

  minerals-14-00390




minerals-14-00390







Minerals 2024, 14(4), 390; doi:10.3390/min14040390




Article



Petrogenesis of the Early Cretaceous Tietonggou Diorite and Its Geological Implications



Guo Ye 1, Guangzhou Mao 1,2,3,*, Qinglin Xu 1, Zhengjiang Ding 3, Yanchao Han 1,4, Huiji Zhao 1,4 and Ying Shen 5





1



Shandong Key Laboratory of Depositional Mineralization & Sedimentary Minerals, College of Earth Sciences & Engineering, Shandong University of Science and Technology, Qingdao 266590, China






2



Functional Laboratory of Marine Mineral Resources Evaluation and Detection Technology, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266237, China






3



Shandong Engineering Research Center of Application and Development of Big Data for Deep Gold Exploration, Weihai 264209, China






4



Shandong Geo-Surveying & Mapping Institute, Ji’nan 250003, China






5



Shandong Institute of Geological Sciences, Ji’nan 250013, China









*



Correspondence: gzmaonjunwu@163.com







Citation: Ye, G.; Mao, G.; Xu, Q.; Ding, Z.; Han, Y.; Zhao, H.; Shen, Y. Petrogenesis of the Early Cretaceous Tietonggou Diorite and Its Geological Implications. Minerals 2024, 14, 390. https://doi.org/10.3390/min14040390



Academic Editor: Paul Alexandre



Received: 28 February 2024 / Revised: 3 April 2024 / Accepted: 4 April 2024 / Published: 9 April 2024



Abstract

:

The Tietonggou pluton is mainly composed of gabbroic diorite and diorite. The petrology, zircon U-Pb age, and geochemistry of the Tietonggou diorite have been studied to determine its petrogenesis and metallogenic significance. The diorite samples have 56–58 wt% SiO2 and 11–14 wt% Al2O3 and are peraluminous and sodic (Na2O/K2O = 1.29–2.07). All the samples are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs; e.g., Rb, Ba, and Sr) but depleted in heavy rare earth elements (HREEs) and high field strength elements (HFSEs; e.g., Zr, Nb, and Ta), suggesting subduction-related affinities. The rocks have narrow ranges of (206Pb/204Pb)t (18.5–19.0), (207Pb/204Pb)t (15.71–15.75), and (208Pb/204Pb)t (38.4–39.0) ratios, respectively. Zircons from the Tietonggou diorite yielded a weighted average U-Pb age of 132.86 ± 0.92 Ma (MSWD = 0.48), whilst those from the nearby Laowa diorite yielded 129.72 ± 0.61 Ma (MSWD = 1.05). This suggests that the rocks represent Early Cretaceous plutons, coeval with the peak lithospheric thinning in eastern North China Craton (NCC). The magma likely originated from partial melting of the enriched lithospheric mantle and was contaminated by ancient lower NCC crustal materials. Our study clarifies the tectonic background of the Tietonggou pluton and provides support for the study of the genesis of Fe–skarn deposits in western Shandong.
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1. Introduction


Since the Triassic continental collision between the North China Craton (NCC) and Yangtze Craton, NCC has undergone lithospheric thinning and large-scale magmatism; post-collision magmatism produced several Triassic plutons on the southern and eastern margins of the NCC [1]. Western Shandong is located in the southeastern NCC, west of the Yishu fault (a section of the crustal Tanlu fault zone) and adjacent to the Sulu–Dabie UHP belt (Figure 1a). There are many Fe–skarn deposits closely associated with these Mesozoic plutons. As one of the four major Fe–skarn deposit concentration areas in China, the western Shandong shows extensive Mesozoic magmatism and mineralization, making it an important area for studying the NCC formation and evolution [1,2,3,4,5,6], especially in terms of crust–mantle interactions [7,8,9,10,11]. Tietonggou is one of the two Fe–skarn deposits related to diorite in western Shandong, which are mainly produced in the contact zone between intrusive bodies and Cambrian–Ordovician, with cumulative Fe reserves of 2.11 million tons. Compared with the Jiaodong Peninsula, there are far fewer Mesozoic magmatic rock outcrops in western Shandong, and the Tietonggou pluton is one of them; their ages were reported as 184.7–180.1 Ma, 133 ± 6 Ma, 120 Ma, etc. [3,4,12].



