontium
isotopes of the gold-bearing pyrite were analyzed using LA-MC-ICP-MS to obtain the source of the
ore-forming fluids and ore genesis. The results show that Au has a good positive correlation with
Ag, As, and Cu. It is speculated that the As in the pyrite of the gold deposit offshore of Northern
Sanshandao is in the form of As−, replacing S− and entering the pyrite, causing its lattice defects,
and thus promoting the entry of Au+ into the gold-bearing pyrite. The Co/Ni ratios mainly range
between 0.1 and 10, indicating that the mineralization process has experienced different forms of
hydrothermal evolution and the mixing of different fluids. The results of the in-situ sulfur isotope
analysis show that pyrite δ34S in the mineralization period is characterized by a high sulfur value.
The authors of this study believe that the initial sulfur isotope composition has mantle-derived
components. The large-scale, deep cutting, and high degree of fragmentation in the Sanshandao fault
zone are conducive to the interaction between fluids and rocks, as well as the mixing and addition
of seawater, resulting in the characteristic high δ34S value. The Sr isotopic compositions indicate a
crust–mantle mixing attribute of the mineralized material source. The Rb–Sr isochron age of the pyrite
is 118.5 ± 0.65 Ma, which represents the age of gold mineralization. According to the characteristics
of the trace elements and sulfur isotopes, it is inferred that the gold deposit minerals offshore of
Northern Sanshandao originated from deep magmatic-hydrothermal reservoirs, and the mixing of
seawater and Au–As-rich hydrothermal fluids was the formation mechanism of huge amounts of
gold precipitation.

Keywords: gold deposit; offshore of Northern Sanshandao; in-situ sulfur isotopes; pyrite trace
elements; Rb–Sr isochron age

1. Introduction

The Jiaodong gold province is located on the southeastern edge of the North China
Craton (NCC), which is China’s most productive gold province and the third-largest gold
mining area in the world [1–7]. The gold deposit offshore of Northern Sanshandao is
an ultra-large-scale gold deposit that was discovered in the Jiaodong ore area in recent
years [8]. It is located under the sea north of the Sanshandao gold deposit. This gold deposit
is a deep extension of the ore body of the Sanshandao deposit and a typical case for the

Minerals 2024, 14, 456. https://doi.org/10.3390/min14050456 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min14050456
https://doi.org/10.3390/min14050456
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-6338-4887
https://doi.org/10.3390/min14050456
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min14050456?type=check_update&version=1


Minerals 2024, 14, 456 2 of 19

study of differences in mineralization at different depths in the Sanshandao ore-bearing
fault zone.

Researchers have carried out some work on the geological characteristics of ore de-
posits, ore-controlling structures, and their structural-magmatic backgrounds [8–15]. Previ-
ous petrographic and mineralogy studies indicate that the main alteration types are pyritic
sericization, sericization, and potassic alteration [8]. Other studies have suggested the
unit cell parameters and thermoelectric characteristics of pyrite, and that their alteration is
strong in the range of −1200 to −1400 m. In the range of −1200 to −1600 m, sericitolite and
pyrite–sericite–quartz-altered rock are rich in As, Ag, Sb, and other low-temperature ele-
ments, which have great ore-prospecting potential for ore prospecting in deep areas [10,11].
Regarding ore-forming fluids, it is believed that they have the characteristics of medium
temperature, medium–low salinity, medium acidity, and richness in carbonaceous ma-
terials [12]. Fluid immiscibility is generally developed in the early and main stages of
mineralization. On the basis of fluid immiscibility, the interaction between fluid and sur-
rounding rocks is superimposed, thus enriching and forming gold deposits [12]. During
the hydrothermal alteration process, Si, Mg, Ca, and other elements were added, Na was
precipitated, and the K content did not change significantly. This is consistent with the hy-
drothermal alteration characteristics of the Sanshandao gold mineralization belt proposed
by researchers [16,17]. However, there has not yet been a systematic study of the gold occur-
rence status, gold precipitation mechanism, or mineralization age. It is unknown whether
there are differences in the mineralization mechanisms between the marine gold deposits
offshore and the gold deposits onshore. Therefore, the authors of this study selected the
gold deposit offshore of Northern Sanshandao, Jiaodong Peninsula, as the main research
object, and researched the geological characteristics of the gold deposit, pyrite trace element
characteristics, sulfur isotope composition, and mineralization chronology to understand
the alteration rock type of the fracture zone. Theoretical research on gold deposits has
become more abundant, which has improved the research level of gold deposits in the
Sanshandao gold mineralization belt, providing a theoretical basis for searching for similar
types of gold deposits in the area.

2. Regional Geological Background

The gold deposit offshore of Northern Sanshandao is located in the northwest of
the Jiaodong Peninsula. In the shallow sea area in the north of Sanshandao Village, the
mining area is covered by seawater, with a water depth of 10–15 m. The thickness of the
Quaternary strata under the sea is generally 35–40 m, and the thickest position can reach
60 m. The lithology is mainly coarse, medium, and fine sand, and marine deposit silt. The
gold deposit belongs to the Jiaoxibei (Laizhou–Zhaoyuan) ore area, and the Precambrian
metamorphic rock series strata and Mesozoic intrusive rocks are mainly exposed in this area
(Figure 1). The Precambrian metamorphic rock series mainly includes Mesoarchean gran-
ulites, metamorphic supracrustal rocks of the Neoarchean Jiaodong Group, and Neoarchean
granitic gneiss that intrudes into them. The intrusive rock mass is mainly composed of
Late Jurassic granites (165–150 Ma) and Early Cretaceous (132–123 Ma) porphyritic gra-
nodiorite. The late Jurassic granites are mainly monzonitic granite, biotite granite, and
biotite granite. Early Cretaceous porphyritic granodiorite, as well as lamprophyre, diabase
porphyry, quartz diorite porphyry, diorite porphyry, and other dikes, intrude into the
Late Jurassic granites. The fault structure is divided into three groups: north–northeast-
trending, northeast-trending, and north–northwest-trending. The north–northeast trending
fault zone is the main ore-controlling structure in this area. There are three NNE- and
NE-trending ore-controlling faults in the area: the Sanshandao fault zones, the Jiaojia
fault zones, and the Zhaoyuan–Pingdu fault zones (Figure 1). The gold deposit offshore
of Northern Sanshandao is located in the direction in which the Sanshandao fault zones
extend to the sea.
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Figure 1. Map showing the regional geology in the Jiaoxibei ore area.

3. Ore Deposit Geology

The magmatic rocks are mainly composed of Early Cretaceous porphyritic granodior-
ite, Late Jurassic granite, and Neoarchean metagabbro (Figure 2). The Late Jurassic biotite
granodiorite is intruded by Early Cretaceous porphyritic granodiorite, and the veinstone
mainly consists of lamprophyre, diabase porphyry, quartz diorite porphyry, diorite por-
phyry, etc. Metagabbro is mainly distributed in the hanging wall of the Sanshandao fault.

The Sanshandao fault is the ore-controlling fault, which strikes about 35◦ and dips to
the southeast. Faults cut the Late Jurassic granite. The alteration and petrogenesis zones
are divided along the vertical direction with the main fracture surface as the boundary.
From top to bottom, the layers of the rock mass are fine–medium grained metagabbro,
monzonitic granite, pyrite sericite cataclastic rocks, pyrite sericite granodiorite clastic rocks,
fault gouge, pyrite sericite quartzite cataclastic rocks (pyrite–sericite belt), pyrite sericite
granodiorite clastic rocks, pyrite sericite cataclastic rocks, and porphyritic granodiorite,
with a gradual transitional contact between the altered rock (Figure 3). Local NW-trending
small faults offset the Sanshandao fault.
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Figure 2. Geological map of the Sanshandao metallogenic belt (a,b) and the exploration line profile
of the deposit (c). (1) Quaternary sediments; (2) Early Cretaceous porphyritic granodiorite; (3) Late
Jurassic monzonitic granite; (4) Late Jurassic biotite granodiorite; (5) Late Jurassic biotite granite;
(6) Neoarchean metagabbro(amphibolite); (7) structural metamorphic belt; (8) exploration line and
number; (9) horizontal projection range of gold ore body; (10) location and number of gold ore bodies;
(11) drilling location and number; (12) drilling starting and ending position and path.

The metallic minerals are pyrite, galena, and sphalerite, followed by chalcopyrite,
arsenopyrite, pyrrhotite, etc. The non-metallic minerals include quartz, sericite, feldspar,
and carbonate minerals (calcite, dolomite, siderite, etc.). The prevailing electrum with
an Ag content of 6.40 wt% is accompanied by native gold with only 4.30 wt%. The main
ore textures are granular metamorphic, fragmented, and metasomatic structures, and a
few emulsion droplet structures (Figure 4). The ore structures are mainly disseminated,
followed by network vein, breccia, and fine vein structures.

Based on observation of the core samples under a microscope and their identification
results, and combined with the mineral texture, structural characteristics, and generation
sequence, the mineralization period can be divided into the following four stages: The
pyrite–sericite stage (I) is the early stage of mineralization mainly characterized by the
irregular granular or euhedral coarse-grained distribution of pyrite, which is disseminated
or distributed in a star-like pattern in the sericite. In the quartz–pyrite stage (II), the pyrite
is mostly fine-to-medium-grained, isomorphic granular, and significantly more abundant.
The coexisting quartz and pyrite form small granular or scattered shapes, fine veins,
network veins, etc. This stage is the main stage of mineralization, and gold is distributed
throughout the crystals and fissures of pyrite. The gold–quartz–base-metal-sulfide stage
(III) is the late stage of mineralization, where base metal sulfide is fine-grained, vein-like,
and has a dip distribution. Mineral filling is significant in the middle and late stages
of mineralization. The quartz–carbonate stage (IV) is the final stage of mineralization.
Carbonate minerals such as quartz and calcite are mostly interspersed in the ore in the form
of fine veins, and no gold mineralization occurs.
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Figure 4. Photomicrographs showing the mineralization and structure of the ore. (a) Pyrite–sericite–quartzite
in borehole ZK3410; (b) encapsulated gold of pyrite in borehole ZK3410; (c) encapsulated and fissure
gold of pyrite in borehole ZK8401; (d) automorphic pyrite in borehole ZK3612. Abbreviations: Py,
pyrite; Qtz, quartz; Ser, Sericite; Au, gold; Gn, galena; Sp, sphalerite; Ccp, chalcopyrite.