In recent years, many petrological, geochronological, and geochemical studies have been conducted regarding Mesozoic Fe–skarn deposits and related intermediate-basic intrusive rocks in western Shandong [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. The Tietonggou pluton was considered to have originated from the partial melting of pure peridotite in the upper mantle with continental crust input [13,14,15,16], yet there are different views on the crustal input: (1) Yangtze plate materials introduced during its Triassic subduction and collision [15,16]; (2) Archean North China crustal material sunk into the mantle during lithospheric delamination [17]; (3) Paleo-Pacific materials introduced during its subduction beneath North China [13].



Previous researchers focused on the Mesozoic pluton and Fe–skarn deposits in the whole western Shandong area and the lack of special research on the Tietonggou pluton. They have different opinions on the source of crust input in the metallogenic material of the Tietonggou pluton, and there are no reports on the accurate metallogenic age of the Tietonggou pluton.



In this study, we carried out analyses in petrology, whole-rock geochemistry, and zircon U-Pb geochronology on the Tietonggou pluton. The precise metallogenic age of the Tietonggou rock mass was obtained, and the possible material sources were analyzed. We discuss its petrogenesis and regional tectonic significance in order to clarify the tectonic background of the Tietonggou pluton and point out the targets for iron ore prospecting. The precise U/Pb zircon ages of the plutonic rocks in China can be used to establish geodynamics models for future studies.
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Figure 1. (a) Regional geological maps of western Shandong (modified after [18,19]); (b) Tietonggou area (modified after [20,21]). 
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2. Geological Setting and Petrography


Western Shandong was tectonically affected by the Lüliang, Caledonian, Hercynian, Indosinian, and Yanshanian orogenic events, forming a WNW-NW-trending tectonic framework. Mesozoic intrusive rocks are well-developed in western Shandong [18], as represented by the Laiwu and Ji’nan intrusive complexes (Figure 1a). Local stratigraphy comprises mainly the Ordovician Majiagou Group and the Carboniferous–Permian Yuemengou–Taiyuan groups. There are three major sets of faults (NW-, NE-, and EW-trending). Local magmatic rocks are dominated by Yanshanian (Jurassic–Cretaceous) intermediate plutonic rocks (notably the Tietonggou pluton) and minor mafic and felsic rocks (Figure 1b). The magmatic rock emplacement is locally fault-controlled, and the wallrocks include mainly Ordovician and Triassic marble [22].



The Tietonggou pluton comprises mainly meladiorite and diorite, which were mainly developed along the intrusive contact with the Ordovician Majiagou Group and the Carboniferous–Permian Yuemengou–Taiyuan groups. Samples LW1-LW12 were taken from Laowa village (where the Tietonggou pluton is exposed). The intrusive contact with the altered wallrocks is distinct in the mine (Figure 2a). The diorite is grayish-black (Figure 2c) and contains mafic microgranular enclaves (peridotite, a few cm in dimension). These inclusions contain 60%–65% olivine, 10%–15% orthopyroxene, and accessory minerals such as apatite (Figure 2d).



Under the microscope, the olivine is granular and cracked. The pyroxene is euhedral to subhedral granular and ranges from coarse- to fine-grained (Figure 2e). The hornblende is greenish and unevenly distributed (Figure 2f). Plagioclase is euhedral–subhedral tabular, and some crystals are oscillatory-zoned (Figure 2g), whilst biotite is flaky, dark brown, and of different sizes (Figure 2h). Opaque minerals include mainly magnetite.




3. Methods


In this study, a total of twelve samples were collected, including 2 meladiorite and 10 diorite. Meladiorite is the transition from diorite to gabbro. The dark minerals are mainly clinopyroxene (25%), containing a small amount of amphibole and orthopyroxene (about 5%). All the samples were collected from fresh outcrops of the Tietonggou pluton (Figure 2). Whole-rock major oxides, trace elements analyses, Pb isotope analysis, and zircon U-Pb dating were used to determine the tectonic implications (Figure 3).