4. Sampling and Analytical Methods

Typical core samples from the gold deposit offshore of Northern Sanshandao were
selected for this study, and the selected samples represent different spatial locations. The
samples were polished and sliced for observation and analysis under a microscope. Then,
laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was carried out.

4.1. Backscattered Electron (BSE) Imaging and Wavelength Dispersive Elemental Maps

Backscattered electron (BSE) imaging and wavelength dispersive elemental mapping
were carried out at the Key Laboratory of Gold Metallogenic Processes and Deep Prospect-
ing of the Ministry of Natural Resources, Shandong Institute of Geological Sciences (SIGS).
The samples were analyzed using electron probe microanalysis and wavelength dispersion
spectrometry (EPMA-WDS), and the instrument model was JEOLJXA-8230. The accelera-
tion voltage was 15 kV, the current was 2 × 10−8 A, and the beam spot diameter was 0.5 µm.
The data collection time was 20–60 s. The ZAF method was used to correct the data, and
the analysis accuracy was less than 1%. All standard samples used are standard samples
from Canada’s Astimex Company. Different standards are used for different elements. Au
and Ag use pure metal standards; S and Fe use pyrite; Co uses chloanthite; and Ni uses
nickel pyrite; the standard sample used for Cu is cuprite; the standard sample used for Pb
is galena.

4.2. In-Situ Trace Element Analysis of Pyrite Using LA-ICP-MS

Trace element analysis of pyrite was conducted using LA-ICP-MS at the Wuhan Sample
Solution Analytical Technology Co., Ltd., Wuhan, China. Laser sampling was performed
using a GeolasPro laser ablation system, which consisted of a COMPexPro 102 ArF excimer
laser (wavelength of 193 nm and maximum energy of 200 mJ) and a MicroLas optical
system. An Agilent 7900 ICP-MS instrument was used to obtain the ion signal intensity.
Helium was used as the carrier gas. Argon was applied as the supplementary gas and
was mixed with the carrier gas through a T-connector before entering the ICP. The laser
ablation system contained a “wire” signal-smoothing device [19]. In this study, the laser
spot size was set to 5 µm and the frequency to 44 Hz. The trace element composition of
pyrite was calibrated against various standards (NIST 610 and NIST 612) without the use of
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internal standards [20]. The accuracy of the calibration method was verified using MASS-1
(USGS) sulfide standards as unknown samples. Each analysis consisted of approximately
20–30 s of background acquisition, followed by 50 s of data collection from the sample.
Offline selection and integration of the background and analytical signals, temporal drift
correction, and quantitative calibration for trace element analysis were performed using
Excel-based ICPMS-DataCal software [20].

4.3. In-Situ S Isotope Analysis of Pyrite Using LA-MC-ICP-MS

In-situ sulfur isotope analyses of pyrite were performed on a Neptune Plus MC-ICP-
MS (Thermo Fisher Scientific, Bremen, Germany) equipped with a Geolas HD excimer
ArF laser ablation system (Coherent, Göttingen, Germany) at the Wuhan Sample Solution
Analytical Technology Co., Ltd, Hubei, China. In the laser ablation system, helium was
used as the carrier gas for the ablation bath, and mixed with argon (supplementary gas) at
the end of the ablation bath. The single-spot ablation mode was used. A large spot size
(44 µm) and a slow pulse frequency (2 Hz) were used to avoid the downhole chunking effect
reported by [21]. One hundred laser pulses were completed in a single analysis. A new
signal-smoothing device was used downstream of the sampling unit to effectively eliminate
short-term variations in the signal, especially for the slow pulse frequency condition [19].
The laser fluence was constant at 3–5 J/cm2.The Neptune Plus was equipped with nine
Faraday cups with 1011 Ω resistors. 32S, 33S, and 34S isotopes were collected in Faraday
cups using the static mode. The newly designed X-swept cone and Jet sample cone in the
Neptune Plus were used to increase the signal intensity. Nitrogen (4 mL/min) was added
to the central airflow to reduce multimer interference. All measurements were performed
using medium-resolution rotational power (defined by the peak edge widths ranging from
5% to 95% of the full peak height), which was always greater than 5000.

A standard-sample-bracketing method (SSB) was employed to correct for instrumental
mass fractionation. To avoid the matrix effect, a pyrite standard PPP-1 was chosen as the
reference material for correcting the natural pyrite. In addition, the in-house references of a
pyrrhotite SP-Po-01 (δ34Sv-CDT = 1.4 ± 0.4), a chalcopyrite SP-CP-01 (δ34Sv-CDT = 5.45 ± 0.3),
and two synthetic Ag2S standards, IAEA-S-2 (δ34Sv-CDT = 22.58 ± 0.39) and IAEA-S-3
(δ34Sv-CDT = −32.18 ± 0.45), were analyzed repeatedly as unknown samples to verify the
accuracy of the calibration method. All data reduction for the MC-ICP-MS analysis of S
isotope ratios was conducted using “Iso-Compass” software [22].

4.4. Rb–Sr Dating

Isotope measurements were accomplished on an IsoProbe-T mass spectrometer at
the Beijing Institute of Geological Research of the Nuclear Industry, equipped with nine
Faraday cups and four ion-counting detectors. Rubidium and strontium isotopes were
measured using static multi-reception. The fractionation effects during the strontium
isotope measurements were regularized and corrected using 88Sr/86Sr = 8.375219. The
strontium isotope composition and strontium concentration were also determined using a
computational method established in our laboratory.

We accurately weighed 0.1–0.2 g of the sample powder in a low-pressure closed
dissolution jar, added rubidium–strontium diluent, and dissolved it with mixed acid
(HF + HNO3) for 24 h. When the sample was completely dissolved and evaporated, we
added 6.0 mol/L of hydrochloric acid to convert into chloride for evaporation. Then, it was
dissolved with 0.5 mol/L of hydrochloric acid solution and separated using centrifugation.
The supernatant was added to a cation exchange column (φ 0.5 × 15.0 cm, AG50W × 8 (H+)
100–200 mesh). The rubidium was drenched with a 2.0 mol/L hydrochloric acid solution,
and the strontium was drenched with a 3.0 mol/L hydrochloric acid solution and then
evaporated to dryness for mass spectrometry analysis.

Rubidium and strontium isotope analyses were performed using a PHOENIX thermal
ionization mass spectrometer with a single-band, M+, adjustable multi-Faraday receiver.
Mass fractionation was corrected with 86Sr/88Sr = 0.1194, with the following standard mea-
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surements: 87Sr/86Sr = 0.710248 ± 8 for the NBS987 specimen, 87Sr/86Sr = 1.20022 ± 8 for
the NBS607 specimen with Rb 522.550 ug/g and Sr 65.511 ug/g; and 87Sr/86Sr = 1.20022 ± 8
with a laboratory process background of Rb 2.0 × 10−10 g and Sr 2.0 × 10−10 g. The detailed
experimental separation process and instrument test parameters followed those of previous
researchers [23,24].

5. Results
5.1. Wavelength Dispersive Elemental Maps

The analysis results of the wavelength dispersive elemental maps show that if the
content of the element in a certain area of the sample is high, the bright spots in the
corresponding area of the image are dense. The bright spots of elements such as Au, Ag,
and Ni are denser, and the content is higher (Figure 5). Only the As element had an obvious
ring structure, and Au, Ag, Cu, and other elements did not show an obvious ring structure
(Figure 5d–i). The results indicate that Au–Ag–Cu–Co–Ni in pyrite changes uniformly and
has a good positive correlation.

Minerals 2024, 14, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. Photomicrographs of BSE images (a–c), and wavelength dispersive elemental maps (d–i). 
Pyrite is in dark gray. Galena is present as inclusions within pyrite or along pyrite margins. In the 
BSE images, the galena in pyrite is light gray and white (a,b). Wavelength dispersive elemental 
maps (d–i) correspond to the area of the BSE image in (c). Abbreviations: Qz = quartz; Py = pyrite; 
Gn = galena. 

5.2. In-Situ Trace Element Compositions 
Pyrite samples from three boreholes were analyzed for trace elements, and the results 

are shown in Table 1 for a total of 30 analytical points. 

Table 1. Trace element contents of pyrite from the gold deposit offshore of Northern Sanshandao 
(ppm). 

Sample Serial 
Number 

Co Ni Cu Zn As Ag Sb Au Pb Bi 

ZK8401-1 3.37 - 0.10 1.32 124.86 0.19 - 0.01 1.87 9.35 
ZK8401-2 5.22 0.06 2.24 1.04 68.07 0.42 0.02 0.04 8.40 10.19 
ZK8401-3 3.08 1.29 1.21 1.09 29.57 0.67 0.17 0.04 14.64 6.94 
ZK8401-4 136.61 41.83 2.14 0.66 25.39 0.41 0.03 0.03 4.89 2.72 
ZK8401-5 130.28 37.93 5.16 1.26 22.13 2.58 0.14 0.14 76.98 42.67 
ZK8401-6 457.30 19.41 1.05 1.33 8.74 1.70 0.04 0.03 107.15 10.18 
ZK8401-7 6.98 0.37 0.24 1.36 35.15 0.07 - - 1.45 4.93 
ZK8401-8 179.42 30.29 0.49 0.79 24.82 0.65 0.06 0.02 5.40 18.86 
ZK8401-9 88.83 57.62 0.24 0.70 12.43 - - - 0.65 2.02 

ZK8401-10 274.47 26.97 1.26 1.30 23.81 0.79 0.08 0.02 35.20 13.20 
ZK3612-1 20.02 1.50 30.64 4216.01 109.42 39.91 11.75 0.23 18,396.77 0.20 
ZK3612-2 47.17 23.64 23.27 2.90 8018.91 50.83 13.41 0.99 21,288.11 0.15 
ZK3612-3 23.53 25.16 10.95 1.50 7915.29 17.90 8.04 0.64 3750.40 0.03 
ZK3612-4 0.29 0.38 6.95 1.02 52.05 14.09 3.58 0.14 4386.26 0.02 
ZK3612-5 10.05 0.62 5.29 0.94 49.47 7.66 1.56 0.12 247.45 - 

Figure 5. Photomicrographs of BSE images (a–c), and wavelength dispersive elemental maps (d–i).
Pyrite is in dark gray. Galena is present as inclusions within pyrite or along pyrite margins. In the BSE
images, the galena in pyrite is light gray and white (a,b). Wavelength dispersive elemental maps (d–i)
correspond to the area of the BSE image in (c). Abbreviations: Qz = quartz; Py = pyrite; Gn = galena.
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5.2. In-Situ Trace Element Compositions

Pyrite samples from three boreholes were analyzed for trace elements, and the results
are shown in Table 1 for a total of 30 analytical points.