3.1. Whole-Rock Major Oxides and Trace Elements Analyses


The analyses were carried out at the Institute of Geochemistry, Chinese Academy of Sciences (IGCAS) with an Agilent 5110 ICP-OES (Agilent Technologies, Santa Clara, CA, USA). For each sample, 0.0400 g powder was weighed into a Teflon cup, and 0.5 mL HNO3 and 1 mL HF were successively added, sealed, and heated in an oven at 200 °C for 12 h. The sample solution was then dried at 150 °C on an electric heating plate and then redigested with 5 mL 12% (v/v) HNO3 at 150 °C for 5 h. The solution was then diluted and analyzed [23]. The analysis accuracy of major oxides and trace elements is less than ±1 and ±5.




3.2. Whole-Rock Pb Isotope Analysis


Wole-rock Pb isotopic composition was measured out in the IGCAS with a Neptune plus MC-ICP-MS (Thermo Fisher Scientific, Dreieich, Germany). The rock powder was placed in the polytetrafluoroethylene sample cartridge, and 0.5 mL concentrated HNO3 and 1.0 mL concentrated HCl were added. The sample dissolving bomb was heated (195 °C) in an oven for three days to ensure complete digestion. The solution was then evaporated on an electric heating plate and redissolved in 1.5 mL of HBr (0.2 mol/L) and HNO3 (0.5 mol/L). Detailed procedures were described by [24].




3.3. Zircon U-Pb Dating


Zircon grains were separated by conventional magnetic separation and heavy liquid techniques. Optical microscopic observation, scanning electron microscope (SEM) cathodoluminescence (CL) imaging, and analysis spot selection of zircons were completed at the Beijing Zircon Navigation Technology Co. Ltd., and the zircon U-Pb dating was carried out at the State Key Laboratory of Continental Dynamics of Northwestern University with an Agilent 7500a ICP-MS (Agilent Technologies, Santa Clara, CA, USA). The laser ablation used helium as the carrier gas, 20 μm spot size, 0.032–0.036 J/cm2 energy density, and 10 Hz repetition rate. The calibration was performed with standard zircon 91,500 and GJ-1 [25,26,27]. ISOPLOT 3.0 software was used to process the data results and calculate the age. Detailed procedures were as described by [28].





4. Results


4.1. Whole-Rock Geochemistry


In our study, 12 rock samples (2 meladiorite and 10 diorite) were analyzed for their major oxides and trace element compositions, which are listed in Table 1, respectively. The rock samples have SiO2 = 56–58 wt% (avg. 57.6 wt%), Al2O3 = 11.31–14.15 wt% (avg. 13.3 wt%), Na2O = 2.6–3.5 wt%, K2O = 1.63–2.55 wt%, Na2O+K2O = 4.50–5.99 wt%, and Na2O/K2O = 1.29–2.07. In the total alkali silica (TAS) diagram (Figure 4), the samples fall within the meladiorite–diorite field, and most of the samples are subalkaline. The rocks have MgO = 7.14–10.43 wt%, CaO = 5.99–7.29 wt%, and a loss on ignition (LOI) = 0.28–0.88 wt%. Na2O, TiO2, and K2O contents increase with increasing SiO2 content, while Fe2O3, CaO, and MgO decrease (Figure 5). In the A/CNK-A/NK diagram (Figure 6a), the meladiorite and diorite samples fall into the metaluminous and peraluminous fields, respectively. In the SiO2-AR diagram (Figure 6b), all Tietonggou samples are assigned as calc-alkaline.



The total REE contents (∑REEs) for the Tietonggou samples are 94.29–109.48 ppm, among which the ∑LREEs = 83.60–99.69 ppm and ∑HREEs = 8.91–10.69 ppm, and the (La/Yb)N = 8.99–13.30. The rocks have weakly negative Eu anomalies (δEu = 0.81–1.03) and no discernible Ce anomalies (δCe = 1.00–1.02). The chondrite-normalized REE patterns show LREE enrichments and HREE depletions (Figure 7). In the primitive-mantle normalized multi-element spidergram (Figure 8), the rock samples are enriched in large ion lithophile elements (LILEs, e.g., Rb, Ba, Sr) but depleted in high field strength elements (HFSEs, e.g., Zr, Nb, Ta), resembling typical subduction-related arc magmatic rocks [33,34].