Table 1. Trace element contents of pyrite from the gold deposit offshore of Northern Sanshandao (ppm).

Sample
Serial

Number
Co Ni Cu Zn As Ag Sb Au Pb Bi

ZK8401-1 3.37 - 0.10 1.32 124.86 0.19 - 0.01 1.87 9.35

ZK8401-2 5.22 0.06 2.24 1.04 68.07 0.42 0.02 0.04 8.40 10.19

ZK8401-3 3.08 1.29 1.21 1.09 29.57 0.67 0.17 0.04 14.64 6.94

ZK8401-4 136.61 41.83 2.14 0.66 25.39 0.41 0.03 0.03 4.89 2.72

ZK8401-5 130.28 37.93 5.16 1.26 22.13 2.58 0.14 0.14 76.98 42.67

ZK8401-6 457.30 19.41 1.05 1.33 8.74 1.70 0.04 0.03 107.15 10.18

ZK8401-7 6.98 0.37 0.24 1.36 35.15 0.07 - - 1.45 4.93

ZK8401-8 179.42 30.29 0.49 0.79 24.82 0.65 0.06 0.02 5.40 18.86

ZK8401-9 88.83 57.62 0.24 0.70 12.43 - - - 0.65 2.02

ZK8401-10 274.47 26.97 1.26 1.30 23.81 0.79 0.08 0.02 35.20 13.20

ZK3612-1 20.02 1.50 30.64 4216.01 109.42 39.91 11.75 0.23 18,396.77 0.20

ZK3612-2 47.17 23.64 23.27 2.90 8018.91 50.83 13.41 0.99 21,288.11 0.15

ZK3612-3 23.53 25.16 10.95 1.50 7915.29 17.90 8.04 0.64 3750.40 0.03

ZK3612-4 0.29 0.38 6.95 1.02 52.05 14.09 3.58 0.14 4386.26 0.02

ZK3612-5 10.05 0.62 5.29 0.94 49.47 7.66 1.56 0.12 247.45 -

ZK3612-6 0.23 0.55 0.19 1.49 0.70 0.08 0.47 0.03 7.86 -

ZK3612-7 1.06 9.96 277.07 36.53 919.89 551.40 127.38 3.84 57,881.25 0.62

ZK3612-8 0.02 0.13 13.44 0.94 162.77 33.38 7.13 0.15 9331.58 0.17

ZK3612-9 0.06 3.02 58.93 1.83 4102.99 196.56 22.43 1.42 45,895.58 0.58

ZK3612-10 0.25 0.87 88.05 15.49 468.17 6.12 1.97 0.25 491.89 0.05

ZK3410-1 1.45 6.50 1.01 1.66 229.46 0.44 0.28 0.08 10.38 7.02

ZK3410-2 3.76 4.51 0.55 1.24 135.53 0.40 0.12 - 3.87 6.52

ZK3410-3 33.56 17.36 1.08 1.39 188.95 2.09 0.11 0.01 14.84 42.52

ZK3410-4 4.65 5.60 0.56 1.14 86.84 0.08 - - 2.04 1.81

ZK3410-5 6.45 7.46 0.41 1.03 159.39 0.15 0.05 0.01 3.29 4.88

ZK3410-6 22.85 13.00 3.53 0.55 438.22 3.94 2.31 0.37 18.13 10.59

ZK3410-7 1.41 2.78 0.51 1.29 143.27 0.30 0.24 0.03 5.43 1.43

ZK3410-8 26.96 9.20 19.68 1.32 268.58 5.55 4.07 0.17 99.79 30.08

ZK3410-9 61.00 13.23 41.04 2.73 206.26 4.88 3.27 0.06 80.42 17.49

ZK3410-10 2.43 2.03 3.37 1.17 573.82 2.79 2.36 0.07 22.85 4.17

Note: - represents contents less than 0.1 ppm.

Pyrite analytical results from borehole ZK8401 are as follows: The Co content was
3.08–457.30 ppm, with an average of 128.56 ppm. The Ni content was 0.06–57.62 ppm,
with an average of 23.97 ppm, except for one point that was lower than the detection
limit. The Co/Ni ratio ranged from 1.54 to 87.00, with a large variation, and an average
value of 17.35. The Cu content was 0.10–5.16 ppm, with an average of 1.41 ppm. The
content of Zn was 0.66–1.36 ppm, with an average of 1.09 ppm. The content of As was
8.74–124.86 ppm, with an average of 37.50 ppm. The content of Ag was lower than the
detection limit at all but one point, at which it was 0.07–2.58 ppm, with an average of
0.83 ppm. The content of Sb was below the detection limit at all but three points, at which
it was 0.02–0.17 ppm, with an average of 0.08 ppm. The content of Au was below the
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detection limit at all but two points, at which it was 0.01–0.14 ppm, with an average of
0.04 ppm. The content of Pb was 0.65–107.15 ppm with an average of 25.66 ppm, and the
content of Bi was 2.02–42.67 ppm, with an average of 12.11 ppm.