4.2. Pb Isotope Characteristics


The Pb isotope analysis results for the Tietongou diorite are listed in Table 2. The samples have (206Pb/204Pb)t, (207Pb/204Pb)t, and (208Pb/204Pb)t of 17.89–17.96, 15.48–15.50, and 37.90–37.95, respectively. The initial Pb isotope data of the samples fall between the Tietonggou pyroxene diorite and Shangyu pyroxene diorite in western Shandong [37,38]. In the Pb isotopic composition diagram (Figure 9), the samples of the Tietonggou pluton are projected within the range of Mesozoic mafic rocks in the North China Craton and the Yangtze Craton (Figure 8), indicating that the magma source of the Tietonggou pluton is closely related to the Yangtze Craton [38,39].




4.3. Zircon U-Pb Geochronology


For the present study, 23 zircons from the Tietonggou diorite (in the mine) and 27 zircons from the Laowa diorite were U-Pb dated. The zircons are transparent to translucent and mostly short to long columnar. Many zircons show core-rim texture (Figure 10). The zircons have Th/U > 0.4, resembling typical magmatic zircons [42] (Table 3). All analysis spots fall on or near the concordia, yielding a weighted average zircon age of 132.86 ± 0.92 Ma (MSWD = 0.48) for the Tietonggou pluton and 129.72 ± 0.61 Ma (MSWD = 1.05) for the Laowa pluton (Figure 11), suggesting an Early Cretaceous pluton.





5. Discussion


5.1. Age of Pluton


Early Cretaceous magmatic rocks are widely distributed in western Shandong, with most of the reported Ar-Ar ages clustered around 132–124 Ma [43,44]. Our study reports Early Cretaceous LA-ICP-MS zircon U-Pb ages of 132.86 ± 0.92 Ma (Tietonggou diorite) and 129.72 ± 0.61 Ma (Laowa diorite). It shows that both the Tietonggou diorite and the Laowa diorite were produced in the Cretaceous, which is consistent with the peak time of the lithospheric thinning of the North China Craton. Similar zircon U-Pb ages were also reported for the Mesozoic intrusive rocks (granitoids and gabbros) (132–122 Ma) in the eastern North China Craton (Jiaodong and Liaodong) [7,45,46]. This shows strong Early Cretaceous magmatic activity in the eastern part of the North China Craton.




5.2. Petrogenesis


The Tietonggou meladiorite and diorite are rich in MgO, Na2O, Co, Ni, and other transitional elements, suggesting an upper mantle source [47]. The Nb/Ta value of the samples (14.27–16.82) is significantly higher than that of crust-derived magma (11.00) but basically consistent with that of mantle-derived magma (17.50) [48]. The Zr/Hf ratios (34.82–39.14) are close to the primitive mantle value (36.27) but much higher than the continental crust value (11.0) [34]. The samples also have Rb/Sr (0.10–0.16) and Ba/Rb (9.56–14.08) values close to the primitive mantle value (Rb/Sr = 0.03 [49], Ba/Rb = 11.00 [50]). The geochemical features of the Tietonggou pluton suggest a mantle-derived magma source. In the Ba/Rb-Rb/Sr diagram (Figure 12), the evolution trend of Tietonggou diorite samples is similar to that of the primitive mantle, suggesting that the rocks may have been mantle-sourced [51], consistent with the characteristics of compatible trace elements (e.g., Ni and Co). In addition, the Tietonggou pluton is rich in LILEs and depleted in HFSEs, giving a Ta/La value (0.01–0.03) that is lower than the primitive mantle value (0.06) [52], indicating that crustal input must be considered in the petrogenesis. The Ce/Pb values of the samples (2.32–2.94, avg. 2.58) are significantly lower than those of MORB and OIB (25) but close to that of the upper crust (3.2), indicating significant crustal contamination in the magma evolution. Ratios of HFSEs and REEs can effectively identify the Cl-rich or F-rich ore-forming fluids: Cl-rich fluids commonly have LREEs enrichment and have Nb/La, Th/La, and Hf/Sm values < 1, whereas F-rich fluids have both LREE and HFSE enrichments and have Nb/La, Th/La, and Hf/Sm values > 1 [53]. For most Tietonggou samples, the Nb/La, Th/La, and Hf/Sm values are < 1, suggesting Cl-rich fluids (Table 1).



Pb isotope study [39] showed that Mesozoic mafic rocks in Eastern China have low initial radiogenic Pb isotope ratios, i.e., 206Pb/204Pb < 17.80, 207Pb/204Pb < 15.00, and 208Pb/204Pb < 38.00, whereas those in the Yangtze Craton have high initial radiogenic Pb isotope ratios, i.e., 206Pb/204Pb > 17.80, 207Pb/204Pb > 15.50, and 208Pb/204Pb > 38.00. The Tietonggou diorite has similar 206Pb/204Pb (>17.80) to those from the Yangtze Craton but similar 207Pb/204Pb (<15.50) and 208Pb/204Pb (<3800) to those from the NCC. This suggests that the magma formation was caused by the subduction of the Yangtze Plate beneath North China, so the magma source may be a mixture of the Yangtze and North China basement rocks (Table 2). For the study of intrusive rocks in the adjacent areas of western Shandong, the 207Pb/204Pb values of the Yinan gabbro in western Shandong are higher than those of the North China basic rocks, which may be modified by the subduction of the Yangtze craton [38]. Yang showed a spatial variation trend of Sr-Nd-Pb isotope of Early Cretaceous high-Mg diorite in western Shandong, of which 87Sr/86Sr and 207Pb/204Pb and 208Pb/204Pb decrease from southeast to northwest, whereas εNd (t) increases [16,38]. This is consistent with the Yangtze plate subducted northwest beneath the North China Craton and the mixed Yangtze–North China magma source proposed for the Tietonggou pluton.




5.3. Tectonic Implications


The Tietonggou pluton emplacement is coeval with the earliest Cretaceous magmatism, which was the strongest Mesozoic magmatic event in the North China Craton and the whole of Eastern China [45,46,54,55,56]. During this time, large-scale magmatism, basin subsidence, and faulting occurred in the North China Craton, indicating strong lithospheric extension associated with the zenith of the North China decratonization [57,58]. Due to the subduction rollback, lithospheric delamination and asthenospheric upwelling occurred, forming extensive magmatism [59,60,61,62]. The formation of the Tietonggou pluton was closely related to this subduction event, and the magma was mainly sourced from the mantle. With the subduction of the Pacific plate to the North China plate, the asthenosphere upwelling from deep (>150 km) to shallow caused decompression melting, the partial melting of the enriched lithospheric mantle, and the partial melting of mantle peridotite and subducted oceanic slab to produce basic magma.





6. Conclusions


	(1)

	
The western Shandong, located in the North China Craton, is one of the four major Fe–skarn deposit concentration areas in China, and the Tietonggou deposit is a representative deposit in this area. The study of the metallogenic age and source of ore-forming materials of the Tietonggou intrusion can contribute to the study of the Mesozoic magmatic evolution framework and the creation of the genetic model of Fe–skarn deposits in North China.




	(2)

	
Geochemical characteristics of the Tietonggou pluton and its inclusions suggest that the parental magma may have originated mainly from the enriched lithospheric mantle with minor continental crustal input. The magma formation was caused by the subduction of the Yangtze beneath North China, and the Tietonggou pluton was formed under the extension during the thinning of the lithosphere in this period.




	(3)

	
The view that the crustal input of metallogenic material in the Tietonggou deposit is derived from Archean North China or Paleo-Pacific materials could not be supported in this study.




	(4)