Pyrite analytical results from borehole ZK3612 are as follows: The content of Co was
0.02–47.17 ppm, with an average of 10.27 ppm. The content of Ni was 0.13–25.16 ppm,
with an average of 6.58 ppm. The Co/Ni ratio ranged from 0.02 to 16.21, with a large
variation, and an average value of 3.42. The content of Cu was 0.19 –277.07 ppm, with
an average of 51.48 ppm. The content of Zn was 0.94–4216.01 ppm, with an average of
418.87 ppm. The content of As was 0.70–8018.91 ppm, with an average of 2,179.97 ppm.
The content of Ag was 0.08–551.40 ppm, with an average of 91.79 ppm. The content of Sb
was 0.47–127.38 ppm, with an average of 19.77 ppm, except for four points that were below
the detection limit. The content of Au was 0.03–3.84 ppm, with an average of 0.78 ppm.
The content of Pb was 7.86–57881.25 ppm, with an average of 16167.72 ppm. The content
of Bi was 0.02–0.62 ppm, with an average of 0.23 ppm, except for two points below the
detection limit.

Pyrite analytical results from borehole ZK3410 are as follows: The content of Co was
1.41–61.00 ppm, with an average of 16.45 ppm. The content of Ni was 2.03–17.36 ppm, with
an average of 8.17 ppm. The Co/Ni ratio ranged from 0.22 to 4.61, with a large variation,
and an average value of 1.57. The content of Cu was 0.41–41.04 ppm, with an average
of 7.17 ppm. The content of Zn was 0.55–2.73 ppm, with an average of 1.35 ppm. The
content of As was 86.84–573.82 ppm, with an average of 243.03 ppm. The content of Ag
was 0.08–5.55 ppm, with an average of 2.06 ppm. The content of Sb was 0.05–4.07 ppm,
with an average of 1.42 ppm, except for one point below the detection limit. The content
of Au was 0.01–0.37 ppm, with an average of 0.10 ppm, except for two points below the
detection limit. The content of Pb was 2.04–99.79 ppm, with an average of 26.10 ppm. The
content of Bi was 1.43–42.52 ppm, with an average of 12.65 ppm.

5.3. In-Situ Sulfur Isotopic Compositions

Pyrite from three boreholes was selected for in-situ sulfur isotope analysis, and the
results are shown in Table 2, with a total of 24 analytical points. Overall, the δ34S values
of pyrite from different boreholes have a narrow range of variation (10‰–13‰), with
an average pyrite δ34S value of + 11.65‰, which is positively deviated from meteoric
sulfur and has a small range of variation, with a high degree of sulfur homogenization,
characterized by an enrichment of δ34S (Figure 6).
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Table 2. In-situ sulfur isotopic analyses from the gold deposit offshore of Northern Sanshandao.

Sample Serial Number Mineral δ34SCDT (‰) Sample Serial Number

ZK8401-1 Pyrite 11.9 920.0 m

ZK8401-2 Pyrite 12.6 920.0 m

ZK8401-3 Pyrite 12.6 920.0 m

ZK8401-4 Pyrite 12.1 920.0 m

ZK8401-5 Pyrite 12.0 920.0 m

ZK8401-6 Pyrite 11.6 963.5 m

ZK8401-7 Pyrite 12.4 963.5 m

ZK8401-8 Pyrite 11.4 963.5 m

ZK8401-9 Pyrite 12.1 963.5 m

ZK8401-10 Pyrite 11.6 963.5 m

ZK8401-11 Pyrite 10.5 963.5 m

ZK3612-1 Pyrite 11.1 1537.0 m

ZK3612-2 Pyrite 12.0 1537.0 m

ZK3612-3 Pyrite 11.3 1537.0 m

ZK3612-4 Pyrite 12.9 1537.0 m

ZK3410-1 Pyrite 10.0 1552.0 m

ZK3410-2 Pyrite 10.3 1552.0 m

ZK3410-3 Pyrite 10.6 1552.0 m

ZK3410-4 Pyrite 11.9 1552.0 m

ZK3410-5 Pyrite 11.4 1552.0 m

ZK3410-6 Pyrite 10.8 1613.0 m

ZK3410-7 Pyrite 10.6 1613.0 m

ZK3410-8 Pyrite 13.0 1613.0 m

ZK3410-9 Pyrite 12.8 1613.0 m

5.4. Rb–Sr Age

Test samples of pyrite Rb–Sr isotopes were taken from borehole ZK3410, and the
contents of the Rb–Sr and isotope ratios are shown in Table 3. The values of 87Rb/86Sr and
87Sr/86Sr were (0.797712–21.364224) and (0.713049–0.747714), respectively; the 87Rb/86Sr
and 87Sr/86Sr plots showed good linear relationships. ISOPLOT software was used to
calculate the isochron age, which was t = 118.50 ± 0.65 Ma, and the initial 87Sr/86Sr (Isr)
value was 0.711686 ± 0.000059 (Figure 7).

Table 3. The contents and isotope ratios of Rb and Sr from the gold deposit offshore of Northern
Sanshandao.