	
More research is needed to compare the genetic conclusions of the Tietonggou pluton with other Mesozoic plutons in western Shandong and to summarize the similarities in the geneses of these plutons.
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Figure 2. Field photos and thin-section microphotographs of the Tietonggou pluton: (a) intrusive contact between diorite and marble; (b) meladiorite; (c) Laowa diorite; (d) diorite with augite xenoliths; (e) spindle olivine; (f) amphibole; (g) oscillatory-zoned plagioclase; (h) biotite. Py—Pyrite; Ol—olivine; Aug—augite; Pl—plagioclase; Amp—amphibole; Bt—biotite. 
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Figure 3. Methods flow chart. 
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Figure 4. TAS diagram for the Tietonggou samples [29,30]. 
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Figure 5. Harker diagrams for the Tietonggou meladiorite and diorite samples. 
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Figure 6. (a) A/CNK-A/NK [31] and (b) AR-SiO2 [32] plots for the Tietonggou meladiorite and diorite samples. AR: Alkalinity ratio. 
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Figure 7. Chondrite-normalized REE patterns for the Tietonggou meladiorite and diorite samples [35]. 
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Figure 8. Primitive mantle-normalized multi-element spidergram for the Tietonggou meladiorite and diorite samples [36]. 
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Figure 9. (a)208Pb/204Pb versus 206Pb/204Pb diagram and (b) 207Pb/204Pb versus 206Pb/204Pb diagram for the Tietonggou meladiorite and diorite samples [40]. Data source: Mesozoic mafic rocks of North China Craton [38]; Mesozoic mafic rocks [38,39]; Northern Hemisphere reference line [41]; Earth isochron [42]. 
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Figure 10. Representative zircon CL images and U-Pb ages for the Tietonggou (a) and Laowa (b) diorite samples. 
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Figure 11. Zircon U-Pb concordia plots and weighted average ages for the Tietonggou pluton (a) and Laowa pluton (b). The error of isotope ratio and age is 2σ, and the confidence of weighted average age error is 95%. 
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Figure 12. Ba/Rb vs. Rb/Sr plots for the Tietonggou meladiorite and diorite samples [51]. 
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Table 1. Major oxides composition and trace elements composition for the Tietonggou diorite and meladiorite samples.
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Major Oxides in wt%

	
Diorite (n = 10)

	
Meladiorite

	
Major Oxides in wt%

	
Diorite (n = 10)

	
Meladiorite




	
Min

	
Mean

	
Max

	
LW-5

	
LW-6

	
Min

	
Mean

	
Max

	
LW-5

	
LW-6






	
Na2O

	
2.94

	
3.28

	
3.46

	
2.57

	
3.49

	
MnO

	
0.11

	
0.11

	
0.12

	
0.13

	
0.11




	
MgO

	
7.14

	
7.83

	
8.83

	
10.43

	
7.58

	
Fe2O3

	
6.67

	
7.11

	
7.59

	
8.21

	
7.16




	
Al2O3

	
12.23

	
13.4

	
14.15

	
11.31

	
14.11

	
LOI

	
0.28

	
0.51

	
0.79

	
0.88

	
0.58




	
SiO2

	
56.4

	
57.6

	
58.38

	
56.17

	
56.91

	
Total

	
99.15

	
99.4

	
99.64

	
99.77

	
99.3




	
P2O5

	
0.14

	
0.19

	
0.21

	
0.12

	
0.21

	
K2O + Na2O

	
5.02

	
5.55

	
5.99

	
4.5

	
5.54




	
K2O

	
1.63

	
2.27

	
2.55

	
1.92

	
2.05

	
A/NK

	
2.33

	
2.42

	
2.66

	
2.51

	
2.55




	
CaO

	
5.99

	
6.41

	
7.2

	
7.29

	
6.43

	
A/CNK

	
1.02

	
1.12

	
1.16

	
0.96

	
1.18




	
TiO2

	
0.62

	
0.67

	
0.72

	
0.73

	
0.68

	
Na2O/K2O

	
1.29

	
1.46

	
2.07

	
1.34

	
1.7




	
Trace and Rare Earth Elements in ppm

	
Diorite (n = 10)

	
Meladiorite

	
Trace and Rare Earth Elements in ppm

	
Diorite (n = 10)