Sample Serial Number Ore Type 87Rb/86Sr 87Sr/86Sr StdErr (%)

ZK3410-2 Pyrite 2.466515 0.715794 0.000012

ZK3410-5 Pyrite 3.847805 0.718191 0.000022

ZK3410-7 Pyrite 21.364224 0.747714 0.000019

ZK3410-9 Pyrite 19.944731 0.745217 0.000017

ZK3410-11 Pyrite 8.088107 0.725319 0.000015

ZK3410-12 Pyrite 0.797712 0.713049 0.000024
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6. Discussion
6.1. Trace Element Distribution Characteristics of Pyrite

The trace element composition of pyrite can effectively reflect the characteristics of
ore-forming fluids, trace the source of ore-forming materials, and indicate the genesis of the
deposit [25–33]. The form of occurrence form of trace elements in pyrite can be intuitively
and effectively distinguished using a LA-ICP-MS time-resolved signal spectrum. Generally,
if the signal intensity of a certain element shows a gentle straight line with the denudation
time, it means that the element mainly exists in the form of a solid solution in pyrite. If
the peak of an element appears on the time-resolved signal spectrum, it means that the
element exists in the form of micron-sized mineral inclusions in pyrite [32]. Correlations
among the trace elements in pyrite were analyzed, and a relatively flat signal area was
selected for data processing so that the data could reliably and truly reflect the changes in
trace elements in pyrite (Figure 6, Table 1). The Au content of pyrite in gold deposits is
relatively low, and the contents of Bi, Pb, Cu, Co, and Ni are generally high. Among these,
Co and Ni are strong pro-copper elements, which can replace Fe in the lattice of pyrite
minerals [34]. In addition, As and Sb also have isomorphism with S or Fe. According to
the trace element correlation diagram, Au and Ag, and As and Cu showed certain positive
correlations, and Sb and Ag, and Zn and Cu showed positive correlations (Figure 8). The
correlation between Au and Ag indicates that Au in gold-bearing pyrite may exist in the
form of an electrum, while the correlation with As is more likely to indicate that As-bearing
pyrite is a good gold carrier.

Among the trace elements of pyrite, As, Co, and Ni are often affected by the physical
and chemical conditions in which they are precipitated. Therefore, it is of great significance
to determine the genetic information of pyrite using the contents of these trace elements.
It is generally believed that the content ratio of Co and Ni in pyrite of sedimentary or
sedimentary transformation is generally less than 1.0, and the content ratio of Co and Ni in
pyrite of magmatic origin is often close to 1.0. For pyrite related to hydrothermal genesis,
the content ratio of Co and Ni is generally greater than 1 and less than 10, while for pyrite
of volcanic origin, the content ratio of Co and Ni is greater than 10 [34,35]. From the test
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results, it can be seen that the extreme values of Co and Ni elements in pyrite are large,
and the element contents jump greatly. In addition, the Co/Ni ratios of each test point
are also different. The Co/Ni ratio of the gold deposit offshore of Northern Sanshandao
is mainly between 0.1 and 10, and the Co/Ni ratio has a wide range of changes. Most
of the casting points on the Co–Ni diagram are located in magmatic and hydrothermal
genesis areas, and a few are located in sedimentary genesis areas (Figure 8f). The Mesozoic
sedimentary strata are missing in the Jiaodong area. It is speculated that the pyrite of gold
deposits in the northern sea area of Sanshandao is of hydrothermal genesis. The reason
that most of the casting points deviate from the hydrothermal genesis area may be that
the metallogenic process has experienced different forms of hydrothermal evolution or
different fluid mixing.
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6.2. Occurrence of Gold

The LA-ICP-MS signal curves of pyrite from different boreholes are stable, indicating
that Au mainly exists in pyrite in the form of invisible lattice gold or nanoparticles. How-
ever, there are also abnormal peaks of Au (Figure 6a,b). The inclusion of gold can also be
seen under the reflected light of the microscope (Figure 4b,c), indicating that there was
also a micron-sized inclusion of gold in the gold-bearing pyrite. The maximum amount of
soluble Au (CAu) in pyrite depends on the As content (CAs). According to the Au saturation
line of pyrite, CAu = 0.02 × CAs + 4 × 10−5, and it can be found that below this curve,
Au mainly exists in the form of invisible Au in the pyrite lattice. Above the curve, Au
mainly appears in the form of natural gold or mineral inclusions, such as gold and silver,
and the Au/As ratio can reflect the occurrence state of invisible gold in pyrite [36]. In
the LA-ICP-MS time-resolved signal spectrum of this study, the signal intensity of Au
generally shows a smooth state with the ablation time, and all test points were below
the gold solubility line, indicating that invisible gold mainly exists in the form of a solid
solution (Figures 6 and 8b). In the form of atoms or ions, gold enters the lattice of the
medium through isomorphism and forms a solid solution with the medium. In hydrother-
mal fluids, gold may mainly migrate in the form of Au (HS)2− complexes. In the process of
pyrite–sericite–quartz lithification, sulfidation makes the Au (HS)2− complex unstable, and
it decomposes, resulting in Au precipitation and enrichment mineralization [15].

Au and As generally show a certain positive correlation (Figure 8b), indicating that
As has a certain correlation with the enrichment of Au in the gold deposit offshore of
Northern Sanshandao, which is not completely consistent with previous research results of
the Sanshandao gold deposit [37]. There are usually two mechanisms for the simultaneous
entry of As and Au in gold-bearing pyrite, that is, Au and As replace Fe as follows:
As3+ + yAu+ + (1–y)M = Fe2+, where M refers to other elements in lattice defects [38], or
Au replaces Fe, and As replaces S− with As−. The former is usually found in high-sulfur
epithermal gold deposits with high oxygen fugacity [39], while the precipitation of gold in
the Jiaodong area is in a relatively reducing environment [40]. Therefore, it is speculated
that As in the gold deposit offshore of Northern Sanshandao enters into pyrite in the
form of As− instead of S−, causing its lattice defects to promote the entry of Au+ into
gold-bearing pyrite.

6.3. Metallogenic Age

In this study, the Rb–Sr isochron age of pyrite is 118.5 ± 0.65Ma, which can rep-
resent the metallogenic age of the deposit (Figure 7). It belongs to the Early Creta-
ceous and is consistent with the gold mineralization age (120.0 ± 5Ma) in the Jiaodong
area [41–44]. Previous studies have determined the crystallization ages of Sanshandao
granite (128.0–129.0 Ma) [45,46]. The sericite Rb–Sr isochron age of the Sanshandao gold
deposit is 117.6 ± 3.0 Ma [47], and the 40Ar/39Ar plateau age of sericite from the San-
shandao gold deposit is 118.35 ± 1.21 Ma [48]. The Cangshang gold deposit has a sericite
40Ar/39Ar plateau age of 121.3 ± 0.2 Ma [49]. The younger age peak is 8–10 Ma later than
the crystallization ages of igneous rocks in the study area and may represent the main min-
eralization period in the Sanshandao gold belt. These ages suggest that gold mineralization
in the Jiaodong area was completed in a short time under the same tectonic conditions.

6.4. Sources of Ore-Forming Material

The δ34S values of sulfides from different sources usually have a certain range, for
example, that of a meteorite or mantle source is 0.0‰–3.0‰, and that of granitic magma sul-
fur is −5.0‰–10.0‰. The average value of sulfur in seawater is +20.0‰, and sedimentary
source reduction sulfur is <0.0‰ [50–52]. The sulfur isotope samples of the three boreholes
studied in this test are all pyrite, and the δ34S values are concentrated in the 10‰–13‰
range. The test results generally show high δ34S values (Figure 9), which are close to the
δ34S value of the Sanshandao and Cangshang gold deposits [53,54], all of which have
characteristics of a positive deviation from meteorite sulfur and a relatively concentrated
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distribution. This shows that the degree of sulfur homogenization is high, and it also
shows that the possibility of sulfur from only mantle-derived magma is relatively small.
The δ34S values are relatively higher than those of the Precambrian metamorphic strata,
Neoarchean TTG rock series, and Mesozoic granites [55–58]. Previous researchers believe
that sulfur isotopes are mainly derived from ore-bearing surrounding rocks, initially from
early Precambrian metamorphic complexes, and finally from late Mesozoic granitoids [59].
Previous studies have suggested that sulfur is dominated by mantle-derived magmatic
sulfur and mixed with crust-derived sulfur [60,61]. It is also believed that sulfur may be
derived from devolatilization during plate subduction [62]. Other studies have suggested
that the value of δ34S gradually increases from east to west in the Jiaodong area, which is
due to sulfur in the seawater participating in mineralization [58]. However, some recent
studies suggest that the high sulfur isotope composition of the Jiaodong gold deposit was
related to subduction of the Neoproterozoic sedimentary strata of the Yangtze Craton
under the lithospheric mantle of the North China Craton [63]. It is speculated that the
sulfur isotope composition has mantle-derived components. The large-scale, deep cutting,
and high degree of fragmentation of the Sanshandao fault zone are conducive to the full
development of water–rock interactions and the mixing of seawater sulfur, increasing the
δ34S value.
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Figure 9. Sulfur isotopic composition of pyrite from the gold deposit offshore of Northern Sanshandao
and regional rocks.

The initial 87Sr/86Sr value is also an essential indicator for judging the source of
diagenetic and metallogenic materials. It is often used to trace the source of metallogenic
materials, magmatic fluid, and deep source fluid in the geological study of deposits [64].
Generally, values of 87Sr/86Sr > 0.710 are considered to reflect a crustal source, whereas
values of 87Sr/86Sr < 0.705 are considered to reflect a mantle source [64–67]. The initial
Sr value from the gold deposit offshore of Northern Sanshandao was lower than the
continental crust but significantly higher than the mantle. The Sr isotope composition also
shows that the source of the minerals has the attributes of a mixed crust–mantle source. It is
speculated that the volatile-containing gold-rich initial mantle fluid upwells along the deep
fault. In the process of rising and intrusion, a large amount of seawater sulfur is mixed to
form a mixed fluid. This fluid carries mineralized materials as it rises, and it precipitates to
form gold deposits in the fracture zones with increased tectonic space.
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7. Conclusions

The gold deposit offshore of Northern Sanshandao contains visible gold and invisible
gold. The visible gold is mainly electrum and natural gold, and the invisible gold is mainly
invisible lattice gold or nanoparticles. The gold most likely precipitated directly from the
Au–As-rich fluid.

The Rb–Sr isochron age of pyrite from the main mineralization period was
118.5 ± 0.65 Ma, representing the ore formation age of the gold deposits. It belongs to
the Early Cretaceous and is consistent with the gold mineralization age (120.0 ± 5 Ma) in
the Jiaodong area.

The mineralization of gold deposits originated from the mixing of a large amount of
seawater sulfur in the rising process of mantle magmatic fluid. The fluid underwent phase
separation and sulfidation under suitable temperature and pressure conditions, and gold
deposits were formed in the Early Cretaceous.
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