	
Meladiorite




	
Min

	
Mean

	
Max

	
LW-5

	
LW-6

	
Min

	
Mean

	
Max

	
LW-5

	
LW-6




	
Li

	
19.3

	
21.83

	
24.8

	
23.6

	
21.3

	
Ho

	
0.47

	
0.501

	
0.52

	
0.55

	
0.45




	
Be

	
1.53

	
1.643

	
1.75

	
1.5

	
1.54

	
Er

	
1.27

	
1.348

	
1.42

	
1.46

	
1.2




	
Sc

	
17.9

	
19.56

	
22.5

	
25.9

	
18.2

	
Tm

	
0.18

	
0.194

	
0.2

	
0.21

	
0.17




	
Ti

	
3705

	
3907.6

	
4258

	
4356

	
3912

	
Yb

	
1.15

	
1.214

	
1.3

	
1.32

	
1.08




	
V

	
139

	
147.8

	
164

	
174

	
146

	
Lu

	
0.17

	
0.178

	
0.19

	
0.19

	
0.16




	
Cr

	
587

	
676.9

	
857

	
922

	
651

	
Hf

	
2.94

	
3.492

	
5.05

	
2.56

	
3.07




	
Mn

	
813

	
858.5

	
919

	
1033

	
852

	
Ta

	
0.39

	
0.447

	
0.5

	
0.42

	
0.42




	
Co

	
27.4

	
29.8

	
33.2

	
39.3

	
28.8

	
Pb

	
14.5

	
16.95

	
18.8

	
12.7

	
16.3




	
Ni

	
161

	
178.7

	
207

	
247

	
170

	
Th

	
5.34

	
6.564

	
7.92

	
6.24

	
6.26




	
Cu

	
2.07

	
36.131

	
178

	
205

	
51.4

	
U

	
1.42

	
1.878

	
2.13

	
1.71

	
1.65




	
Zn

	
70.9

	
79.08

	
82.5

	
83

	
76.3

	
Nb/Ta

	
14.44

	
15.792

	
16.82

	
14.27

	
14.76




	
Ga

	
17.7

	
18.75

	
19.7

	
16.4

	
18.4

	
Rb/Sr

	
0.1

	
0.13

	
0.16

	
0.16

	
0.11




	
As

	
6.95

	
7.392

	
7.99

	
6.76

	
6.24

	
Ba/Rb

	
9.56

	
12.183

	
14.08

	
12.48

	
13.6




	
Se

	
0.54

	
0.649

	
0.83

	
0.61

	
0.47

	
Zr/Hf

	
35.42

	
37.659

	
39.14

	
34.82

	
37.51




	
Rb

	
51.6

	
63.1

	
68.2

	
59.6

	
56.8

	
La/Sm

	
4.51

	
5.299

	
5.67

	
4.25

	
5.71




	
Sr

	
419

	
483.9

	
525

	
382

	
523

	
Zr/Nb

	
14.79

	
18.869

	
28.02

	
15.03

	
18.62




	
Y

	
12.4

	
13.45

	
14

	
14.7

	
12.1

	
Ta/La

	
0.02

	
0.021

	
0.03

	
0.02

	
0.02




	
Zr

	
104

	
132

	
198

	
89.2

	
115

	
Ce/Pb

	
2.32

	
2.547

	
2.84

	
2.94

	
2.57




	
Nb

	
5.67

	
7.038

	
7.61

	
5.94

	
6.18

	
Hf/Sm

	
0.71

	
0.862

	
1.22

	
0.62

	
0.82




	
Mo

	
3.85

	
4.656

	
5.51

	
3.76

	
4.16

	
Nb/La

	
0.27

	
0.329

	
0.39

	
0.34

	
0.29




	
Sn

	
1.24

	
1.34

	
1.47

	
1.22

	
1.4

	
Th/La

	
0.26

	
0.305

	
0.34

	
0.35

	
0.29




	
Cs

	
4.07

	
4.58

	
5.12

	
3.69

	
4.05

	
Y/Ho

	
26.26

	
26.807

	
27.83

	
26.69

	
26.63




	
Ba

	
493

	
771.2

	
840

	
743

	
773

	
Co/Ni

	
0.16

	
0.168

	
0.17

	
0.16

	
0.17




	
La

	
18.5

	
21.46

	
23.2

	
17.6

	
21.3

	
(La/Yb)N

	
10.13

	
11.954

	
12.84

	
8.99

	
13.3




	
Ce

	
38.2

	
43.01

	
45.7

	
37.5

	
42

	
∑REEs

	
95.08

	
104.15

	
109.48

	
94.29

	
100.25




	
Pr

	
4.46

	
4.901

	
5.21

	
4.4

	
4.63

	
∑LREEs

	
85.09

	
94.319

	
99.69

	
83.6

	
91.33




	
Nd

	
18.6

	
19.83

	
20.6

	
18.9

	
18.6

	
∑HREEs

	
9.23

	
9.832

	
10.24

	
10.69

	
8.91




	
Sm

	
3.74

	
4.053

	
4.15

	
4.15

	
3.73

	
LREEs/HREEs

	
8.51

	
9.6

	
10.19

	
7.82

	
10.25




	
Eu

	
0.98

	
1.068

	
1.13

	
1.04

	
1.14

	
(Gd/Yb)N

	
2.11

	
2.205

	
2.28

	
2.17

	
2.27




	
Gd

	
3.07

	
3.312

	
3.39

	
3.56

	
3.03

	
(La/Sm)N

	
2.84

	
3.333

	
3.56

	
2.67

	
3.59




	
Tb

	
0.44

	
0.473

	
0.49

	
0.51

	
0.43

	
δCe

	
1

	
1.01

	
1.02

	
1.02

	
1.02




	
Dy

	
2.47

	
2.615

	
2.73

	
2.89

	
2.39

	
δEu

	
0.81

	
0.891

	
0.99

	
0.83

	
1.03








LOI: loss on ignition.













 





Table 2. Whole-rock Pb isotope compositions for the Tietonggou meladiorite and diorite samples.
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	Sample No.
	208Pb/204Pb
	1σ
	207Pb/204Pb
	1σ
	206Pb/204Pb
	1σ
	Pb

(ppm)
	Th

(ppm)
	U

(ppm)
	Age

(Ma)
	(208Pb/204Pb)t
	(207Pb/204Pb)t
	(206Pb/204Pb)t





	LW-1
	38.0940
	0.0013
	15.4946
	0.0004
	18.0561
	0.0003
	16.1
	5.95
	2.07
	129.7
	37.9419
	15.4867
	17.8946



	LW-2
	38.1111
	0.0013
	15.5054
	0.0004
	18.1133
	0.0003
	17.6
	7.92
	2.13
	129.7
	37.9260
	15.4980
	17.9612



	LW-3
	38.0843
	0.0017
	15.4955
	0.0005
	18.0610
	0.0004
	17.4
	7.21
	1.96
	129.7
	37.9144
	15.4886
	17.9200



	LW-4
	38.0731
	0.0015
	15.4901
	0.0005
	18.0505
	0.0004
	15.6
	6.57
	1.88
	129.7
	37.9002
	15.4827
	17.8993



	LW-5
	38.1393
	0.0020
	15.5033
	0.0006
	18.1078
	0.0005
	12.7
	6.24
	1.71
	129.7
	37.9382
	15.4951
	17.9391



	LW-6
	38.1058
	0.0014
	15.5039
	0.0004
	18.0607
	0.0004
	16.3
	6.26
	1.65
	129.7
	37.9481
	15.4977
	17.9338










 





Table 3. LA-ICP-MS zircon U-Pb dating results of the Tietonggou (TTGN) and Laowa (LW) diorite samples.
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Sample No.

	
232Th

	
238U

	
Th/U

	
Isotopic Ratio

	
Isotopic Age




	
(ppm)

	
(ppm)

	
Pb207/Pb206

	
1sigma

	
Pb207/U235

	
1σ

	
Pb206/U238

	
1σ

	
Pb206/U238

	
1σ






	
91500

	

	
0.07427

	
0.0024

	
1.829

	
0.049

	
0.179

	
0.0023

	
1059.2

	
12.78




	
GJ-1

	
0.06161

	
0.0018

	
0.841

	
0.02

	
0.099

	
0.0012

	
608.5

	
7




	
TTG-Z1

	
61.48

	
115.97

	
0.53

	
0.0497

	
0.0051

	
0.141

	
0.014

	
0.021

	
0.0004

	
131.4

	
11.98




	
TTG-Z2

	
82.14

	
150.1

	
0.55

	
0.04865

	
0.0038

	
0.139

	
0.01

	
0.021

	
0.0003

	
132

	
8.32




	
TTG-Z3

	
110.77

	
230.75

	
0.48

	
0.04997

	
0.0034

	
0.147

	
0.01

	
0.021

	
0.0003

	
135.7

	
8.2




	
91500

	

	
0.07661

	
0.0023

	
1.892

	
0.047

	
0.179

	
0.0023

	
1061.9

	
12.71




	
TTG-Z4

	
187.35

	
161.64

	
1.16

	
0.04916

	
0.0047

	
0.14

	
0.013

	
0.021

	
0.0004

	
132.1
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